

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: C. Lescop, W. Shen, M. El Sayed Moussa and Y. Yao, *Chem. Commun.*, 2015, DOI: 10.1039/C5CC03778F.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

W. Shen, M. El Sayed Moussa, Y. Yao, C. Lescop*

Chemical Communications

COMMUNICATION

Supramolecular metallacycles with 'pseudo doubleparacyclophane' structure based on flexible π -conjugated linkers

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Dedicated to the Pr. Dr. Manfred Scheer for his 60th birthday

www.rsc.org/

The straightforward synthesis of new supramolecular metallacycles having 'pseudo double-paracyclophane' structure is presented. They are obtained from the reaction of a pre-assembled Cu(I) bimetallic precursor bearing short intermetallic distances with cyano-capped homoditopic π -conjugated linkers having flexible central cores.

Coordination driven supramolecular synthetic chemistry is a powerful approach for the construction of discrete and stable complex molecular architectures such as macrocycles or cages, a topic which is currently of considerable interest.^{1,2} Typically, the design of such coordination-based systems relies on reaction of multitopic metal centers and rigid organic linkers whose symmetry and connectivity are selected considering the overall shape of the target assembly (defining the "Directional-Bonding Approach"^{2g}). The associations between these sub-units are directed by non-(metal-ligand covalent interactions bonds, metal-metal interaction...) that have to be strongly directional and kinetically labile to allow reasonably predictable, reproducible and selective syntheses. In so doing the topology of the ensuing products can be reasonably controlled and directed. In this field, we have previously described the general coordination-driven supramolecular synthesis of a series of stacked supramolecular assemblies \mathbf{C}^3 \mathbf{D}^4 and \mathbf{E}^5 (Scheme 1a). They were obtained from the reaction of the preassembled bimetallic Cu(I) U-shape molecular clip A^6 (Scheme 1a) bearing hemilabile bridging phosphane coordination mode for the 2,5-bis(2-pyridyl)phosphole ligand \mathbf{B}^{6} and short intermetallic distances (2.551(1) Å, revealing cuprophillic interactions) with, respectively, a large variety of homoditopic rigid organic π conjugated linkers, with the metal-based linear linker [Au(CN)₂]⁻ and with a series of cyano-capped monotopic π -conjugated ligands. These results suggested that the stabilizing non-covalent interlinker lateral interactions (π - π interaction, aurophilic interaction)

HEMIS

Scheme 1. a) Molecular structure of the pre-assembled molecular clip **F**, Synthesis of the supramolecular assemblies **C-E**; b) Synthesis of the supramolecular metallacycles **5-8** and structure of the linkers **1-4**.

generated within these self-assembled structures could play a ker role in the selective coordination driven synthetic process s conducted on pre-assembled polymetallic molecular clip A bearing short intermetallic distances, possibly complementing the "Directional-Bonding Approach" syntheses rules. This hypothes has triggered us to explore whether such specificity of the molecular clip A could be exploited allowing a general access to original discrete supramolecular architectures. In this work, v have focused our attention on the reaction of ditopic linkers bearing central flexible fragments and terminal cyano capper nconjugated moieties with the molecular clip A (Scheme 1b). Ind employing such flexible donor linkers challenges the coordination driven supramolecular chemistry principles as a loose of noticeable amount of the pre-programmed assembling informatic that serves as a basis of product predictivity is general. anticipated.⁷ This induces a lower selectivity in self-assembly supramolecular processes resulting in a mixture of unpredictab products whose yields and relative ratio may mostly depend upon minor experimental variations. This assumption a priori weaker s the interest of polytopic flexible donor linkers in coordina.....

Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France). E-mail: christophe.lescop

[@]univ-rennes1.fr Fax: (+33) 2-23-23-69-39; Tel: (+33) 2-23-23-50-02

⁺ Footnotes relating to the title and/or authors should appear here. Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Cebted

Chemical Communications

COMMUNICATION

Fig. 1. a) General and b) lateral views of the X-ray crystal structures of the tetracationic supramolecular metallacycles **5-8**; c) view of the stacking patterns of **5-**⁶ observed in single crystals. (counteranions and solvent molecules have been omitted for clarity).

driven supramolecular syntheses and still a limited number of examples exits that employ such linkers to generate discrete structures. 7

In a first step, we have focused our attention on the reaction of the molecular clip **A** with the cyano-capped homoditopic linkers **1-4** (Scheme 1b) carrying both 'rigid' π -conjugated systems and 'flexible' linear -(CH₂)_n- aliphatic moleties of various lengths (shorter (**1,3**) or longer terminal π -systems (**2,4**); shorter, n=4 (**1,2**) or longer, n=6 (**3,4**) central aliphatic fragments). The new homoditopic linkers **1-4** were synthesized in medium to good yields according to a sequence of Sonogashira coupling and Wadsworth-Emmons reactions.⁸ Their room temperature 1:1 reaction in CH₂Cl₂ with the molecular clip **A** afforded after purification the supramolecular assemblies **5-8** (Scheme 1b), respectively, as orange polycrystalline air stable powders in medium to good yields.⁸ The derivatives **5-8** are readily soluble in chlorinated solvents (CHCl₃, CH₂Cl₂). Their multinuclear NMR characterizations⁸ indicate that the Cu¹₂(**B**)₂ moiety is maintained along these reactions. Indeed, the ³¹P{¹H}

NMR spectrum of the crude reactions, as well as those recorded for the crystalline samples dissolved in CD₂Cl₂, show singlets at ca. + ^o ppm that are similar to the signals registered for the precursor A as well as those recorded for the supramolecular assemblies C £ (Scheme 1a). Moreover ¹H NMR spectra presented a simple single set of signals, revealing highly symmetrical assemblies 5-8 in whic . the acetonitrile ligands carried by the molecular clip A have bee substituted affording molecular species bearing a 1/1 $(Cu_{2}^{I}(B)_{2}/linker ratio.$ The molecular structures of the assemblie: 5-8 were established due to X-ray diffraction studies⁸ performed single crystals⁹ obtained at room temperature from pentar diffusion into CH₂Cl₂ solutions. These four derivatives crystallize the P-1 space group of the triclinic system (Table S1) with an inversion centre located in the centre of the tetracationic derivatives 5-8. Unexpectedly, in spite of the various lengths of the linkers 1-4 and their flexible aliphatic central cores, assemblies 5-2 are metallocyclophanes formed from the coordination of two flexible linkers on two $Cu_2^{(B)}(B)_2$ moieties (Fig. 1). In these solid stat

