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Alkyne Hydrothiolation Catalyzed by a Dichlorobis(aminophosphine)
Complex of Palladium: Selective Formation of cis-Configured Vinyl

Thioethers

Roman Gerber and Christian M. Frech*[a]

Vinyl sulfides are very important synthetic intermediates
in total syntheses and as precursors to a wide range of func-
tionalized molecules. Furthermore, sulfur-containing organic
compounds commonly exhibit biological activity, and hence
are frequently found in naturally occuring compounds.
Moreover, these compounds have found applications in ma-
terials science,[1–5] and thus are valuable synthetic targets.
The increasing demand for vinyl thioethers expedited the
development of new synthetic methods for these target com-
pounds. The most attractive process for their preparation is
the (100 % atom efficient) alkyne hydrothiolation reaction
(Scheme 1).

Although few specific cases of selective transformations
have been reported for this process under transition-metal-
free reaction conditions,[6] the addition of thiols to alkynes
(under photochemical or basic conditions) usually lacks ste-
reocontrol of the double-bond geometry, resulting in mix-
tures of cis and trans anti-Markovnikov adducts of type B
and C and/or, with specific substrates, proceeding very
slowely (even at high reaction temperatures). This means
that these reactions are only of very limited practicability. In
contrast, transition-metal-catalyzed versions of alkyne hy-
drothiolation processes often exhibit excellent selectivity,
and thus have been successfully applied for selective product
formation.[7] For example, whereas the Markovnikov-type
vinyl sulfides A were selectively formed when alkyne hydro-
thiolations were catalyzed by [Pd ACHTUNGTRENNUNG(OAc)2],[7c,e] [CpNi-ACHTUNGTRENNUNG(NHC)(Cl)] (Cp =cyclopentadienyl; NHC =N-heterocyclic
carbene),[7q] oligomeric nickel dithiolate complexes of the

form [{Ni ACHTUNGTRENNUNG(SAr)2}n],[7r] or [Tp*RhACHTUNGTRENNUNG(PPh3)2] (Tp* = hydro-ACHTUNGTRENNUNGtris(3,5-dimethylpyrazolyl)borate),[7i–l] selective formation of
the anti-Markovnikov adducts with a trans-configuration
(type B) has been obtained when [Rh(Cl) ACHTUNGTRENNUNG(PPh3)3]

[7g,m] or N-
heterocyclic carbene based AuI complexes were applied.[7]

However, although desirable, a generally applicable alkyne
hydrothiolation catalyst for the high-yielding synthesis of
cis-configured anti-Markovnikov adducts of type C has not
yet been reported, and hence is the subject of intense inves-
tigation within this field of research.[8]

We report herein the catalytic activity of dichloro ACHTUNGTRENNUNG{bis ACHTUNGTRENNUNG[1-
(dicyclohexylphosphanyl)piperidine]}palladium (1),[9] a gen-

erally applicable C�C bond-
forming catalyst, in the hydro-
thiolation of alkynes with thiols.
[(P ACHTUNGTRENNUNG{(NC5H10)ACHTUNGTRENNUNG(C6H11)2})2Pd(Cl)2]
(1) is the first generally applica-
ble alkyne hydrothiolation cata-
lyst that selectively generates
cis-configured anti-Markovni-

kov adducts of type C. The addition products were obtained
in excellent yields within a few minutes at 120 8C with N,N-
dimethylpyrrolidone (NMP) and NaOH as the solvent and
base in the presence of only 0.05 mol % of the catalyst, that
is, at far lower catalyst loadings than typically applied for
this type of reaction. The catalyst was quantitatively pre-
pared within a few minutes by treatment of suspensions of
[Pd(Cl)2ACHTUNGTRENNUNG(cod)] (cod= cycloocta-1,5-diene) in toluene with
two equivalents of 1-(dicyclohexylphosphanyl)piperidine
under N2 at 25 8C (Scheme 2).[9a]

The aminophosphine-based complex 1 was assumed to be
an ideal alkyne hydrothiolation catalyst because, in contrast
to its phosphine-based analogue, it proved to efficiently pro-
mote the formation of palladium nanoparticles. These nano-
particles have been shown to be the catalytically active spe-
cies in Suzuki, Heck, and cyanation reactions.[9a,c–e] Further-
more, this catalyst can also operate through homogeneous
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Scheme 1. General scheme for the transition-metal-catalyzed hydrothiolation of a terminal alkyne with a thiol.

