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Abstract: A recently developed homochiral magnesium amide base
has been shown to be highly effective in the asymmetric deprotona-
tion of cis-2,6-disubstituted cyclohexanones, affording excellent
levels of both conversion and enantioselection (up to >99.5:0.5 e.r.).
In addition, a novel kinetic resolution process has been realised with
the corresponding trans-disubstituted substrates, allowing access to
optically enriched enol ethers and chiral ketones.
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In recent years considerable effort has been directed to-
wards both the preparation of novel chiral base reagents
and the subsequent scope of these species within asym-
metric synthesis. Most notably, homochiral lithium amide
bases have emerged as effective candidates for use in
enantioselective transformations, allowing direct access
to synthetically useful chiral synthons of good optical en-
richment.1 By comparison, the use of chiral magnesium
species to mediate asymmetric processes has received lit-
tle attention.2 However, when considered it appears that
magnesium amide reagents possess a series of key fea-
tures which, in combination, are central to the develop-
ment of a range of asymmetric transformations. Indeed,
two of the most important aspects of magnesium amide
chemistry are: (i) their solution aggregation is generally
simple and predictable,3 and (ii) they are highly reactive,
yet selective, bases.4 Such advantages over existing meth-
odology have therefore led us to explore both the forma-
tion and utility of this important class of chiral reagent. In
this respect, we have recently reported a convenient in situ
preparation of novel, homochiral Mg-amide base (R)-1
from the readily available and structurally very simple
chiral amine, (R)-N-benzyl-�-methylbenzylamine. In
turn, this Mg-amide reagent was found to be particularly
effective in the desymmetrisation reaction of 4-substitut-
ed cyclohexanones and afforded the corresponding silyl
enol ethers with high levels of both conversion and enan-
tioselection (up to 95:5 e.r.).5,6

With a view to further probing the efficacy of our Mg-
based deprotonation strategy, we have now extended the
scope of our studies to encompass the enantioselective
deprotonation of alternative prochiral ketonic substrates
and more specifically, 2,6-disubstituted cyclohexanones.
In particular and to initiate this investigation, 2,6-dimeth-
ylcyclohexanone 2 was available to us as an 82:18 mix-

ture of cis-/trans-isomers. Upon optimisation of the
reaction between (R)-1 and 2, we were pleased to observe
a 71% conversion to silyl enol ether (R)-3 which, on anal-
ysis, exhibited an appreciable enantiomeric ratio (e.r.) of
87:13 (Scheme 1). Moreover, as well as observing a good
level of asymmetric induction, we were intrigued to note
that the returned and initially racemic trans-ketone 2 now
exhibited a 74:26 ratio of enantiomers, thus indicating that
Mg-amide base (R)-1 had also mediated a kinetic resolu-
tion process.

Scheme 1

Based upon these promising initial results, we then
wished to further explore the potential of our system by
reacting each of the cis- and trans-isomers of 2 in isolation
with chiral Mg-amide base (R)-1. In this regard, when the
cis-ketone 2 was utilised at �78 °C the resulting silyl enol
ether (R)-3 registered an excellent enantiomeric ratio of
97:3 (Table 1, Entry 1). This synthetic outcome is partic-
ularly noteworthy, in that, when cis-ketone 2 was reacted
under similar conditions with the Li version of the same
chiral amide, the deprotonation process delivered a signif-
icantly lower 64.5:35.5 e.r.7 Returning to our Mg-amide
base (R)-1, whilst a reduction in the reaction time from 65
h to 6 h resulted in a drop in conversion to 25%, pleasing-
ly, increasing the reaction temperature to –60 °C, allowed
enhanced levels of conversion to be noted (67%) with
only a small drop off in enantioselection (94:6 e.r.). Upon
raising the temperature still further, to –40 °C, we were
delighted to note almost quantitative conversion (99%) of
cis-2 to (R)-3 within 6 h. Additionally, this transformation
was, again, complete without any considerable reduction
in the enantioselectivity (93:7 e.r.).

Reaction of (R)-1 with the trans-isomer of 2,6-dimethyl-
cyclohexanone 2, initially present as a racemic mixture,
showed that our novel chiral Mg-amide base was indeed
capable of mediating a kinetic resolution process. Follow-
ing reaction at �78 °C and after 76% conversion, the op-
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THF, –78 ºC, 65 h

87:13 e.r.
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posite enol ether (S)-3, to that formed from the cis-isomer
of 2, was obtained in excess (Scheme 2).10 Additionally,
the unreacted ketone trans-2 was returned displaying an
enantiomeric ratio of 72:28. Based on the formation of the
known (S)-isomer of 3,9 as well as literature data,11 the
predominant returned ketone was assigned as the (R,R)-
enantiomer.

