

Contents lists available at SciVerse ScienceDirect

### European Journal of Medicinal Chemistry



journal homepage: http://www.elsevier.com/locate/ejmech

Original article

# Synthesis and in vitro antiproliferative evaluation of pyrimido[5,4-*c*]quinoline-4-(3*H*)-one derivatives

Yong Ai<sup>a</sup>, Yong-Ju Liang<sup>b</sup>, Jian-Chao Liu<sup>c</sup>, Hong-Wu He<sup>c</sup>, Yu Chen<sup>a</sup>, Chu Tang<sup>a</sup>, Guang-Zhong Yang<sup>a,\*</sup>, Li-Wu Fu<sup>b,\*</sup>

<sup>a</sup> Laboratory for Natural Product Chemistry, College of Pharmacy, South Central University for Nationalities, 708 Minyuan Road, Wuhan 430074, PR China <sup>b</sup> State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, PR China <sup>c</sup> College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China

#### ARTICLE INFO

Article history: Received 8 July 2011 Received in revised form 20 September 2011 Accepted 23 October 2011 Available online 25 October 2011

*Keywords:* Synthesis Pyrimido[5,4-*c*]quinoline-4-(3*H*)-one Antiproliferative activities Antitumor agent(s)

#### ABSTRACT

A series of pyrimido[5,4-*c*]quinoline-4-(3*H*)-one derivatives variously substituted at positions 2 and 3 were synthesized and evaluated for their in vitro antiproliferative activities against a panel of six human cancer cell lines. Biological evaluation revealed that the vast majority of derivatives exhibited moderate tumor growth inhibitory activities. In particular, compound **7e** showed effective anti-tumor activity with broad-spectrum toward numerous cell lines and the most active member in this study. This derivative displaying significant activity against KB (IC<sub>50</sub>: 4.9 µM), CNE2 (IC<sub>50</sub>: 13.8 µM), MGC-803 (IC<sub>50</sub>: 4.8 µM), GLC-82 (IC<sub>50</sub>: 7.88 µM), MDA-MB-453 (IC<sub>50</sub>: 18.2 µM) and MCF-7 (IC<sub>50</sub>: 10.1 µM) cell lines could be considered as the most promising and useful template for future development to obtain more potent anti-tumor agent(s).

© 2011 Elsevier Masson SAS. All rights reserved.

#### 1. Introduction

Although there has been great progress in the development of treatment and prevention for cancer, it still remains an enormous threat to people's health in the 21st century, representing the second primary cause of death in the world [1]. In the past years, considerable efforts have been made to develop innovative strategies for finding safe and effective methods of treating this disease. With the increasing understanding of the biological process involved in cancer cell survival and the discovering of new target, more and more novel chemical therapeutic drugs have been designed for treatment of cancer.

The derivatives of pyrimidoquinolines have been attracted great interest over many years due to their broad bioactivities. A great deal of investigations on the synthesis of pyrimidoquinolines was carried out [2–9], and many derivatives with excellent anti-HIV and anti-tumor activities have been obtained [10–14]. For example, 5-deazaflavins {pyrimido[4,5-b]quinoline-2,4 (3*H*,10*H*)-diones} and 2-deoxo-2-phenyl-5-deazaflavins {2-phenylpyrimido [4,5-b]quinolin-4(10*H*)-ones} as selective inhibitors of protein

kinase C (PKC) exhibited effective growth inhibition against cancer cell lines such as A 431 cells and HT 1080 cells [15]; 2-amino-pyrimido[4,5-c]quinolin-1(2H)-ones and 2,5-diaryl-3-methylpyrimido [4,5-c]quinolin-1(2H)-one derivatives as a class of cytotoxic antimitotic agents have been reported in the literatures [13,16]; in addition, many attentions have also been focused on the synthesis and bioactivities of pyrimido[5,4-c]quinoline derivatives [17–22]. Although previous researches revealed that they exhibited several significant pharmacological activities (e.g. antioxidant [20], antimalarials [21], antiherpetic [22]), these reported pyrimido[5,4-c] quinoline derivatives suffered from serious limitations such as the rapid development of drug resistant. Thus, novel, potent, selective and less toxic agents containing pyrimido[5,4-c] quinoline system are still urgently required to triumph over the limitations.

In the present work, a novel series of pyrimido[5,4-*c*]quinoline-4-(3*H*)-one derivatives bearing variously substituted at positions 2 and 3 were synthesized and tested for in vitro antiproliferative activity. The preliminary bioassay showed that some of them have antiproliferative activity and the most active compound **7e** against KB (IC<sub>50</sub>: 4.9  $\mu$ M), CNE2 (IC<sub>50</sub>: 13.8  $\mu$ M), MGC-803 (IC<sub>50</sub>: 4.8  $\mu$ M), GLC-82 (IC<sub>50</sub>: 7.88  $\mu$ M), MDA-MB-453 (IC<sub>50</sub>: 18.2  $\mu$ M) and MCF-7 (IC<sub>50</sub>: 10.1  $\mu$ M) cell lines could be regarded as the most promising and useful template for future development to obtain more potent anti-tumor agent(s).

<sup>\*</sup> Corresponding authors.

*E-mail addresses:* yanggz888@126.com (G.-Z. Yang), fulw@mail.sysu.edu.cn (L-W. Fu).

<sup>0223-5234/\$ –</sup> see front matter  $\circledcirc$  2011 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.ejmech.2011.10.044

#### 2. Chemistry

The synthetic methods of pyrimido[5,4-c]quinoine derivatives using pyrimidine moiety [19,20] or quinoline moiety [21–23] as sarting materials have appeared in the literature. Here, we present three synthetic routes to novel pyrimido[5,4-c]quinoine derivatives (Scheme 1).

Firstly, a series of pyrimido[5,4-c]quinoine derivatives bearing 3-substituted groups have been synthesized. The general procedure for the synthesis of derivatives **6a**–**k** was described in Scheme 1. Ethyl 4-amino-2-methylquinoline-3-carboxylate (**2**) was prepared in 68% yield from 2-Aminobenzonitrile (**1**) by treatment with ace-toacetic ester and tin tetrachloride in refluxing toluene. It was treated with triethyl orthoformate using acetic anhydride as a catalyst to yield intermediate **5**. Upon reaction with n-butylamine, n-propylamine, isopropylamine, hydrazine hydrate, glycol, ethanolamine,  $\beta$ -phenylethylamine, benzylamine, ethylamine, (±)-secbutylamine and isobutylamine, yielded corresponding 3-substituted pyrimido[5,4-c]quinoine-4-(3H)-one derivatives **6a–k**.

Secondly, the iminophosphorane **3** was obtained in a satisfactory yield when **2** was treated with triphenylphosphine, hexachloroethane and Et<sub>3</sub>N. As shown in Scheme 1, the iminophosphorane **3** reacted with substituted phenyl isocyanate to give carbodiimide **4** by using aza-Wittig reaction in a mild condition. The reaction of carbodiimide **4** with substituted phenols yielded **7a**–**j** in high yields under the condition of heating for 4–6 h in the presence of a catalytic amount of K<sub>2</sub>CO<sub>3</sub>.

Finally, carbodiimide **4** was treated with 2-methylpropan-2amine or hydrazine hydrate to yield **8a–c** in satisfactory yield at room temperature for 12-13h using EtONa as a catalyst. Meanwhile, compound **8b** was reacted with triethyl orthoformate to afford the cyclized compound **9**. The preparations are summarized in Table 1.