Scheme 2. Synthesis of dichlorobis[1-(dicyclohexylphosphanyl)piperidi-
ne]palladium (1; Cy=cyclohexyl).
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mechanisms, as was recently
demonstrated to be the case in
the Negishi cross-coupling reac-
tion.[9b] Experimental observa-
tions clearly indicate that the
alkyne hydrothiolation was cat-
alyzed through a molecular
mechanism. Consequently, 1 is
not only a generally applicable
C�C cross-coupling catalyst,
but also an efficient catalyst in
the hydrothiolation of, for ex-
ample, acetylenes, providing an
initial indication of the general
applicability of 1 in C�C and
C�X bond-forming reactions.

Catalysis : Complex 1 is a highly
active and reliable hydrothiola-
tion catalyst, which efficiently
promotes the nucleophilic attack (Figure 1, right) of a wide
range of aromatic, benzylic, and aliphatic thiolates on aro-
matic alkynes (see Tables 1 and 2) to give the anti-Markov-
nikov-type products C cleanly (Scheme 1) with excellent
regio- and stereoselectivities, conversion rates, and yields.
For example, thermal treatment (120 8C) of thiophenol with
ethynylbenzene selectively yielded the anti-Markovnikov-
type addition product phenyl (Z)-2-phenylethenyl sulfide
almost quantitatively within only a few minutes.[10] The for-
mation of the cis-configured vinyl sulfide was confirmed by

1H NMR spectroscopy, and the spectrum showed two dou-
blet signals due to the olefinic protons at d=6.90 and
6.52 ppm with coupling constants of 3JHH =11.1 Hz. Similar
selectivities, conversion rates, and product yields were ob-
tained for other aromatic thiols, such as 2-methylbenzene-
thiol, 4-methoxybenzenethiol, 4-aminobenzenethiol, pyri-
dine-2-thiol, 4-bromobenzenethiol, 3-bromobenzenethiol,
and 2-bromobenzenethiol, as well as aliphatic thiols, such as
octane-1-thiol, cyclohexanethiol, furan-2-ylmethanethiol,
phenylmethanethiol, and 2-phenylethanethiol. To expand

Figure 1. Possible catalytic cycles for alkyne hydrothiolation with aromatic and aliphatic thiols.[12] Aminophos-
phine dissociation (and re-coordination) may be involved at any of the reactions steps.

Table 1. Hydrothiolation of aromatic alkynes with aliphatic and aromatic thiols, catalyzed by 1.[a]

[a] Reaction conditions: alkyne (1.3 mmol), thiol (1.0 mmol), NaOH (1.0 mmol), NMP (2 mL), catalyst (0.05 mol %) in solution (THF), at 120 8C. The
conversions and product ratios (cis/trans/gem) were determined by GC/MS and are based on the amount of thiol, as well as by NMR spectroscopy. Isolat-
ed yields are given in brackets and were obtained after 15 min of reaction time.
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the scope of this process even further, reactions were per-
formed with different aryl-substituted alkynes, including 1-
ethynyl-4-fluorobenzene, 1-ethynyl-4-bromobenzene, and 2-
ethynylpyridine, for which the anti-Markovnikov adducts of
type C were selectively formed within only 15 min (Table 1)
for all of the reactions examined.

Internal alkynes also react with thiols to yield the respec-
tive addition products, but require slightly prolonged reac-
tion times (2 h) for high conversions. For example, thermal
treatment of 1,1’-ethyne-1,2-diyldibenzene with thiophenol
exclusively gave phenyl (Z)-2-phenylethenyl sulfide, that is,
the addition product with cis-configuration, in a yield of
93 %. The same stereoselectivity was observed if other thiols
were applied in the reaction (Table 2). However, although
smooth product formation was noticed, the use of unsym-
metrical internal alkynes proceeded with rather modest re-
gioselectivity. For example, thermal treatment of prop-1-yn-
1-ylbenzene with thiophenol (or 1-hexanethiol) gave mix-
tures of phenyl (1E)-1-phenylprop-1-en-2-yl sulfide and
phenyl (1Z)-1-phenylprop-1-en-2-yl sulfide (or hexyl (1E)-1-
phenylprop-1-en-2-yl sulfide and hexyl (1Z)-1-phenylprop-1-
en-2-yl sulfide) in a ratio between 1:1 and 2:1, in favor of
the less-hindered isomer, most probably due to a change in
the mechanism (for details of the formation of different ad-
dition products through the alkyne insertion mechanism and
the nucleophilic attack, see Figure 1).