Journal Name

structures, the four BF4 counterions and the co-crystallization CH₂Cl₂ solvent molecules are located outside the self-assembled molecules. In each metallocyclophane, the four Cu(I) atoms lie in the same plane and the metric parameters of the dicationic $Cu_{2}^{I}(\mathbf{B})_{2}$ cores are very similar to those of the corresponding free molecular clip **A** and related tetracationic π -stacked rectangles **C** (Table S2)³ suggesting a strain-free coordination of the linkers 1-4 on the $[Cu_2(\mathbf{B})_2]^{2+}$ units. In these assemblies, the - $(CH_2)_n$ - central aliphatic strings have different configurations, reflecting their relative flexibility (Fig. 1) : in the case of the derivative 5, a gauche configuration is observed for each aliphatic chain of the two linkers 1 while in the metallacycles 6-8 the two aliphatic fragments are mostly parallel with an 'eclipsed' configuration. No short contacts are observed between the central aliphatic strings. Probably as a result of a steric congestion of the imbricated $-(CH_2)_n$ - fragments located in the central part of the metallocyclophanes, the lateral offset of the neighbouring π -systems are larger within derivatives 5-8 than in the supramolecular rectangles C, but it does not forbid intramolecular π - π interaction to occur. The π - π interaction is weak in the case of assembly 5 (quite large inter π -planes distances, ca. 3.7 Å, and limited area of π -surface involved are observed; see Fig. S7) but it is more significant for derivative 7 based on the same short π - systems but having a longer and 'eclipsed' aliphatic central fragments. Assemblies **6,8** based on linkers having longer π -systems present very similar features: the π -conjugated fragments are almost planar (maximum deviation to the mean plane: 6, 0.252 Å; 8, 0.209 Å), parallel (angle between the mean plane of two interacting π -moiety: **6**, 5.22°; **8**, 1.71°) and participate in similar π - π interactions (inter π -planes distances : ca. 3.4 - 3.5 Å) with large area of their surface involved (see Fig. S7). Therefore in these assemblies, despite the different configurations presented by the aliphatic moieties of the linkers, the π -fragments of the homoditopic linkers participate to intramolecular π - π interaction, similarly to what is observed in the metallocyclophanes \mathbf{C}^3 (Scheme 1a). As a result, solid state arrangements of the aliphatic and aromatic fragments of the ligands 2-4 in self-assembled derivatives 6-8 induces the formation of unprecedented 'pseudo doubleparacyclophane' structure (see Fig. 1b) having large lengths (6, 52.4 Å; 8, 52.3 Å). In addition, a remarkable feature observed in the solid state structure of most of the π -stacked supramolecular assemblies of type C and E (Scheme 1a) is their self-organization within infinite π -stacked columns due to intermolecular π - π interactions,³ affording a very general approach to arrange symmetrical linear π conjugated organic systems in infinite molecular networks in which all the π -systems overlap. Interestingly, intermolecular π - π interactions (inter π -planes distances: ca. 3.3 - 3.5 Å) are also observed in the solid state structure of the derivatives 5, 6 and 8 leading to the supramolecular organization of these self-assembled metallacycles in infinite columns bearing discrete stacks of four aromatic moieties separated by imbricated $-(CH_2)_n$ - fragments (Fig. 1c).¹⁰

In order to confirm the critical importance of the π -conjugated fragments in the core of the linkers **1-4** to drive the formation of supramolecular metallacycles **5-8**, we have reacted the molecular clip **A** with the cyano-capped homoditopic linkers **9**, **10** bearing only -(CH₂)_n- cores. Reacting adiponitrile (n=4) **9** (Fig. 2a) with the molecular clip **A** in CH₂Cl₂ in a 1:1 ratio afforded derivative **11** (71% yield),⁸ which was characterized by an X-ray diffraction study.⁹ This compound is a one dimensional coordination polymer (Fig 2b) in which two consecutive Cu¹₂(**B**)₂ fragments are connected by one linker **9**. The 1:1 reaction of the precursor **A** with the longer linker

(a) $2^{+}, 2 BF_{i}$ + BC 9, 10 CE CEN + BC 9, 10 CN CEN 11, 12 CEN 10 CN 12 CEN CEN<math>CEN CEN CEN CEN CEN CEN CEN CEN CEN CEN<math>CEN CEN CEN<math>CEN CEN<math>CENCEN

Fig. 2 a) Synthesis of the derivatives **11** and **12**, b) X-ray crystal structures of 1 the cationic coordination polymer **11** and c) the tetracationic derivative **12** (1) atoms, counteranions and solvent molecules have been omitted for clarity).