### 3. Pharmacology

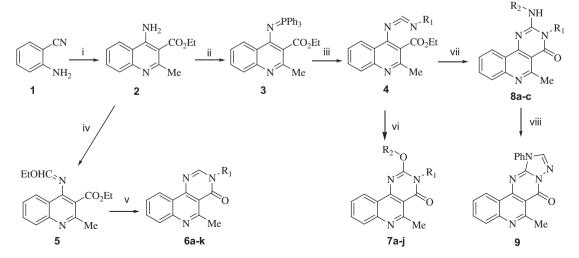
To evaluate the anticancer potencies of these newly synthesized pyrimido[5,4-*c*]quinoline-4(3*H*)-one derivatives, the antiproliferative activities of compounds **6a–k**, **7a–j**, **8a–c** and **9** were tested against six human cancer cell lines including KB human oral carcinoma cells, CNE2 human nasopharyngeal carcinoma cells, MGC-803 human gastric carcinoma cells, GLC-82 human lung carcinoma cells, MDA-MB-453 human breast carcinoma cells and

MCF-7 breast adenocarcinoma cells by performing MTT assay. These results were summarized in Table 2 and presented as the concentration of drug inhibiting 50% cell growth ( $IC_{50}$ ). 5-FU which is one of the most effective anticancer agents was used as the reference drug in this study.

#### 4. Results and discussion

#### 4.1. Nuclear magnetic resonance spectral studies

In this paper, IR, <sup>1</sup>H-NMR spectra, <sup>13</sup>C NMR spectra and mass spectra were used for the identification and confirmation of the newly assigned structures. Assignments of the signals are based on the chemical shifts and intensity patterns.


The <sup>1</sup>H-NMR spectra of all the target compounds, showed a singlet at  $\delta_{\rm H}$  2.97–3.12 ppm, integrating for 3 protons: this data suggested that the signal belonged to 5-Me. Still, four downfield aromatic protons on the quinoline ring were distinctly observed in <sup>1</sup>H-NMR spectra. The structures of the compounds **6a**–**k** were confirmed in particular by the presence of a proton resonance at the 2-position as a singlet signal at  $\delta_{\rm H}$  8.21–9.03 ppm in <sup>1</sup>H-NMR spectra. The H NMR spectra of compounds **8b**–**c** showed singlets for (NH<sub>2</sub>) proton at  $\delta_{\rm H}$  5.75 and another singlets for one (NH) proton at  $\delta_{\rm H}$  9.81–9.98.

<sup>13</sup>C NMR spectra of all the compounds were taken and the signal obtained further confirmed the proposed structures. All the compounds showed a signal at 23.0–27.5ppm due to methyl carbon. The characteristic peaks observed within the <sup>13</sup>C NMR spectra of synthesized derivatives are given in Section 6.

#### 4.2. In vitro antiproliferative activity

The present results demonstrate that some compounds exhibited significant activity against certain cancer cell lines in comparison with 5-FU. Among them, compound **7e** showed the best inhibitory activity with IC<sub>50</sub> values 4.9  $\mu$ M, 13.8  $\mu$ M, 4.8  $\mu$ M, 7.88  $\mu$ M, 18.2  $\mu$ M, 10.1  $\mu$ M against KB, CNE2, MGC-803, GLC-82, MDA-MB-453 and MCF-7, respectively.

Compounds **7a**, **7c** and **7e** displayed more potent inhibitory activity than compounds **7b** and **7d**, indicating that introduction of bulky and electron-withdrawing substituent such as groups bearing naphthalene, bromo and nitryl would benefit the potency.



Scheme 1. Synthesis of derivatives **6a**–**k**, **7a**–**j**, **8a**–**c** and **9**. Reagents and conditions: (i) CH<sub>3</sub>COCH<sub>2</sub>COOCH<sub>2</sub>CH<sub>3</sub>, SnCl<sub>4</sub>, 130 °C, 6 h; (ii) PPh<sub>3</sub>, C<sub>2</sub>Cl<sub>6</sub>, Et<sub>3</sub>N, CH<sub>3</sub>CN, rt, 24 h; (iii) R<sub>1</sub>NCO, CH<sub>2</sub>Cl<sub>2</sub>, 45 °C, 12 h; (iv) CH(OEt)<sub>3</sub>/Ac<sub>2</sub>O, reflux, 6 h; (v) RNH<sub>2</sub>/anhydrous acetonitrile, 40 °C, 8 h; (vi) R<sub>2</sub>OH, K<sub>2</sub>CO<sub>3</sub>, 75 °C, 4–6 h; (vii) R<sub>2</sub>NH<sub>2</sub>, rt, 0.5–1 h, CH<sub>3</sub>CH<sub>2</sub>ONa, CH<sub>3</sub>CH<sub>2</sub>OH, rt, 12 h; (viii) CH(OEt)<sub>3</sub>, reflux, 4 h.

Table 1 The preparation of derivatives **6a**–**k**, **7a**–**j**, **8a**–**c** and **9**.

| R <sub>1</sub><br><i>n</i> -Bu<br><i>n</i> -Pr<br><i>i</i> -Pr<br>NH <sub>2</sub><br>-(CH) <sub>2</sub> OH<br>-(CH) <sub>2</sub> NH <sub>2</sub> | R <sub>2</sub>    | Yield (%)<br>50.0<br>50.0<br>46.0                 | Mp. (°C)<br>123.4–125.1<br>129.9–131.0<br>110.4_121.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n-Pr<br>i-Pr<br>NH <sub>2</sub><br>–(CH) <sub>2</sub> OH                                                                                         |                   | 50.0<br>46.0                                      | 129.9-131.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| i-Pr<br>NH <sub>2</sub><br>—(CH) <sub>2</sub> OH                                                                                                 |                   | 46.0                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NH <sub>2</sub><br>–(CH) <sub>2</sub> OH                                                                                                         | _                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -(CH) <sub>2</sub> OH                                                                                                                            | -                 | 10.0                                              | 119.4-121.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $-(CH)_2OH$<br>$-(CH)_2 NH_2$                                                                                                                    |                   | 43.0                                              | 291.0-292.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $-(CH)_{2}NH_{2}$                                                                                                                                | _                 | 53.0                                              | 248.6-249.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  | _                 | 51.9                                              | 232.8-235.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  |                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                  | -                 | 36.7                                              | 167.6–168.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bn                                                                                                                                               | _                 | 34.7                                              | 160.0-161.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Et                                                                                                                                               | -                 | 30.7                                              | 128.1-129.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  | _                 | 40.7                                              | 134.2-135.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ~                                                                                                                                                | -                 | 50.2                                              | 138.3-140.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  |                   | 33.8                                              | 208.4–210.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  |                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                  | Me<br>Ó           |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CI                                                                                                                                               |                   | 32.2                                              | 209.2–210.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  |                   | 30.2                                              | 208.3–210.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  | O                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                  |                   | 29.5                                              | 270.6–272.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| {                                                                                                                                                |                   | 34.6                                              | 248.7–251.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  | / NO <sub>2</sub> |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                  |                   | 30.5                                              | 196.0–197.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  |                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| {\                                                                                                                                               | {CI               | 34.5                                              | 193.8–194.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  | Me                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                  |                   | 33.6                                              | 207.7-208.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ``'                                                                                                                                              |                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                  | Me                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                  | $\sim$            | 35.5                                              | 216.8–219.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                  |                   | $Ft \qquad -$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ | $Ft \qquad - \qquad 307$ $- \qquad 407$ $- \qquad 502$ |

Table 1 (continued)



Compared compound **8b** (MGC-803 IC<sub>50</sub>:  $>50\mu$ M) with **8c** (MGC-803 IC<sub>50</sub>: 14.7 $\mu$ M), it can be found that the 4-chloro at 2 position would enhance antiproliferative activity. Meanwhile, the cyclized compound **9** showed weak antiproliferative activity.

