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ABSTRACT: We report the divergent catalytic transfor-
mation of alkene-tethered isoxazol-5(4H)-ones by using 
rhodium and cobalt catalysts to afford 2H-pyrroles (with 
Rh catalyst) and azabicyclic cyclopropanes (with Co 
catalyst).  The rhodium-catalyzed 2H-pyrrole formation 
involving hydrogen shift is supported by deuterium-
labeling experiments.  The control experiments in the 
cobalt-catalyzed reaction indicate that the bicyclic aziri-
dines as the primary product undergo a skeletal rear-
rangement assisted by metal iodide salts. 

 
Keywords: divergent catalysis, rhodium, cobalt, N-
heterocycles, decarboxylation 

1.  INTRODUCTION 

Divergent catalytic transformation of common substrates 
toward various synthetic scaffolds through the common 
intermediates by changing transition metals1,2 or by using 
different ligands3,4 is an efficient and powerful strategy as 
well as a more challenging issue than the usual synthetic 
strategy aiming at an individual approach to each target.  
Such kinds of divergent approaches are considered to be 
effective in the synthesis of various nitrogen-containing 
heterocycles, which are privileged structural motifs in bio-
logically active molecules, including synthetic drugs.1,3  
Recently, the generation of nitrogen-centered active species 
generated by catalytic N–O bond cleavage of oxime esters 
has emerged as one of the most attractive methods for syn-
thesizing various nitrogen-containing heterocycles.5,6  We 
have recently found that isoxazol-5(4H)-ones (isoxa-
zolones) could act as the alkenylnitrene equivalent (Scheme 
1), which is followed by palladium-catalyzed cyclization 
with the internal olefin to form a bicyclic aziridine.7,8  Dur-
ing the course of studies, we also found different cycliza-
tion reactions of the same isoxazolones, catalyzed by iridi-
um and ruthenium, providing 2H-azirines and pyridines, 

respectively.9,10  We report herein the divergence of these 
nitrene-transfer reactions by employing rhodium and cobalt 
catalysts, affording two different nitrogen-containing het-
erocycles, 2H-pyrroles and azabicyclo[3.1.0]hex-2-enes. 
Scheme 1.  Divergent synthesis of nitrogen-containing het-
erocycles by transition metal-catalyzed transformation of 
alkene-tethered isoxazol-5(4H)-ones. 

 

2.  RESULTS AND DISCUSSION 

2.1. Rhodium-catalyzed 2H-Pyrrole Formation 
At the outset of this study, we examined the reaction of 

the model substrate 1a with a catalyst precursor 
([RhCl(cod)]2, 10 mol% per Rh) and various phosphine 
ligands in 1,4-dioxane at 100 °C for 5 h (Table 1).  Trial-
kylphosphines P(alkyl)3 (alkyl = Me, Cy, t-Bu) did not 
work as ligands for 2H-pyrrole formation (entries 1–3).  
When we employed PPh3 as a ligand, 2H-pyrrole 5a was 
obtained as the corresponding decarboxylative cyclization 
product in 67% yield (entry 4).  We next examined various 
triarylphosphine and bisphosphine ligands under similar 
conditions.  Among the various bisphosphine ligands ex-
amined, dppf exhibited the highest selectivity for 2H-
pyrrole formation, 2H-pyrrole 5a being obtained in 74% 
yield (entries 5–8).  When the electronic effect of the tri-
arylphosphine ligands was examined, the use of tri-
arylphosphine with electron-deficient trifluoromethyl group 
P(4-CF3C6H4)3 resulted in very low conversion (entry 9).  
This result makes a striking contrast to the palladium-
catalyzed aziridination, in which P(4-CF3C6H4)3 is the most 
effective ligand for obtaining bicyclic aziridine 2a in the 
highest yield.7a  Finally, we found the electron-rich 
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triarylphosphine, P(4-MeOC6H4)3, was the best ligand in 
the selective formation of 2H-pyrroles (entry 10).  Reduc-
ing the amount of catalyst loading to 5 mol% Rh dimin-
ished the yield of 2H-pyrrole significantly in 1,4-dioxane 
(entry 11).  The yield was increased to 84% (73% isolated 
yield) when acetonitrile was used as the solvent (entries 
12–14). 
 