On the other hand, if aliphatic alkynes (e.g., 1-octyne)
were thermally treated with thiols, the branched Markovni-
kov-type addition products A, which are susceptible to iso-
merization, were favorably formed (�80 %). The striking
difference in product selectivity obtained with aliphatic al-
kynes is most probably due to their lower ligating tendency,
favoring, in contrast to aromatic alkynes, insertion into the

Pd�S bond (Figure 1, left) over nucleophilic attack
(Figure 1, right).

The reaction mechanisms described herein are assumed to
operate in these reactions. Both, the alkyne insertion mecha-
nism and the nucleophilic attack are initiated by the oxida-
tive addition of a thiol to the metal center of bis[1-(dicyclo-
hexylphosphanyl)piperidine]palladium(0) (2), which is gen-
erated by the reaction of 1 with OH�.[11] This results in the
formation of the respective thiolate hydride complexes, and
is followed by alkyne coordination. Whereas a subsequent
nucleophilic attack affords the palladium hydride vinyl sul-
fide intermediate when aromatic alkynes were used, migra-
tion into the Pd�S bond is favored for aliphatic alkynes. Re-
action steps involving cis/trans isomerization of vinyl sul-
fides, however, have been excluded because the transforma-
tion of phenyl (Z)-2-phenylethenyl sulfide into its E isomer
by thermal treatment (under the reaction conditions applied
for the catalysis) was not observed. Reductive elimination
(or an eventual protonolysis) yields the addition products
and regenerates the catalyst for both mechanisms. Although
not explicitly mentioned, aminophosphine dissociation and
re-coordination may be involved at any of the reaction
steps. However, initial formation of complex 2 by reaction
of 1 with OH� gained strong experimental support: whereas
the conversion rates and product selectivities remain the
same for all types of substrate when alkyne hydrothiolation
reactions are catalyzed by 1 in the presence of only
10 mol % of the base, mixtures of all possible addition prod-
ucts and their isomers are formed with aliphatic alkynes in
the absence of base. This is most probably due to product
formation by both the alkyne insertion mechanism and the
nucleophilic attack mechanism.[12] Even more importantly,
complex 2 is an excellent alkyne hydrothiolation catalyst,

showing the same catalytic ac-
tivity and product selectivity
with both aliphatic and aromat-
ic substrates as complex 1, even
in the absence of base. Further-
more, treatment of 2 with phe-
nylmethanethiol, for example,
instantly yielded the respective
hydride thiolate pal ACHTUNGTRENNUNGladium(II)
complex [(P ACHTUNGTRENNUNG{(NC5H10)-ACHTUNGTRENNUNG(C6H11)2})2Pd(H) ACHTUNGTRENNUNG(SCH2C6H5)]
(3) at 25 8C as proposed in the
catalytic cycle. Significantly,
complex 3 also shows the same
catalytic performance and prod-
uct selectivity, in the presence
and absence of base, as 1 and
2.[13] Finally, molecular mecha-
nisms do indeed operate, as the
involvement of palladium nano-
particles has been excluded
(see below).