Table 2 Antiproliferative activities of compounds **6a-k**, **7a-j**, **8a-c** and **9** against KB, CNE2, MGC-803, GLC-82, MDA-MB-453, and MCF-7 cells.

| Compound | In vitro antiproliferative IC <sub>50</sub> <sup>a</sup> (µM) |      |         |        |            |       |  |
|----------|---------------------------------------------------------------|------|---------|--------|------------|-------|--|
|          | KB                                                            | CNE2 | MGC-803 | GLC-82 | MDA-MB-453 | MCF-7 |  |
| 6a       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 6b       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 6c       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 6d       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 6e       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 6f       | 39.8                                                          | >50  | 39.9    | >50    | 45.7       | 43.5  |  |
| 6g       | >50                                                           | >50  | >50     | 35.2   | 49.5       | >50   |  |
| 6h       | >50                                                           | 26.5 | >50     | >50    | >50        | >50   |  |
| 6i       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 6j       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 6k       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 7a       | 33.9                                                          | 47.0 | 18.5    | 42.1   | >50        | 37.9  |  |
| 7b       | 39.2                                                          | >50  | >50     | >50    | 49.7       | 34    |  |
| 7c       | 29.5                                                          | 28.7 | 15.3    | >50    | 26.6       | 35.7  |  |
| 7d       | 30.9                                                          | 47.7 | >50     | >50    | >50        | >50   |  |
| 7e       | 4.9                                                           | 13.8 | 4.8     | 7.88   | 18.2       | 10.1  |  |
| 7f       | nt <sup>b</sup>                                               | nt   | nt      | nt     | nt         | nt    |  |
| 7g       | >50                                                           | >50  | 41.4    | >50    | >50        | >50   |  |
| 7h       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 7i       | >50                                                           | >50  | >50     | >50    | >50        | 35.5  |  |
| 7j       | 22.8                                                          | 42.9 | >50     | >50    | >50        | >50   |  |
| 8a       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 8b       | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 8c       | 30.3                                                          | >50  | 14.7    | >50    | >50        | >50   |  |
| 9        | >50                                                           | >50  | >50     | >50    | >50        | >50   |  |
| 5-FU     | 9.85                                                          | 17.2 | 16.6    | 15.5   | >50        | 9.67  |  |

Antiproliferative activity was determined by MTT assay as shown in Experimental 6.2 part. All data are presented as mean values of three independent experiments. Coefficients of variation were <10%.

 $^{a}\,$  IC\_{50}: concentration of the tested compound that inhibits 50% of cell growth.  $^{b}\,$  nt: not test.

#### 5. Conclusion

In summary, we have synthesized a novel series of pyrimido [5,4-*c*]quinoline-4-(3*H*)-one derivatives. Compounds **7a**, **7c** and **7e** showed potential antiproliferative activity with broad-spectrum against several human cancer cell lines. Compound **7e** which was the most active members in this study displayed more or similar potent antiproliferative activities against cancer cell lines in comparison with 5-FU. These findings have encouraged us to continue the development and testing of novel pyrimidoquinoline derivatives and to conduct further studies to investigate SAR and their mechanisms of action.

#### 6. Experimental protocols

#### 6.1. Chemistry

#### 6.1.1. General

Melting points were measured on an electrothermal melting point apparatus and are uncorrected. IR spectra were recorded on an NE XUS-470 infrared spectrometer as KBr pellets with absorption in cm<sup>-1.</sup> <sup>1</sup>H-NMR spectra were recorded in CDCl<sub>3</sub>, DMSO-d<sub>6</sub> or CD<sub>3</sub>COCD<sub>3</sub> as solvent on a Varian Mercury 400 (or 600) spectrometer and resonances are given in ppm (d) relative to TMS. MS spectra were measured with a Finnigan MS spectrometer. All of the solvents and materials were reagent grade and purified as required. All compounds were routinely checked by thin-layer chromatography (TLC) on pre-coated silica gel GF254 plates (Qingdao Haiyang Chemical Co., Ltd., P. R. China). Column chromatography was performed using silica gel (200–300 mesh) from Qingdao Haiyang Chemical Group Co., China.

#### 6.1.2. General procedure for the preparation of 3-substituted 5methylpyrimido[5,4-c]- quinolin-4(3H)-ones (**6a**-**k**)

2-Aminobenzonitrile (1; 2.36 g, 20 mmol) and SnCl<sub>4</sub> (3.7 ml, 32 mmol) were add to a stirred solution of ethyl acetoacetate (2.6 ml, 20 mmol) in anhydrous toluene (50 ml). The reaction mixture was stirred under nitrogen at room temperature for 0.5 h,

and then heated at reflux for 6 h (130 °C). The mixture was added to sat.aq. Na<sub>2</sub>CO<sub>3</sub> solution (150 ml, pH 10), and the resulting suspension was extracted with AcOEt (3  $\times$  50 ml). The combined extracts were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated under reduced pressure, the obtained residue was subjected to column chromatography (silica gel, eluent: petroleum ether-acetone, 7:3) to afford **2** in 68% yield.

To a solution of ethyl 4-amino-2-methylquinoline-3-carboxylate **2** (0.46 g, 2 mmol) in 20 ml triethyl orthoformate, 1 ml of acetic anhydride was added under nitrogen at temperature. The solution was stirred and refluxed for 6 h. At which time the reaction was completed, the solution was concentrated under vacuum. Removal of the solvent gave intermediate **5**, which was used directly without further purification.

To the solution of **5** prepared above in anhydrous acetonitrile (10 ml) was added substituted primary amine (3 ml). The mixture was stirred for 8 h at 40 °C and filtered, the filtrate was condensed and the residue was recrystallized from dichloromethane/petro-leum ether to give pure 3-substituted-5-methylpyrimido[5,4-*c*] quinolin-4(3*H*)-ones **6a**–**k**.

6.1.2.1. 3-Butyl-5-methylpyrimido[5,4-c]quinolin-4(3H)-one (**6a**). Pale yellow powder, yield 50%, m.p. 123.4–125.1 °C; IR(KBr): 1681 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 0.95 (t, J = 6.8, 3H, Me), 1.40 (m, 2H, CH<sub>2</sub>), 1.76 (m, 2H, CH<sub>2</sub>), 3.11 (s, 3H, Me), 3.95 (t, J = 7.2, 2H, CH<sub>2</sub>), 7.55 (t, J = 8.0, 1H, Ar-H), 7.77 (t, J = 8.0, 1H, Ar-H), 7.99 (d, J = 8.0, 1H, Ar-H), 8.21 (s, 1H, CH), 8.68 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  13.6, 19.9, 27.5, 31.2, 47.4, 112.7, 123.1, 124.4, 126.4, 128.3, 132.1, 148.4, 150.4, 153.8, 160.0, 160.3; EI MS: m/z 267 ([M]<sup>+</sup>, 72), 266 (17), 250 (5), 238 (11), 225 (51), 211 (100), 194 (12), 183 (23); HREIMS m/z 267.1373 (calcd for C<sub>16</sub>H<sub>17</sub>N<sub>3</sub>O, 267.1373).

6.1.2.2. 5-*Methyl-3-propylpyrimido*[5,4-*c*]*quinolin-4*(3*H*)-*one*(**6b**). Pale yellow powder, yield 50%, m.p. 129.9–131.0 °C; IR(KBr): 1676 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 0.93 (t, J = 6.8, 3H, Me), 1.77 (m, 2H, CH<sub>2</sub>), 3.00 (s, 3H, Me), 4.00 (t, J = 7.6, 2H, CH<sub>2</sub>), 7.68 (t, J = 8.0, 1H, Ar-H), 7.89 (t, J = 8.0, 1H, Ar-H), 7.96 (d, J = 8.0, 1H, Ar-H), 8.70 (d, J = 8.0, 1H, Ar-H), 8.78 (s, 1H, CH); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{C}$  10.5, 21.4, 26.8, 47.7, 111.7, 122.3, 123.8, 126.1, 127.7, 131.6, 147.4, 152.2, 152.7, 158.6, 159.3; El MS: m/z 254 ([M+1]<sup>+</sup>, 13), 253 (75), 225 (6), 212 (14), 211 (100), 194 (8), 183 (29); HREIMS m/z 253.1218 (calcd for C<sub>15</sub>H<sub>15</sub>N<sub>3</sub>O, 253.1218).