Table 1.  Rhodium-catalyzed formation of 2H-pyrrole 5a from 
isoxazolone 1a.a 

 

entry ligand solvent time (h) conv (%)b yield (%)b 

  1 PMe3 1,4-dioxane   5   31   2 
  2 PCy3 1,4-dioxane   5     0   0 
  3 P(t-Bu)3 1,4-dioxane   5     0   0 
  4 PPh3 1,4-dioxane   5   99 67 
  5c dppe 1,4-dioxane   5   88 38 
  6c dppb 1,4-dioxane   5   86 36 
  7c dppf 1,4-dioxane   5   96 74 
  8c rac-binap 1,4-dioxane   5  100 33 
  9 P(4-CF3C6H4)3 1,4-dioxane   5      9   2 
10 P(4-MeOC6H4)3 1,4-dioxane   5 100 81 
11d P(4-MeOC6H4)3 1,4-dioxane 24   73 44 
12d P(4-MeOC6H4)3 THF 24 100 69 
13d P(4-MeOC6H4)3 DME 24 100 77 
14d P(4-MeOC6H4)3 MeCN 24 100 84 (73)e 
a The reaction was carried out with isoxazolone 1a (0.20 mmol), 
[RhCl(cod)]2 (5 mol%), and ligand (30 mol%) in 1,4-dioxane (2.0 mL) at 
100 °C.  b Determined by 1H NMR spectra of the crude products.  c 10 
mol% of the ligand was used.  d [RhCl(cod)]2 (2.5 mol%) and ligand (15 
mol%) were used.  e The yield of isolated product.   

The rhodium-catalyzed 2H-pyrrole formation reaction 
can be applied to several substrates bearing a variety of 
substituents (Table 2).  When methyl, n-hexyl, and phenyl 
groups were employed as R3 substituents, the correspond-
ing 2H-pyrroles were obtained in good yields (5a–c).  
Isoxazolone 1d having all alkyl substituents for R1, R2, and 
R3 afforded 2H-pyrrole 5d in 62% yield.  Isoxazolones 
bearing various aromatic substituents on R1, such as p-
methoxyphenyl, p-bromophenyl, naphthyl, and thienyl 
groups also afforded 2H-pyrroles 5e–i in good yields.  Tri-
cyclic product 5j was also obtained from tetralin-fused 
isoxazolone 1j.  The reaction of isoxazolone 1n, which 
possesses an allyl group (R3 = H) gave 1H-pyrrole 7n in 
place of 2H-pyrrole in good yield, when the reaction was 
carried out with [RhCl(C2H4)2]2 and DPEphos in 
dichloroethane at 100 °C, 17 h (eq 1). 
 

Table 2.  Rhodium-catalyzed reaction of isoxazol-5(4H)-one 1 
giving 2H-pyrrole 5.a 

 
a Reaction conditions: isoxazolone 1 (0.20 mmol), [RhCl(cod)]2 (2.5 
mol%), and P(4-MeOC6H4)3 (15 mol%) in acetonitrile (2.0 mL).  b 
[RhCl(cod)]2 (5 mol%) and P(4-MeOC6H4)3 (30 mol%) were used. 
 

 
 

2.2. Cobalt-catalyzed Azabicyclic Cyclopro-
pane Formation 
 
Table 3.  Cobalt-catalyzed decarboxylative transformation of 
isoxazolone 1a.a 

 
entry [Co] ligand conv (%)b 6a (%)b 2a (%)b 3a (%)b 
1 CoI2 dppe 100 66 (60)  0  9 
2 CoI2 dppbz 100   66  0  5 
3 CoI2 dppp  57 14  0  1 
4 CoI2 dppf 100 30  0  6 
5 CoI2 DPEphos  58 24  0  4 
6 CoI2 PPh3  56 10  0  3 
7 CoI2(dppe) none 100 67  0  7 
8 CoBr2 dppe  79   6 32  1 
9c CoI2 dppe 100   0 43 11 
a Reaction conditions: isoxazolone 1a (0.20 mmol), CoI2 (10 mol%), Mn 
(0.30 mmol), and ligand (10 mol%) in acetonitrile (2.0 mL) at 100 °C. b 
Determined by 1H NMR analyses of the crude products. c Reaction at 
60 °C. 

 

During the exploration of catalysis with other metals, we 
found that a reaction of 1a catalyzed by a low-valent co-
balt-dppe complex, which was generated via reduction of 
CoI2 with metallic Mn powder in situ,11 afforded a new 
product 6a with a small amount of pyridine 3a (Table 3, 
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entry 1).  Hence, the reaction conditions of the cobalt-
catalyzed reaction of isoxazolone 1a including ligands, 
temperature, and solvent were examined.  Acetonitrile was 
also found to be the most effective solvent in the cobalt 
catalysis.12 Dppe and dppbz gave the best yields of product 
6a as a result of the screening of various monophosphine 
and bisphosphine ligands (entries 1–6).  The reaction also 
proceeded smoothly when a presynthesized cobalt–
phosphine complex was used (entry 7).  In sharp contrast, 
the employment of a cobalt dibromide complex instead of 
the iodide complex afforded the product 6a only in 6% 
yield.  Instead, bicyclic aziridine 2a was obtained in mod-
erate yield (entry 8).  The selective formation of aziridine 
2a was also observed in the reaction at a lower temperature 
(entry 9). 