suberonitrile (n=6) 10 led in good yields after treatment clear orange powders to the derivative 12. Conversely to 11, compound 12 is readily soluble in chlorinated solvents and No. spectroscopies⁸ suggest that during this reaction occurred only a partial substitution of the acetonitrile ligands carried by the $Cu_2^{(\mathbf{B})_2}$ fragment in A. This is confirmed by the crystal structure of 1, determined from single crystals grown with pentane vapou. diffusion in CH2Cl2 solutions of 12.8 In contrast to the polymer assembly 11, the derivative 12 is a molecular species in which two $Cu_{2}^{I}(\mathbf{B})_{2}$ fragments are connected due to the coordination of cr^{-1} equivalent of the linker 10 on one metal center of each $Cu_2^{(2)}$ fragment while the second Cu¹ metal center is still coordinated 🕠 an acetonitrile ligand (Fig. 2c). Note that up to 10 equivalents of 10 were reacted with the molecular clip B but the derivative 12 w s the only species that was obtained in the solid state. Finally, derivatives **11** and **12** are isolated in the solid state as no specif intermolecular contacts between isolated molecular entities are observed. Although the $(Cu^{I})_{2}$ nodes retain a U-shape topology i_{I} the assemblies 11 and 12 no metallacycle is formed showing that the geometry of the bimetallic molecular clip A is not directing exclusively the formation of metallacycle structures. These structures state structures confirm that the molecular clip A does not present any specific proneness to afford systematically supramolecular metallacycles due to its reaction on homoditopic linkers ar highlight the key role played by the intramolecular π - π interaction between the π -walls of the linkers to allow the selective formatic of supramolecular metallacycles based on the flexible linkers 1-4. These results demonstrate that according to a rational design of the individual molecular building blocks, the syntheses rules requested to apply a coordination-driven supramolecular synthesis can be supplemented by the intentional occurrence of non-covalent later π - π interactions between the assembled subunits to give a general access to original supramolecular assemblies. This is allowed durate the use of pre-assembled polymetallic molecular clip bea ing specific molecular organization such as those encountered in the u shape molecular clip A (short intermetallic distances, structur rigidity and hemilability of the N,P,N ligand B).³ In the near futur the versatility of this approach will be studied, extending the scor of the polytopic linkers used with the variation of the "ratio" rigid/flexible fragment, of the nature of the flexible moiety and < the connectivity of the linkers. The characterisation of large series of new discrete supramolecular assemblies bearing origin. I structural features and functionnalities is expected.

Journal Name

COMMUNICATION

This work was supported by the Ministère de la Recherche et de l'Enseignement Supérieur, the CNRS and the ANR (ANR-12-IS07-0002 P-OPTOELECTR-MOLMAT). C.L. thanks the Alexander von Humboldt Foundation for a fellowship for experienced researcher.