6.1.2.3. 3-Isopropyl-5-methylpyrimido[5,4-c]quinolin-4(3H)-one (**6c**). Pale yellow powder, yield 46.0%, m.p. 119.4–121.4 °C; IR(KBr): 1673 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 1.49 (d, J = 6.8, 6H, 2Me), 3.01 (s, 3H, Me), 5.05 (m, 1H, CH), 7.68 (t, J = 8.0, 1H, Ar-H), 7.87 (t, J = 8.0, 1H, Ar-H), 7.95 (d, J = 8.0, 1H, Ar-H), 8.70 (d, J = 8.0, 1H, Ar-H), 8.85 (s, 1H, CH); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{C}$  20.9, 20.9, 26.9, 46.2, 111.5, 122.2, 123.7, 126.1, 127.7, 131.6, 147.4, 149.7, 152.0, 158.8, 159.0; EI MS: *m/z* 254 ([M+1]<sup>+</sup>, 12), 253 (76), 225 (4), 212 (15), 211 (100), 194 (5), 183 (36); HREIMS *m/z* 253.1214 (calcd for C<sub>15</sub>H<sub>15</sub>N<sub>3</sub>O, 253.1214).

6.1.2.4. 5-*Methyl-3-aminopyrimido*[5,4-*c*]*quinolin-4*(3*H*)-*one* (**6***d*). Pale yellow powder, yield 43.0%, m.p. 291.0–292.0 °C; IR(KBr): 1682 cm<sup>-1</sup> (C=O), 3300 cm<sup>-1</sup>, 3176 cm<sup>-1</sup> (NH<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 3.06 (s, 3H, Me), 6.04 (s, 2H, NH<sub>2</sub>), 7.70 (t, J = 8.0, 1H, Ar-H), 7.91 (t, J = 8.0, 1H, Ar-H), 8.00 (d, J = 8.0, 1H, Ar-H), 8.76 (d, J = 8.0, 1H, Ar-H), 7.91 (t, J = 8.0, 1H, Ar-H), 8.00 (d, J = 8.0, 1H, Ar-H), 8.76 (d, J = 8.0, 1H, Ar-H), 8.83 (s, 1H, CH); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{C}$  26.3, 111.5, 122.5, 123.8, 126.1, 127.8, 131.5, 147.5, 151.3, 152.3, 158.6, 159.2; EI MS: m/z 227 ([M+1]<sup>+</sup>, 12), 226 (93), 211 (4), 198 (14), 197 (100), 169 (11), 142 (14); HREIMS m/z 226.0848 (calcd for C<sub>12</sub>H<sub>10</sub>N<sub>4</sub>O, 226.0849).

6.1.2.5. 3-(2-hydroxyethyl)-5-methylpyrimido[5,4-c]quinolin-4(3H)one (**6e**). Pale yellow powder, yield 53.0%, m.p. 248.6–249.2 °C; IR(KBr): 1681 cm<sup>-1</sup> (C=O), 3409 cm<sup>-1</sup> (–OH); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 3.03 (s, 3H, Me), 3.72 (br s, 2H, CH<sub>2</sub>), 4.11 (br s, 2H, CH<sub>2</sub>), 5.01 (s, 1H, OH), 7.69 (t, J = 8.0, 1H, Ar-H), 7.90 (t, J = 8.0, 1H, Ar-H), 8.73 (d, J = 8.0, 1H, Ar-H), 8.67 (s, 1H, CH); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  159.8, 159.0, 153.2, 153.1, 147.8, 128.1, 132.1, 126.5, 122.7, 124.2, 112.2, 49.2, 57.9, 27.2; EI MS: m/z 256 ([M+1]<sup>+</sup>, 10), 255 ([M]<sup>+</sup>, 63), 212 (64), 211 (100), 194 (19), 183 (40), 169 (5), 167 (10); HREIMS m/z 255.1013 (calcd for C<sub>14</sub>H<sub>13</sub>N<sub>3</sub>O<sub>2</sub>, 255.1012).

6.1.2.6. 3-(2-aminoethyl)-5-methylpyrimido[5,4-c]quinolin-4(3H)one (**6f**). Pale yellow powder, yield 51.9%, m.p. 232.8–235.4 °C; IR(KBr): 1669 cm<sup>-1</sup> (C=O), 3356 cm<sup>-1</sup> (NH<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 3.02 (s, 3H, Me), 2.89 (br s, 2H, CH<sub>2</sub>), 4.00 (br s, 2H, CH<sub>2</sub>), 7.68 (t, J = 8.0, 1H, Ar-H), 7.89 (t, J = 8.0, 1H, Ar-H), 7.98 (d, J = 8.0, 1H, Ar-H), 8.74 (d, J = 8.0, 2H, Ar-H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  153.3, 159.9, 159.1, 128.1, 132.0, 126.5, 124.2, 122.8, 147.8, 153.1, 112.4, 49.5, 39.7, 27.3; El MS: m/z 254 ([M]<sup>+</sup>, 5), 253 (2), 226 (6), 225 (43), 212 (100), 197 (23); HREIMS m/z 254.1167 (calcd for C<sub>14</sub>H<sub>14</sub>N<sub>4</sub>O, 254.1167).

6.1.2.7. 5-*Methyl*-3-*phenethylpyrimido*[5,4-*c*]*quinolin*-4(3*H*)-*one* (**6g**). White solid, yield 36.7%, m.p. 167.6–168.8 °C; IR(KBr): 1690 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 3.04 (s, 3H, Me), 3.07 (t, *J* = 6.8, 2H, CH<sub>2</sub>), 4.27 (t, *J* = 6.4, 2H, CH<sub>2</sub>), 7.23–7.31 (m, 5H, Ar-H), 7.66 (t, *J* = 8.0, 1H, Ar-H), 7.89 (t, *J* = 8.0, 1H, Ar-H), 7.98 (d, *J* = 8.0, 1H, Ar-H), 8.56 (s, 1H, Ar-H), 8.66 (d, *J* = 8.0, 1H, Ar-H), 1<sup>3</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_C$  26.5, 33.8, 47.5, 111.8, 122.4, 123.8, 125.9, 126.2, 127.7, 128.1, 128.4, 128.4, 131.5, 137.5, 147.6, 151.8, 151.8, 152.8, 158.7, 159.4; EI MS: *m/z* 316 ([M+1]<sup>+</sup>, 5), 315 (23), 212 (15), 211 (100), 183 (17), 104 (24); HREIMS *m/z* 315.1380 (calcd for C<sub>20</sub>H<sub>17</sub>N<sub>3</sub>O, 315.1379).

6.1.2.8. 3-Benzyl-5-methylpyrimido[5,4-c]quinolin-4(3H)-one (**6h**). Pale yellow powder, yield 34.7%, m.p. 160.0–161.2 °C; IR(KBr): 1680 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 3.01 (s, 3H, Me), 5.27 (s, 2H, CH<sub>2</sub>), 7.31–7.42 (m, 5H, Ar-H), 7.70 (t, J = 8.0, 1H, Ar-H), 7.90 (t, J = 8.0, 1H, Ar-H), 7.99 (d, J = 8.0, 1H, Ar-H), 9.03 (s, 1H, Ar-H), 8.76 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_C$  26.4, 49.1, 112.0, 122.4, 123.9, 126.0, 127.4, 127.4, 127.8, 128.3, 128.3, 131.6, 136.0, 147.7, 152.0, 152.0, 152.9, 158.7, 159.4; EI MS: *m/z* 302 ([M+1]<sup>+</sup>, 23), 301 ([M]<sup>+</sup>, 100), 224 (11), 211 (14), 91 (90); HREIMS *m/z* 301.1210 (calcd for C<sub>19</sub>H<sub>15</sub>N<sub>3</sub>O, 301.1211).