With the optimized conditions for the selective formation 
of cyclopropanes established, a variety of 1 was tested (Ta-
ble 4).  Bromo, chloro, thienyl, and trifluoromethyl groups 
on the aromatic substituent in R1 could be tolerated under 
the reaction conditions (6f–l).  Isoxazolone 1n and 1o hav-
ing one and two allyl groups afforded cyclopropanes 6n 
and 6o, respectively, together with 1H-pyrroles 7n and 7o. 

 
Table 4.  The cobalt-catalyzed reaction of isoxazol-5(4H)-one 1 
giving azabicyclic cyclopropane 6.a 

 
a Reaction conditions: isoxazolone 1 (0.20 mmol), CoI2 (10 mol%), Mn 

(0.30 mmol), and dppe (10 mol%) in acetonitrile (2.0 mL) at 100 °C. 

2.3. Derivatization of the reaction products 
2H-Pyrroles obtained from the rhodium-catalyzed reac-

tion could be transformed into oxidized or reduced five-
membered nitrogen-containing heterocycles by simple oxi-
dation and reduction (Scheme 2).  Heterogeneous palladi-
um–carbon-catalyzed hydrogenation of 2H-pyrrole 5a af-
forded pyrroline 8 selectively, while the reaction of 2H-
pyrrole 5a with DIBAL-H resulted in the reduction of the 

C=N double bond to form pyrroline 9 selectively.  Oxida-
tion of 2H-pyrrole 5a with m-CPBA afforded the corre-
sponding N-oxide 10 in good yield.  The 2H-pyrrole N-
oxide derived from 5g, like 5a, was further converted to the 
platinum complex 11 in moderate yield.  The structure of 
11 was determined by X-ray crystallographic analysis (eq 2, 
Figure 1). 

Azabicyclic cyclopropane 6a, which was obtained in the 
cobalt-catalyzed reaction, was also applied to hydride re-
duction with NaBH3CN to give the corresponding bicyclic 
amine 12 as a single diastereomer in good yield (eq 3).13   
 
Scheme 2.  Oxidation and reduction of 2H-pyrroles into five-
membered heterocyclic compounds  

 

 

 
Figure 1.  An ORTEP drawing of platinum complex 11.  Hydro-
gen atoms are omitted for clarity.  CCDC 1839972. 
 

 
2.4.  Deuterium-labeling Experiments  

Deuterium-labeling experiments were performed to gain 
insight into the mechanism of the rhodium-catalyzed reac-
tion.  Deuterated isoxazolone 1a-d2 was reacted under the 
standard conditions to give 2H-pyrrole 5a-d, in which one 
of the deuterium atoms was incorporated into the methyl 
group (85% incorporation) and the other deuterium re-
mained attached to the original carbon (eq 4).  The reaction 
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of monodeuterated isoxazolone 1a-d1 showed no signifi-
cant intramolecular kinetic isotope effect (eq 5).  A crosso-
ver reaction using 1a-d2 and 1c in 1:1 ratio resulted in the 
formation of deuterated 5a-d and 5c, which indicates that 
no intermolecular exchange of hydrogen atoms occurred 
during the reaction (eq 6).  Moreover, allyl-substituted 
isoxazolone 1n-d with one deuterium at the 2-position of an 
allyl group was transformed into 1H-pyrrole 7n-d, in which 
the deuterium incorporation ratio at the methyl position 
was less than 12% (eq 7).  This result is in sharp contrast to 
the palladium-catalyzed formation of 1H-pyrroles.7c  The 
formation of 1H-pyrroles can be explained by assuming the 
prototropic shift of mechanism from that of the palladium 
catalyst.14  

 