Notes and references

- a) M. Liu, W. Liao, C. Hu, S. Du, H. Zhang, Angew. Chem. Int. Ed., 2012, 51, 1585; b) Q. F. Sun, S. Sato, M.Fujita, Nat. Chem,. 2012, 4, 330; c) K. Xiong, F. Jiang, Y. Gai, D. Yuan, L. Chen, M. Wu, K. Su, M. Hong, Chem. Sci., 2012, 3, 2321; d) R. A. Bilbeisi, J. K. Clegg, N. Elgrishi, X. d. Hatten, M. Devillard, B. Breiner, P. Mal, J. R. Nitschke, J. Am. Chem. Soc. 2012, 134, 5110; f) M. Otte, P. F. Kuijpers, O. Troeppner, I. Ivanovic'-Burmazovic', J. N. H. Reek, B. d. Bruin, Chem. Eur. J., 2013, 19, 10170; g) S. Pasquale, S. Sattin, E. C. Escudero-Adan, M. Martinez-Belmonte, J. d. Mendoza, Nat. Commun., 2012, 3, 785; h) Q. F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science, 2010, 328, 1144; i) D. Fujita, K. Suzuki, S. Sato, M. Yagi- Utsumi, Y. Yamaguchi, N. Mizuno, T. Kumasaka, M. Takata, M. Noda, S. Uchiyama, K. Kato, M. Fujita, Nat. Commun., 2012, 3, 1093; j) D. Fujita, H. Yokoyama, Y. Ueda, S. Sato, M. Fujita, Angew. Chem. Int. Ed., 2015, 54, 155; k) S. Löffler, J. Lübben, L. Krause, D. Stalke, B. Dittrich, G.H. Clever, J. Am. Chem. Soc., 2015, 137, 1060; I) F. Dielsmann, C. Hiendl, F. Hastreiter, E.V. Peresypkina, A. Virovets, R.M. Gschwind, M. Scheer, Angew. Chem. Int. Ed., 2014, 49, 13605; m) R. Zhu, J. Lübben, B. Dittrich, G.H. Clever, Angew. Chem. Int. Ed., 2015, 54, 2796; n) C. Gütz, R. Hovorka, C. Klein, Q-Q. Jiang, C. Bannwarth, M. Engeser, C. Schmuck, W. Assenmacher, W. Mader, F. Topic, K. Rissanen, S. Grimme, A. Lützen, Angew. Chem. Int. Ed., 2014, 53, 1693; o) J.B. Pollock, T.R. Cook, G.L. Schneider, P.J. Stang, Chem. Asian J., 2013, 8, 2423; p) X. Yan, T. R. Cook , J. B. Pollock , P. Wei, Y. Zhang, Y. Yu, F. Huang, P. J. Stang, J. Am. Chem. Soc., 2014, 136, 4460; q) Yan , J.-F. Xu, T. R. Cook, F. Huang , Q-Z. Yang , C-H. Tung, P. J. Stang, Nature Chem., 2014, 24, 8717; r) Z-. Li, Y. Zhang, C-W. Zhang, L-J. Chen, C. Wang, H. Tan, Y. Yu, X. Li, H.-B. Yang, J. Am. Chem. Soc., 2014, 136, 8577; s) J. Taesch, F. Topic, K. Rissanen, V. Heitz, Chem. Commun., 2012, 48, 5118; t) S. Y-L. Leung, A. Y-Y. Tang, C-H. Tao, H-S. Chow, V. W-W. Yam, J. Am. Chem. Soc. 2012, 134, 1047.
- 2 a) M. Han, D. M. Engelhard, G. H. Clever, Chem. Soc. Rev., 2014, 43, 1848; b) M. Yoshizawa, J. Klosterman, J., Chem. Soc. Rev., 2014, 43, 1885; c) M. M. J. Smulders, I. A. Riddell, C. Browne, J. R. Nitschke, Chem. Soc. Rev., 2013, 42, 1728; d) K. Harris, D. Fujita, M, Fujita, Chem. Commun, 2013, 49, 6703; e) T. R. Cook, Y. R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734; f) H. Amouri, C. Desmarets, J. Moussa, Chem.Rev. 2012, 112, 2015; g) S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853; h) L. Xu, Y.-X. Wang, L-J. Chen, H.-B. Yang, Chem. Soc. Rev., 2015, 44, 2148; i) L. Xu, L.-J. Chen, H.-B. Yang, Chem. Commun., 2014, 50, 5156.
- 3 a) B. Nohra, S. Graule, C. Lescop, R. Réau, J. Am. Chem. Soc., 2006, 128, 3520; b) Y. Yao, W. Shen, B. Nohra, C. Lescop, R. Réau, Chem. Eur. J., 2010, 16, 7143.
- 4 V. Vreshch, W. Shen, B. Nohra, S-K Yip, V.W-W. Yam, C. Lescop, R. Réau, *Chem. Eur. J.*, 2012, **2**, 466.
- 5 M. El Sayed Moussa, K. Guillois, W. Shen, R. Réau, J. Crassous, C. Lescop, *Chem. Eur. J.*, 2014, **20**, 14853.
- a) F. Leca, C. Lescop, E. Rodriguez-Sanz, K. Costuas, J-F. Halet, R. Réau, *Angew. Chem. Int. Ed.*, 2005, 44, 4362; b) B. Nohra, E. Rodriguez-Sanz, C. Lescop, R. Réau, *Chem. Eur. J.*, 2008, 14, 3391.
- 7 a) S. M. J. Wang, L. Zhao, T. C. W. Mak, *Dalton Trans.*, 2010, 39, 2108; b) L. Cunha-Silva, M. J. Hardie, *Cryst. Eng. Comm.*,

- 8 For experimental details, spectroscopic and X-Ray diffractic data, see SI.
- 9 Careful examination of the several crystallization batches and unit cell determination of single crystals random v selected did not evidence the formation of other polymorphs.
- 10 Concerning the assembly **7**, solid state intermolecularity distances between the π -moieties of the linkers **3** (ca. 4.8 Å) are too large for intermolecular π - π interactions.

Accepted

4 | J. Name., 2012, 00, 1-3