6.1.2.9. 3-*Ethyl*-5-*methylpyrimido*[5,4-*c*]*quinolin*-4(3*H*)-*one* (**6***i*). Pale yellow crystal, yield 30.7%, m.p. 128.1–129.0 °C; IR(KBr): 1684 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 1.35 (t, J = 6.0, 3H, Me), 3.03 (s, 3H, Me), 4.09 (q,  $J = 6.8, 2H, CH_2$ ), 7.68 (t, J = 8.0, 1H, Ar-H), 7.90 (t, J = 8.0, 1H, Ar-H), 7.99 (d, J = 8.0, 1H, Ar-H), 8.83 (s, 1H, CH), 8.74 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{C}$  14.0, 26.7, 41.6, 111.9, 122.5, 123.9, 126.1, 127.8, 131.7, 147.7, 152.0, 152.9, 158.8, 159.4; EI MS: *m/z* 240 ([M+1]<sup>+</sup>, 17), 239 ([M]<sup>+</sup>, 100), 210 (8), 211 (61), 183 (26); HREIMS *m/z* 239.1064 (calcd for C<sub>14</sub>H<sub>13</sub>N<sub>3</sub>O, 239.1063).

6.1.2.10. 3-sec-Butyl-5-methylpyrimido[5,4-c]quinolin-4(3H)-one (**6j**). Red powder, yield 40.7%, m.p.134.2–135.0 °C; IR(KBr): 1688 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d\_6): 0.82 (t, J = 6.8, 3H, Me), 1.03 (d, J = 6.4, 3H, Me), 1.33 (m, 2H, CH<sub>2</sub>), 4.34 (m, 1H, CH), 7.43 (t, J = 8.0, 1H, Ar-H), 7.67 (t, J = 8.0, 1H, Ar-H), 7.77 (s, 1H, Ar-H), 7.96 (s, 1H, Ar-H), 8.29 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-d\_6):  $\delta_{C}$  14.1, 26.8, 60.6, 102.2, 117.1, 122.9, 122.9, 124.5, 124.5, 128.1, 131.1, 131.1, 147.0, 153.1, 157.8, 168.5; EI MS: m/z 267 ([M]<sup>+</sup>, 4), 230 (59), 185 (24), 184 (100); HREIMS m/z 267.1366 (calcd for C<sub>16</sub>H<sub>17</sub>N<sub>3</sub>O, 267.1367).

6.1.2.11. 3-Isobutyl-5-methylpyrimido[5,4-c]quinolin-4(3H)-one (**6k**). Pale yellow crystal, yield 50.2%, m.p. 138.3–140.1 °C;

IR(KBr): 1679 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 0.93 (d, J = 6.0, 6H, 2Me); 2.15 (m, 1H, CH); 3.01 (s, 3H, Me); 3.87 (d,  $J = 6.4, 2H, CH_2$ ); 7.68 (t, J = 8.0, 1H, Ar-H); 7.89 (t, J = 8.0, 1H, Ar-H); 7.98 (d, J = 8.0, 1H, Ar-H); 8.73 (d, J = 8.0, 1H); 8.77 (s, 1H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_C$  19.2, 19.2, 26.8, 53.0, 111.7, 122.3, 123.8, 123.8, 126.1, 127.7, 131.6, 147.4, 152.3, 152.6, 158.7, 159.4; EI MS: m/z 268 ([M+2]<sup>+</sup>, 6), 267 (M<sup>+</sup>, 40), 210 (20), 211 (100), 183 (25); HREIMS m/z 267.1371 (calcd for C<sub>16</sub>H<sub>17</sub>N<sub>3</sub>O, 267.1372).

## 6.1.3. General procedure for the preparation of 3-substituted phenyl-5-methyl-2- aryloxypyrimido[5,4-c]quinolin-4(3H)-one (**7a**–**j**)

To a solution of **2** (1.15 g, 5 mmol) in  $CH_2Cl_2$  (60 ml) was added  $Ph_3P$  (2.62 g, 10 mmol),  $C_2Cl_6$  (2.37 g, 10 mmol) and, in this order,  $Et_3N$  (5.0 ml). The mixture was stirred for 24 h at room temperature. Then, the solution was concentrated, and the obtained residue was subjected to column chromatography (silica gel, eluent: Petroleum ether-Acetone, 8:2) to afford the **3** in 70% yield.

To a solution of iminophosphorane **3** (1.1 g, 2 mmol) in dry methylene chloride (20 ml) was added isocyanatobenzene (0.24 g, 2 mmol), 1-fluoro-4-isocyanatobenzene (0.27 g, 2 mmol) or 1-chloro-4-isocyanatobenzene (0.30 g, 2 mmol) under nitrogen at 45 °C. After the reaction mixture was stirred for 12 h, the solvent was removed under vacuum and Et<sub>2</sub>O/petroleum ether (1:2 30 ml) was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimides **4**, which were used directly without further purification.

To the solution of **4** (2 mmol) in CH<sub>3</sub>CN (15 ml) was added substituted phenol (2 mmol) and cat solid K<sub>2</sub>CO<sub>3</sub> (0.024 g, 0.2 mmol). The mixture was stirred for 4–6 h at 75 °C and then filtered, the filtrate was condensed and the residue was purified by silica gel column chromatography using a 7:3 mixture of petroleum ether-acetone as the eluent. The solvent was evaporated to dryness and the residue recrystallised from ethanol, giving the expected compounds.

6.1.3.1. 3-(4-chlorophenyl)-5-methyl-2-(naphthalen-1-yloxy)pyrimido-[5,4-c]quinolin-4(3H)- one (**7a**). Red solid, yield 33.8%, m.p. 208.4–210.4 °C; IR(KBr): 1684.3 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 2.99 (s, 3H, Me), 7.40 (t, J = 8.0, 1H, Ar-H), 7.52–7.82 (m, 12H, Ar-H), 7.97 (d, J = 7.6, 1H, Ar-H), 8.04 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{C}$  26.1, 109.5, 118.1, 120.8, 121.9, 123.3, 125.2, 125.7, 125.8, 126.1, 126.3, 126.4, 126.4, 127.6, 127.7, 128.0, 129.1, 130.2, 131.8, 133.5, 133.8, 133.9, 146.7, 147.7, 152.5, 154.8, 158.5, 161.3; EI MS: m/z 465 ([M+2]<sup>+</sup>, 8), 463 (M<sup>+</sup>, 23), 320 (11), 310 (100), 211 (13), 155 (33), 128 (10), 75 (2); HREIMS m/z 463.1069 (calcd for C<sub>28</sub>H<sub>18</sub>ClO<sub>2</sub>N<sub>3</sub>, 463.1071).

#### 6.1.3.2. 2-(2-methoxyphenoxy)-3-(4-chlorophenyl)-5-methylpyri-

*mido*[5,4-*c*]*quino*lin-4(3*H*)- *one* (**7b**). Yellow solid, yield 32.2%, m.p. 209.2–210.3 °C; IR(KBr): 1698.5 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 3.13 (s, 3H, Me), 3.79 (s, 3H, Me), 7.06 (d, *J* = 8.0, 2H, Ar-H), 7.19 (d, *J* = 8.0, 1H, Ar-H), 7.34 (t, *J* = 8.0, 1H, Ar-H), 7.42–7.47 (m, 3H, Ar-H), 7.54–7.64 (m, 2H, Ar-H), 7.78 (t, *J* = 8.0, 1H, Ar-H), 7.99 (d, *J* = 8.0, 1H, Ar-H), 8.18 (d, *J* = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  26.6, 56.0, 109.6, 112.7, 120.8, 122.6, 122.9, 124.6, 126.1, 127.4, 127.7, 129.5, 129.8, 132.5, 133.0, 135.2, 140.5, 148.4, 150.8, 153.9, 154.9, 160.1, 162.2; EI MS: *m/z* 445 ([M+2]<sup>+</sup>, 9), 443 (M<sup>+</sup>, 22), 353 (35), 351 (100), 320 (20), 289 (31), 261 (13), 211 (13), 184 (13), 155 (43), 149 (27), 125 (20), 57 (9); HREIMS *m/z* 443.1032 (calcd for C<sub>25</sub>H<sub>18</sub>ClO<sub>3</sub>N<sub>3</sub>, 443.1033).