 
2.5.  Control Experiments in Cobalt-catalyzed 
Reaction 

Considering that the cobalt-catalyzed reaction at the low-
er temperature gave aziridine 2a as a major product, gener-
ation of azabicyclic cyclopropane 6a by cobalt catalysis 
would involve the skeletal rearrangement of aziridine 2a.  
Therefore, we investigated several conditions of the reac-
tion of isolated aziridine 2a giving 6a (Table 5).  In the 
presence of CoI2, dppe, and metallic Mn, aziridine 2a was 
isomerized to product 6a in good yield, which indicates 
that aziridine 2a was a key intermediate for the formation 
of 6a (entry 1).  The isomerization proceeded in the pres-
ence of a catalytic amount of metal iodides such as CoI2, 
ZnI2, SmI2, and LiI (entries 2–5).  While Bu4NI and ZnBr2 

did not show prominent catalytic activity toward the isom-
erization (entries 6 and 7), the efficacy of metal iodide salts 
in isomerization was obvious. 
Table 5.  Skeletal rearrangement of bicyclic aziridine 2a into 
azabicyclic cyclopropane 6a. a 

 
 entry reagents 6a (%)b 
 1 CoI2 (10 mol%), dppe (10 mol%), Mn (1.5 equiv) 68 
 2 CoI2 (10 mol%) 49 
 3 ZnI2 (10 mol%) 61 
 4 SmI2 (10 mol%) 72 
 5 LiI (10 mol%) 57 
 6 Bu4NI (10 mol%) 13 
 7 ZnBr2 (10 mol%) 0 

a Reaction conditions: aziridine 2a (0.20 mmol) and reagents (as de-
scribed above) in acetonitrile (2.0 mL) at 100 °C. b Determined by 1H 
NMR analyses of the crude products. 

2.6. Mechanistic Consideration 
Scheme 3.  A proposed catalytic cycle for rhodium- and cobalt-
catalyzed decarboxylative transformation of isoxazolone 1. 

 
Based on the above experimental results, the proposed 

mechanism for rhodium-catalyzed 2H-pyrrole formation 
and cobalt-catalyzed bicyclic aziridine formation is shown 
in Scheme 3.  Considering the catalytic cycles proposed for 
palladium-, ruthenium-, and iridium-catalyzed reactions, 
the present catalytic cycle also begins from the oxidative 
addition of isoxazolone 1 to the low-valent metal species to 
form intermediate A via N–O bond cleavage.7–10  Interme-
diate A rapidly undergoes decarboxylation to form 
azametallacyclobutene B rather than alkenylnitrene species 
B¢,15 which then undergoes intramolecular cycloaddition or 
1,2-insertion of olefinic moieties into the metal–nitrogen 
double bond to form bicyclic metallacycle C.  In the cobalt-
catalyzed reaction, C–N bond-forming reductive elimina-
tion from intermediate C affords bicyclic aziridine 2 as 
well as the regenerated catalyst, which is very similar to the 
palladium-catalyzed system.7a,16  In the rhodium-catalyzed 
reaction, on the other hand, intermediate C would isomer-
ize into aza-h3-allylrhodium intermediate D.  Then the b-
hydride elimination followed by reductive elimination 
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would form 2H-pyrrole 5 as well as the regenerated catalyst.  
These reaction pathways are in good agreement with deu-
terium-labeling experiments as described above.  1H-
Pyrrole 7 is considered as the prototropically isomerized 
product of 2H-pyrrole 5, which has also been confirmed by 
the deuterium-labeling experiment described above. 

It is assumed that the skeletal rearrangement of bicyclic 
aziridine 2 to azabicyclic cyclopropane 6 would be trig-
gered by the coordination of the nitrogen atom to the Lewis 
acidic metal species,17,18 taking the control experiments as 
shown in Table 3 into consideration.  Then complex F un-
dergoes a C–N bond-cleaving ring expansion simultaneous-
ly with the formation of the C–I bond to form six-
membered species G,19 which readily undergoes the C–C 
bond-forming recyclization to give bicyclic product 6, re-
generating the metal iodide species (Scheme 4).  
 
Scheme 4.  Proposed mechanism for skeletal rearrangement of 
bicyclic aziriridne 2 into azabicyclic cyclopropane 6. 

 

3. CONCLUSION 

We have explored divergence in the decarboxylative 
ring-reconstruction of alkene-tethered isoxazol-5(4H)-ones 
by employing rhodium and cobalt catalysts.  2H-Pyrroles20 

and azabicyclo[3.1.0]hexanes,13,21 both of which have been 
obtained in the present catalyst system, are both promising 
candidates of a framework for the synthesis of biologically 
active molecules, including drugs and natural prod-
ucts.20c,22,23  Mechanistic elucidations using deuterium-
labeling experiments and control experiments have sup-
ported the mechanism for the formation of the target heter-
ocycles.  The divergence of the catalytic transformation of 
isoxazolones that can be switched by changing transition 
metals may provide a new guiding principle in the devel-
opment of divergent methods for nitrogen-containing het-
erocyclic molecules by transition metal catalysis. 
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