Table 2. Hydrothiolation of aliphatic (terminal), as well as internal alkynes with thiols, catalyzed by 1.[a]

[a] Reaction conditions: alkyne (1.3 mmol), thiol (1.0 mmol), NaOH (1.0 mmol), NMP (2 mL), catalyst
(0.05 mol %) in solution (THF), at 120 8C. The conversions and product ratios (cis/trans/gem) were determined
by GC/MS and are based on the amount of thiol, as well as by NMR spectroscopy. Isolated yields are given in
brackets and were obtained after 15 min when the reactions were performed with terminal alkynes and after
2 h with internal alkynes.
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Mechanistic investigations : The following experimental ob-
servations clearly indicate that a molecular mechanism oper-
ates in this reaction:[14] 1) Neither sigmoidal-shaped kinetics
with induction periods, which are characteristic of metallic
particle formation, nor autocatalytic surface growth that can
lead to soluble monodisperse nanoclusters (or insoluble
bulk-metal formation) have been observed.[15] In contrast,
approximately 70 % of the product formation was typically
observed within one minute. 2) The presence of a large
excess of metallic mercury in reaction mixtures of the thiol,
alkyne, and catalyst had no effect either on the rate of con-
version or on the product yields. The same observations
were made if poly(4-vinylpyridine) (PVPy; 2 % cross-linked
with divinylbenzene) was added instead.[16] 3) No effect on
the conversion rates or on the product yields was observed
if 0.1 or 0.5 equivalents (relative to the catalyst) of thio-
phene, CS2 or PPh3 were present in the reaction mixtures.
4) No evidence of the presence of palladium nanoparticles
was obtained from UV/Vis spectra of the reaction mix-
tures.[17] Lastly, 5) The catalytic activities of the aminophos-
phine-based complexes [(PACHTUNGTRENNUNG{(NC5H10)3�nACHTUNGTRENNUNG(C6H11)n})2Pd(Cl)2]
(with n=0–2) are comparable, whereas a slightly lower level
of activity was found for their phosphine-based analogue,
providing a very strong indication that a molecular mecha-
nism operates.[18]

In conclusion, dichlorobis[1-(dicyclohexylphosphanyl)pi-
peridine]palladium, [(PACHTUNGTRENNUNG{(NC5H10) ACHTUNGTRENNUNG(C6H11)2})2Pd(Cl)2] (1),
a generally applicable C�C bond-forming catalyst is one of
the most effective and versatile alkyne hydrothiolation cata-
lysts. Moreover, complex 1 is the first generally applicable
system that converts aromatic alkynes and aliphatic or aro-
matic thiols into cis-configured anti-Markovnikov-type vinyl
thioethers in excellent yields within a few minutes at 120 8C,
in the presence of only 0.05 mol % of catalyst. In addition,
the alkyne hydrothiolation reaction is tolerant of a broad
range of functional groups, including ethers, amines, halides,
and nitrogen-containing heterocycles. Thus it demonstrates
the outstanding catalytic activity, selectivity, and hence, gen-
eral applicability of complex 1 in this process, making the
aminophosphine-based system the catalyst of choice for the
high-yielding synthesis of cis-configured anti-Markovnikov
adducts of type C through hydrothiolation of aromatic al-
kynes. On the other hand, branched Markovnikov-type ad-
dition products A were selectively formed if aliphatic al-
kynes were applied in the reaction. Mechanistic investiga-
tions indicate that a molecular mechanism operatates in the
alkyne hydrothiolation with initial formation of bis[1-(dicy-
clohexylphosphanyl)piperidine]palladium(0), [(PACHTUNGTRENNUNG{(NC5H10)-ACHTUNGTRENNUNG(C6H11)2})2Pd]. Moreover, the ligating properties of the
alkyne were found to deterime the course of the reaction,
that is, whether the alkyne insertion mechanism or the nu-
cleophilic attack operate, and hence, the regio- and stereose-
lectivity of the addition products.
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Alkyne Hydrothiolation Catalyzed by
a Dichlorobis(aminophosphine)
Complex of Palladium: Selective
Formation of cis-Configured Vinyl
Thioethers

Cis all round : Dichlorobis[1-(dicyclo-
hexylphosphanyl)piperidine]palladium,
[(P ACHTUNGTRENNUNG{(NC5H10)ACHTUNGTRENNUNG(C6H11)2})2Pd(Cl)2], is
a highly efficient alkyne hydrothiola-
tion catalyst and the first generally
applicable system that selectively gen-
erates cis-configured anti-Markovnikov
adducts in excellent yields within only
a few minutes at 120 8C in the presence
of only 0.05 mol% of the catalyst (see
scheme).

www.chemeurj.org � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Eur. J. 0000, 00, 0 – 0

�� These are not the final page numbers!
&6&

C. M. Frech et al.

www.chemeurj.org