6.1.3.3. 2-(4-bromophenoxy)-3-(4-chlorophenyl)-5-methylpyrimido [5,4-c]quinolin-4(3H)-one (7c). White solid, yield 30.2%, m.p. 208.3–210.2 °C; IR(KBr): 1698.5 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 3.11 (s, 3H, Me), 7.17 (d, J = 8.0, 2H, Ar-H), 7.25–7.28 (m, 2H,

Ar-H), 7.40 (d, J = 8.0, 2H, Ar-H), 7.51–7.64 (m, 3H, Ar-H), 7.82 (t, J = 8.0, 1H, Ar-H), 8.03 (d, J = 8.0, 1H, Ar-H), 8.28 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  27.0, 109.7, 119.6, 122.7, 122.9, 123.4, 124.5, 126.0, 126.3, 128.3, 129.4, 129.8, 130.0, 132.3, 132.8, 133.0, 135.2, 135.4, 148.8, 153.7, 155.4, 159.9, 160.2, 162.0; EI MS: m/z 495 ([M + 4]<sup>+</sup>, 7), 493 ([M + 2]<sup>+</sup>, 29), 491 (M<sup>+</sup>, 21), 351 (67), 320 (38), 259 (100), 211 (14), 155 (85), 128 (31); HREIMS m/z 491.0042 (calcd for C<sub>24</sub>H<sub>15</sub>ClBrO<sub>2</sub>N<sub>3</sub>, 491.0041).

6.1.3.4. 2-(benzo[d] [1,3]dioxol-6-yloxy)-3-(4-chlorophenyl)-5mehylpyrimido[5,4-c]quinolin-4 (3H)-one (7d). White solid, yield 29.5%, m.p. 270.6–272.4 °C; IR(KBr): 1697.8 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, acetone-d<sub>6</sub>): 3.00 (s, 3H, Me), 6.12 (s, 2H, CH<sub>2</sub>), 6.83 (d, J = 8.0, 1H, Ar-H), 6.95 (d, J = 8.0, 1H, Ar-H), 7.29 (d, J = 8.0, 1H, Ar-H), 7.54 (m, 1H, Ar-H), 7.69 (d, J = 8.0, 2H, Ar-H), 7.72 (d, J = 8.0, 2H, Ar-H), 7.85 (t, J = 8.0, 1H, Ar-H), 7.94 (d, J = 8.0, 1H, Ar-H), 8.31 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{C}$  26.7, 102.0, 103.8, 108.0, 109.7, 114.2, 122.3, 124.0, 126.4, 128.1, 129.4, 130.5, 130.5, 132.4, 132.4133.7, 133.9, 145.3, 145.7, 147.7, 148.1, 152.9, 155.5, 159.0, 161.6; EI MS: m/z 459 ([M+2]<sup>+</sup>, 13), 457 (M<sup>+</sup>, 29), 320 (23), 304 (100), 211 (3), 155 (43); HREIMS m/z 457.0827 (calcd for C<sub>25</sub>H<sub>16</sub>ClO<sub>4</sub>N<sub>3</sub>, 457.0827).

#### 6.1.3.5. 2-(2-Chloro-4-nitrophenoxy)-3-(4-chlorophenyl)-5-methyl-

*pyrimido*[5,4-*c*]*quinolin*-4- (*3H*)-*one* (**7e**). White powder, yield 34.6%, m.p. 248.7–251.2 °C; IR(KBr): 1695 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 3.12 (s, 3H, Me), 7.48 (m, 3H, Ar-H), 7.61 (m, 3H, Ar-H), 7.81 (d, J = 8.0, 1H, Ar-H), 8.08 (d, J = 8.0, 2H, Ar-H), 8.33 (d, J = 8.0, 1H, Ar-H), 8.45 (s, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  26.4, 109.9, 120.0, 122.4, 123.3, 124.2, 124.7, 126.1, 126.6, 127.7, 128.3, 128.7, 129.4, 130.1, 132.2, 132.9, 135.9, 146.1, 148.4, 152.0, 153.0, 153.2, 160.0, 161.7; EI MS: *m/z* 494 ([M+2]<sup>+</sup>, 59), 492 ([M]<sup>+</sup>, 92), 459 (20), 457 (60), 341 (20), 339 (63), 322 (32), 320 (100), 293 (14), 211 (10), 155 (99), 143 (14), 127 (53), 114 (11); HREIMS *m/z* 492.0388 (calcd for C<sub>24</sub>H<sub>14</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>4</sub>, 492.0388).

6.1.3.6. 2-(4-fluorophenoxy)-3-(4-fluorophenyl)-5-methylpyrimido [5,4-c]quinolin-4(3H)-one (**7f**). Pale yellow powder, yield 30.5%, m.p.196.0–197.5 °C; IR(KBr): 1694 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, acetone-d<sub>6</sub>): 2.97 (s, 3H, Me), 7.29–7.89 (m, 10H, Ar-H), 7.59 (t, J = 8.0, 1H, Ar-H), 8.24 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100MHz, DMSO-d<sub>6</sub>):  $\delta_{\rm C}$  26.7, 109.7, 116.1, 116.2, 116.4, 122.3, 123.7, 123.8, 123.9, 126.4, 128.1, 130.7, 130.8, 131.1, 132.4, 147.5, 148.1, 152.7, 155.5, 158.7, 158.9, 160.9, 161.7, 163.3; El MS: *m/z* 416 ([M+1]<sup>+</sup>, 21), 415 (M<sup>+</sup>, 71), 350 (28), 349 (83), 322 (9), 321 (30), 305 (12), 304 (47), 279 (24), 278 (100), 227 (12), 211 (21), 185 (15), 184 (59), 156 (8), 155 (46), 143 (8), 128 (9); HREIMS *m/z* 415.1124 (calcd for C<sub>24</sub>H<sub>15</sub>F<sub>2</sub>N<sub>3</sub>O<sub>2</sub>, 415.1125).

6.1.3.7. 2-(4-Chloro-3-methylphenoxy)-3-(4-fluorophenyl)-5-methylpyrimido[5,4-c]quinolin-4 (3H)-one (**7g**). Pale yellow powder, yield 34.5%, m.p.193.8–194.9 °C; IR(KBr): 1694 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 2.37 (s, 3H, Me), 2.97 (s, 3H, Me), 7.30 (d, J = 8.0, 1H, Ar-H), 7.36–7.61 (m, 5H, Ar-H), 7.72 (br s, 2H, Ar-H), 7.86 (t, J = 8.0, 1H, Ar-H), 7.96 (d, J = 8.0, 1H, Ar-H), 8.15 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{C}$  19.0, 25.9, 109.4, 115.6, 115.8, 120.5, 122.0, 123.5, 123.6, 125.9, 127.7, 129.3, 130.2, 130.4, 130.7, 131.8, 136.7, 147.9, 149.7, 152.4, 154.6, 158.5, 160.5, 161.2, 163.0; EI MS: m/z445 ([M]<sup>+</sup>, 50), 308 (100), 304 (47), 273 (52), 211 (12), 155 (75), 128 (20), 114 (8), 57 (4); HREIMS m/z 445.0997 (calcd for C<sub>25</sub>H<sub>17</sub>ClFN<sub>3</sub>O<sub>2</sub>, 445.0997).

6.1.3.8. 2-(2-chlorophenoxy)-3-(4-fluorophenyl)-5-methylpyrimido [5,4-c]quinolin-4(3H)-one (**7h**). Pale yellow crystal, yield 33.6%, m.p.207.7–208.9 °C; IR(KBr): 1674 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, Acetone-d<sub>6</sub>): 3.01 (s, 3H, Me), 7.42–7.49 (m, 4H, Ar-H), 7.56 (m, 2H, Ar-H), 7.66 (d, J = 8.0, 1H, Ar-H), 7.78–7.85 (m, 3H, Ar-H), 7.97 (d, J = 8.0, 1H, Ar-H), 8.15 (d, J = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, Acetone-d<sub>6</sub>):  $\delta_{\rm C}$  27.1, 110.8, 116.9, 117.2, 123.5, 124.9, 125.1, 126.8, 126.8, 127.3, 128.8, 129.2, 131.2, 131.6, 131.7, 132.1, 133.0, 148.5, 149.6, 153.8, 160.1, 162.4, 162.6, 164.9; El MS: *m*/*z* 431 ([M]<sup>+</sup>, 42), 396 (100), 321 (12), 304 (42), 294 (30), 259 (21), 201 (19), 155 (54), 128 (15), 77 (4); HREIMS *m*/*z* 431.0845 (calcd for C<sub>24</sub>H<sub>15</sub>ClFN<sub>3</sub>O<sub>2</sub>, 431.0844).