Scheme 2

With a practically convenient method for the desymmetri-
sation of 2,6-dimethylcyclohexanone in place, we then
moved on to consider the enantioselective deprotonation
of alternative substrates using chiral Mg-amide base (R)-
1. Upon consideration of cis-2,6-diphenylcyclohexanone
4,12 reaction with (R)-1 showed a temperature window
within which acceptable yields of silyl enol ether (S)-5
were achieved. Furthermore, good levels of enantioselec-
tion were observed in each case (Table 2).

Table 2 Enantioselective Deprotonation Reactions of cis-4 with
Mg-amide (R)-1

aSee ref. 13.

Additional examples of 2,6-disubstituted cyclohexanones
were required to be synthesised from the corresponding
2,6-disubstituted phenols, e.g. via Raney Nickel catalysed
hydrogenation14 and subsequent oxidation of the cyclo-
hexanol intermediate with Dess-Martin reagent.15 In par-
ticular, using the phenol 6 as starting material this route
afforded quantities of both the cis- and trans-isomers of
2,6-di-iso-propylcyclohexanone 7 (Scheme 3) which
were separated and reacted with the chiral Mg-amide base
(R)-1 in isolation. More specifically, reaction of cis-2,6-
di-iso-propylcyclohexanone 7 with (R)-1 produced silyl
enol ether (S)-8 in 54% conversion after 40 h reaction time
at –78 °C. Remarkably, only one enantiomer of this prod-
uct could be observed by chiral GC, thus, allowing us to
register our highest enantiomeric ratio yet achieved of
>99.5:0.5 (Table 3, Entry 1). Pleasingly, warming the re-
action temperature sequentially to –40 °C allowed us to
observe almost quantitative conversion of cis-7 to silyl
enol ether (S)-8 which, only upon concentration of the GC
sample, began to show a trace amount of the undesired
second enantiomer (98.8:1.2 e.r.).16 It is interesting and,
indeed, practically relevant to note that when this depro-
tonation process with our chiral Mg-base (R)-1 was per-
formed at room temperature, high levels of
enantioselection were still maintained (91:9 e.r.).17,18

Scheme 3 Reagents and conditions: (a) Raney Ni, H2 (100 atm),
104 °C, 39 h, 97%; (b) Dess-Martin periodinane, CH2Cl2, r.t., 1 h,
98%.

Table 3 Enantioselective Deprotonation Reactions of cis-7 with
Mg-amide (R)-1

aSee ref. 8.
bSee ref. 16.

In a drive to further explore the kinetic resolution poten-
tial  of  our   base   (R)-1,   we   subjected   trans-2,6-di-
iso-propylcyclohexanone 7 to our Mg-based deprotona-
tion strategy (Table 4). We were delighted to note that, at
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trans-2 (S)-3

TMSCl, HMPA (0.5 equiv.),
THF, –78 ºC, 65 h

76% conv.
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(R)-12 Mg

Table 1 Enantioselective Deprotonation Reactions of cis-2 with
Mg-amide (R)-1

aConversions were determined by GC analysis.
bSee ref. 8.
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–40 °C and after 66% conversion, silyl enol ether (R)-8
was obtained in good enantiomeric ratio (81:19). Further-
more, the initially racemic trans-ketone 7 was returned
displaying a substantially increased level of one enanti-
omer over the other (94:6 e.r.). This kinetic resolution
could be further enhanced by simply performing the
deprotonation reaction at 0 °C for 19 h. Based on similar
reasoning to that used with trans-2, the predominant re-
turned ketone was assigned as the (S,S)-enantiomer.

In conclusion, we have now succeeded in extending the
scope of our enantioselective deprotonation strategy using
the chiral Mg-amide base (R)-1 to include 2,6-disubstitut-
ed cyclohexanones. More particularly, with these sub-
strates excellent levels of asymmetric induction have been
realised, up to >99.5:0.5 e.r. Indeed, this represents the
highest degree of enantioselection attained within this
specific area of chiral base chemistry.19 Additionally, we
have also observed a novel Mg-amide mediated kinetic
resolution process during the reaction of both trans-2,6-
dimethylcyclohexanone and trans-2,6-di-iso-propylcy-
clohexanone. Interestingly with respect to gaining access
to the chiral synthon of choice, with both of these sub-
strates the enantiomeric enol ether to that obtained from
the corresponding cis-ketone is formed in excess. The re-
turned ketones also display good to excellent enantiomer-
ic ratios. Overall, we believe that the practical
developments detailed here will be of general use to those
concerned with the desymmetrisation of prochiral cyclic
ketones. In addition, the further use of alternative Mg-
bisamide systems and the development of related method-
ology is currently underway in our laboratories and will
be reported in due course.
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