6.1.3.9. 2-(2-methoxyphenoxy)-5-methyl-3-phenylpyrimido[5,4-c] quinolin-4(3H)-one (**7i**). White powder, yield 35.5%, m.p. 216.8–219.1 °C; IR(KBr): 1694 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, Acetone-d<sub>6</sub>): 3.01 (s, 3H, Me), 3.82 (s, 3H,  $-OCH_3$ ), 7.08 (t, *J* = 8.0, 1H, Ar-H), 7.24 (d, *J* = 8.0, 1H, Ar-H), 7.31 (d, *J* = 8.0, 1H, Ar-H), 7.37 (t, *J* = 8.0, 1H, Ar-H), 7.47 (t, *J* = 8.0, 1H, Ar-H), 7.55 (s, 1H, Ar-H), 7.65 (br s, 4H, Ar-H), 7.82 (t, *J* = 8.0, 1H, Ar-H), 7.95 (d, *J* = 8.0, 1H, Ar-H), 8.18 (d, *J* = 8.0, 1H, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_C$  26.7, 56.2, 109.6, 113.4, 118.2, 120.8, 122.3, 122.7, 123.7, 126.3, 127.6, 128.1, 128.5, 128.8, 129.1, 129.3, 132.4, 134.9, 140.3, 148.1, 150.7, 152.9, 155.2, 159.1, 161.6; EI MS: *m/z* 410 ([M+1]<sup>+</sup>, 24), 409 ([M]<sup>+</sup>, 85), 291 (11), 290 (62), 289 (100), 261 (45), 211 (13), 155 (74), 128 (20), 77 (13); HREIMS *m/z* 409.1426 (calcd for C<sub>25</sub>H<sub>19</sub>N<sub>3</sub>O<sub>2</sub>, 409.1426).

6.1.3.10. 2-(2,4-dichlorophenoxy)-3-phenyl-5-methyl-3H-pyrimido [5,4-c]quinolin-4-one (**7***j*). White powder, yield 30.9%, m.p. 225.6–226.9 °C; IR(KBr): 1698 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (600 MHz, Acetone-d<sub>6</sub>):  $\delta_{\rm H}$  3.11 (3H, s), 7.26–7.63 (9H, m, 9 × Ar-H), 7.76 (1H, td, *J* = 8.4,1.2Hz Ar-H), 7.98 (1H, d, *J* = 9.0Hz, Ar-H), 8.16 (1H, d, *J* = 9.0Hz, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{\rm C}$  26.7, 109.9, 122.2, 123.7, 125.7, 126.6, 127.0, 128.2, 128.5, 128.8, 129.3, 129.5, 129.9, 131.5, 132.6, 146.2, 148.1, 152.5, 154.2, 159.0, 161.5; EI MS: *m/z* 449 ([M+2]<sup>+</sup>, 29), 448 ([M+1]<sup>+</sup>, 11), 447 ([M]<sup>+</sup>, 47), 414 (31), 413 (26), 412 (100), 330 (48), 329 (13), 328 (78), 293 (34), 286 (50), 211 (12), 155 (83), 143 (14), 128 (23), 114 (9), 101 (7), 77 (12); HREIMS *m/z* 447.0533 (calcd for C<sub>24</sub>H<sub>15</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>2</sub>, 447.0534).

6.1.4. Synthesis of 2-(tert-butylamino)-3-phenyl-5-methyl-3Hpyrimido[5,4-c]quinolin-4-one (8a), 2-(4-chlorophenylamino)-5methyl-3-aminopyrimido[5,4-c]quinolin-4(3H)-one (**8b**) and 2-(phenylamino)-5-methyl-3-aminopyrimido[5,4-c]quinolin-4(3H)one (**8c**)

2-methylpropan-2-amine or hydrazine hydrate (2 mmol) was added into the solution of **4** in  $CH_2Cl_2$  (10 ml). After the reaction mixture was stirred continuously for 0.5–1 h at room temperature, the solvent was removed and 10 ml of anhydrous ethanol with several drops of sodium ethoxide in ethanol were added. After stirring for another 12 h at room temperature, the solution was concentrated and the residue was purified by silica gel column chromatography using a 7:3 mixture of petroleum ether-acetone as the eluent to give pure compounds **8a–c**.

6.1.4.1. 2-(tert-butylamino)-3-phenyl-5-methyl-3H-pyrimido[5,4-c] quinolin-4-one (**8a**). Light yellow powder, yield 30.6%, m.p.240.7–242.6 °C; IR(KBr): 1681 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta_{\rm H}$  1.51 (9H, s), 3.04 (3H, s), 7.34 (2H, d, *J* = 7.2 Hz, 2 × Ar-H), 7.59 (4H, m, 4 × Ar-H), 7.77 (1H, t, *J* = 7.2 Hz, Ar-H), 7.97 (1H, d, *J* = 8.4 Hz, Ar-H), 8.70 (1H, d, *J* = 7.8 Hz, Ar-H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  27.1, 29.0, 53.2, 107.5, 123.5, 124.8, 125.4, 128.1, 128.7, 130.1, 130.9, 131.7, 134.6, 151.5, 155.3, 160.5, 162.2; EI MS: *m/z* 359 ([M + 1]<sup>+</sup>, 9), 358 ([M]<sup>+</sup>, 35), 302 (60), 301 (100), 155 (10), 77(5); HREIMS *m/z* 358.1799 (calcd for C<sub>22</sub>H<sub>22</sub>N<sub>4</sub>O, 358.1798).

6.1.4.2. 2-(4-chlorophenylamino)-5-methyl-3-aminopyrimido[5,4-c] quinolin-4(3H)-one (**8b**). White solid, yield 40.0%, m.p.

285.7–287.3 °C; IR(KBr): 1675 cm<sup>-1</sup> (C=O), 3325 cm<sup>-1</sup> (NH<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 2.97 (s, 3H, Me), 5.75 (s, 2H, NH<sub>2</sub>), 7.51–7.61 (m, 3H, Ar-H), 7.79–8.00 (m, 4H, Ar-H), 8.53 (d, J = 8.0, 1H, Ar-H), 9.98 (s, 1H, NH); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{\rm C}$  26.2, 107.2, 122.5, 123.4, 123.4, 124.2, 125.4, 127.6, 127.7, 128.2, 128.2, 131.3, 136.7, 147.9, 151.0, 152.7, 158.6, 160.4; EI MS: m/z 353 ([M + 2]<sup>+</sup>, 30), 351 ([M]<sup>+</sup>, 100), 322 (27), 320 (42), 212 (20), 155 (39), 128 (10); HREIMS m/z 351.0888 (calcd for C<sub>18</sub>H<sub>14</sub>Cl N<sub>5</sub>O, 351.0888).

6.1.4.3. 2-(phenylamino)-5-methyl-3-aminopyrimido[5,4-c]quinolin-4(3H)-one (**8**c). White solid, yield 42.1%, m.p. 286.8–290.0 °C; IR(KBr): 1659 cm<sup>-1</sup> (C=O), 3385, 3323 cm<sup>-1</sup> (NH<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 2.98 (s, 3H, Me), 5.75 (s, 2H, NH<sub>2</sub>), 7.19 (t, J = 8.0, 1H, Ar-H), 7.47 (t, J = 8.0, 2H, Ar-H), 7.59 (t, J = 8.0, 1H, Ar-H), 7.47 (t, J = 8.0, 2H, Ar-H), 7.59 (t, J = 8.0, 1H, Ar-H), 8.54 (d, J = 8.0, 1H, Ar-H), 9.81 (s, 1H, NH); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta_{C}$  25.9, 107.0, 121.5, 122.4, 123.6, 123.9, 125.1, 125.1, 127.6, 128.2, 128.2, 131.0, 137.6, 147.8, 150.9, 152.7, 158.4, 160.2; EI MS: m/z 317 ([M]<sup>+</sup>, 100), 288 (16), 286 (49), 212 (16), 155 (26), 128 (7); HREIMS m/z 317.1274 (calcd for C<sub>18</sub>H<sub>15</sub>N<sub>5</sub>O, 317.1274).

#### 6.1.5. Synthesis of 10-methyl-3-phenyl- [1,2,4]triazolo[1,5-a]pyrimidin[5,4-c]quinolin- 11(3H)-one (**9**)

To a solution of 2-(phenylamino)-5-methyl-3-aminopyrimido [5,4-*c*]quinolin-4(3*H*)-one **8c** (0.99 g, 3mmol) prepared above, triethyl orthoformate (8 ml) was added under vacuum. The solution was stirred and refluxed for 4 h. At which time the reaction was completed, the solution was concentrated,the residue was recrystallized from petroleum ether/ethanol (8/2) to give pure compound **9**. Pale solid, yield 37.7%, m.p. 335.0–336.0 °C; IR(KBr): 1695 cm<sup>-1</sup> (C=O); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): 3.08 (s, 3H, Me), 7.62 (d, J = 8.0, 2H, Ar-H), 7.74 (d, J = 8.0, 2H, Ar-H), 7.83–7.92 (m, 2H, Ar-H), 8.08 (d, J = 8.0, 2H, Ar-H), 8.66 (d, J = 8.0, 1H, Ar-H), 9.49 (s, 1H, Ar-H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_C$  163.5, 155.8, 151.3, 144.2, 138.3, 136.3, 133.1, 131.0, 130.1, 127.0, 125.3, 124.8, 120.7, 108.5, 23.0; El MS: m/z 328 ([M+1]<sup>+</sup>, 20), 327 ([M]<sup>+</sup>, 100), 301 (4), 300 (18), 271 (4), 128 (2), 77 (9); HREIMS m/z 327.1121 (calcd for C<sub>19</sub>H<sub>13</sub>N<sub>5</sub>O, 327.1121).

#### 6.2. Antiproliferative activity

#### 6.2.1. Cell culture

All the cell lines except MCF-7 used in antiproliferative assay were cultured in RPMI 1640 medium containing 10% fetal calf serum. MCF-7 were cultured in DMEM medium containing 10% fetal calf serum.

#### 6.2.2. Viability assay

The MTT assay was used to evaluate the in vitro antiproliferative activity of these synthesized compounds. This method is based on the reduction of the soluble 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) into a blue-purple formazan product, mainly by mitochondrial reductase activity inside living cells.

Cells were harvested during logarithmic growth phase and seeded in 96 well plates at a density of 2  $\times$  10<sup>4</sup>/ml cells/ml in a final volume of 190 ml/well and incubated at 37 °C in a 5% CO<sub>2</sub> incubator. After 24 h, 10 µL tested compounds was added to 96-well plates and cultured at 37 °C for 72 h. 20 µL of MTT (5 mg/ml stock solution of saline) was added to each well and incubated for 3 h at 37 °C. The supernatant was carefully removed from each well and 100 ml of DMSO was added to each well to dissolve the formazan crystals

which were formed by the cellular reduction of MTT. The absorbance of each well was detected in a microplate reader at 570 nm with 655 nm as reference.  $IC_{50}$  values were calculated according to the dose-dependent curves (Bliss's software).

### Acknowledgements

The Special Fund for Basic Scientific Research of Central Colleges, South-Central University for Nationalities (ZZZ10006).

#### References

- I. Caleta, M. Kralj, M. Marjanovic, B. Bertosa, S. Tomic, G. Pavilovic, K. Pavelic, G. Karminski-Zamola, J. Med. Chem. 52 (2009) 1744–1756.
- [2] A.B.A. El-Gazzar, H.N. Hafez, G.A.M. Nawwar, Eur. J. Med. Chem. 44 (2009) 1427–1436.
- [3] S.T. Selvi, V. Nadaraj, S. Mohan, R. Sasi, M. Hema, Bioorg. Med. Chem. 14 (2006) 3896–3903.
- [4] A.B.A. El-Gazzar, M.M. El-Enany, M.N. Mahmoud, Bioorg. Med. Chem. 16 (2008) 3261–3273.
- [5] A.A. Joshi, C.L. Viswanathan, Bioorg. Med. Chem. Lett. 16 (2006) 2613–2617.
   [6] A.A. Abu-Hashem, M.A. Gouda, F.A. Badria, Eur. J. Med. Chem. 45 (2010)
- 1976–1981.
  [7] A.B.A. El-Gazzar, M.M. Youssef, A.M.S. Youssef, A.A. Abu-Hashem, F.A. Badria, Eur. J. Med. Chem. 44 (2009) 609–624.
- [8] E. Gößnitzer, A. Punkenhofer, A. Amon, B. Favre, Eur. J. Pharm. Sci. 19 (2003) 151–164.

- [9] H.I. Ali, N. Ashida, T. Nagamatsu, Bioorg. Med. Chem. 15 (2007) 6336–6352.
   [10] M.T. Vázquez, M. Romero, M.D. Pujol, Bioorg. Med. Chem. 12 (2004) 949–956.
- [11] S.I. Alqasoumi, A.M. Al-Taweel, A.M. Alafeefy, E. Noaman, M.M. Ghorab, Eur. J. Med. Chem. 45 (2010) 738–744.
- [12] D. Vásquez, J.A. Rodríguez, C. Theoduloz, J. Verrax, P.B. Calderon, I.A. Valderrama, Bioorg. Med. Chem. Lett. 19 (2009) 5060–5062.
- [13] K. Metwally, H. Pratsinis, D. Kletsas, Eur. J. Med. Chem. 42 (2007) 344-350.
- [14] D. Dorjsuren, A. Burnette, G.N. Gray, X. Chen, W. Zhu, P.E. Roberts, M.J. Currens, R.H. Shoemaker, R.P. Ricciardi, S. Sei, Antivir. Res. 69 (2006) 9–23.
- [15] T. Nagamatsu, F. Yoneda, Y. Kawashima, T. Yamagishi, H. Ikeya, The Sixty Annual Meeting of Division of Medicinal Chemistry, Book Abstract, Tsukuba, Japan (1987) pp. 148–149.
- [16] K. Metwally, O. Aly, E. Aly, A. Banerjee, R. Ravindra, S. Bane, Bioorg. Med. Chem. 15 (2007) 2434–2440.
- [17] H.H. Zoorob, M.M.A. Zahab, M. Abdel-Mogib, M.A. Ismail, Tetrahedron 52 (1996) 10147–10158.
- [18] L. Basolo, E.M. Beccalli, E. Borsini, G. Broggini, Tetrahedron 65 (2009) 3486–3491.
- [19] P.K. Agarwal, S.K. Sharma, D. Sawant, B. Kundu, Tetrahedron 65 (2009) 1153–1161.
- [20] L. Ismaili, A. Nadaradjane, L. Nicod, C. Guyon, A. Xicluna, J.F. Robert, B. Refouvelet, Eur. J. Med. Chem. 43 (2008) 1270–1275.
- [21] M. Nasr, I. Nabih, J.H. Burckhalter, J. Med. Chem. 21 (1978) 295-298.
- [22] M.P. Wentland, J.A. Carlson, P.H. Dorff, S.C. Aldous, R.B. Perni, D.C. Young, M.G. Woods, S.D. Kingsley, K.A. Ryan, D. Rosi, M.L. Drozd, F.J. Dutko, J. Med. Chem. 38 (1995) 2541–2545.
- [23] M. Sankaran, C. Kumarasamy, U. Chokkalingam, P.S. Mohan, Bioorg. Med. Chem. Lett. 20 (2010) 7147–7151.