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Abstract: A C2-symmetric para-orientation bisprolinamide cata-
lyst has been designed to effectively promote the enantioselective
coupling reactions of aldehydes, which delivered the systematic in-
vestigation on amine–amide catalysis. Transforming the monopro-
linamide 1a into the bisprolinamide 2a improved not only the
stereoselectivities but also the reactivities. With this strategy, the
functionalized b-hydroxyaldehydes could be furnished in high
yields (up to 99%) with good selectivities (up to 8:92 syn/anti and
99% ee) even in the presence of 5 mol% of catalyst 2a. Based on the
preliminary experiment and the absolute configuration of cross-al-
dol adduct, a rational transition state A was proposed to explain the
origin of reactivity and selectivity.
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Asymmetric organocatalysis has recently provided a new
research approach to explore the fundamental chemical
characterizations such as reactivity, selectivity, and mech-
anism, which has also led to the discovery of many valu-
able reactions and catalysts.1 In this endeavor, the design
and development of multifunctional chiral organocata-
lysts are of great importance: One catalyst molecule pos-
sesses two or more reaction-promoting functionalities, so
that reactivity and selectivity can be tuned by a simple
structural modification of the catalyst.

The cross-aldol reaction of aldehydes ranks among the
most important carbon–carbon bond-forming reactions in
organic synthesis and provides b-hydroxyaldehydes,
which could be transferred to some biologically active

compounds.2 Several efficient asymmetric methodologies
for this reaction using proline and its derivative organo-
catalysts have been developed, in which the secondary
amine of pyrrolidine has been confirmed to efficiently
provide the active enamine intermediate.3 According to
the Houk–List model,4 hydrogen bonding undoubtedly
plays the crucial role in stabilizing the transition state. In
cross-aldol reaction of aldehydes, although hydrogen
bond between carbonyl oxygen of aldehydes and carbox-
yl, protonated amine or sulfonyl amide has been intro-
duced successfully, investigation on the amide has not yet
been specialized systematically. In addition, it is appar-
ently troublesome to control the occurrence of unexpected
aldol condensation in coupling reaction of aldehydes.
Herein, we report amine–amide-catalyzed cross-aldol re-
action of aldehydes, with secondary amine activating the
donor via enamine and hydrogen of amide activating the
acceptor via hydrogen bond.

Based on the skeleton of L-proline, the monoprolinamide
catalysts 1a–e (Figure 1) were synthesized.5 With a phe-
nyl substituent on nitrogen atom of amide 1a, the solvent
effects were initially investigated.

Although good enantioselectivities (90% ee) could be ob-
tained in different media such as CH2Cl2, ClCH2CH2Cl,
DMSO and N-methyl-2-pyrrolidinone (NMP), the diaste-
reoselectivities were generally better when the reaction
was conducted in DMSO (75:25) or NMP (70:30). With
DMSO, the unsubstituted 1b and t-Bu-substituted 1c pro-
vided inferior selectivities (Table 1, entries 2 and 3). On

Figure 1 The studied catalysts.
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the other hand, p-methoxyphenyl (1d) and p-bromophen-
yl (1e) substituents gave better results (dr ≥ 80:20 and ee
≥ 97%), which signaled that a para substituent could fur-
ther improve the stereoselectivities. Accordingly another
catalytic active site was introduced to the para orienta-
tion. C2-Symmetrical bisprolinamide 2a6 delivered the ef-
ficient formation of cross-aldol product in 15 hours (84%
yield, 88:12 anti/syn and 98% ee) (Table 1, entry 6).

Adjusting the relative position of two prolinamide units
demonstrated that the ortho and meta substituted (2b and
2c) or another phenyl ring inserted (2d) did not give better
results (Table 1, entries 7–9). In NMP, using the best cat-
alyst 2a, improved selectivities could be found (92:8 anti/
syn and 99% ee) (Table 1, entry 11).

Under the optimal conditions, asymmetric inductivities of
the bisprolinamide 2a were investigated on other selected
aldehydes, with the results summarized in Table 2. Good
enantioselectivities were attained for linear and branched
aliphatic aldehydes. The absolute configuration of the
anti-aldol adduct 3a was determined to be 2S,3R by com-
parison of the sign of the optical rotation value with that
in the literature.3m The aldol adduct 3c was obtained in
99% yield with 95% ee, which could be transformed into
biologically active trichostatin A.2e Selecting hexanal as
the donor, prochiral benzoyl-, naphthalene-2- and 3-car-

bonyl phenylacryloyl-functionalized aldehydes were all
obtained in good yield and enantioselectivities.

Comparing C2-symmetric bisprolinamide 2a with mono-
prolinamide 1a revealed that the former provided the aldol
adduct with higher yield and selectivity (Table 1, entry 6
vs. 1), which indicated that the two prolinamide units
might act cooperatively. The relation between the enanti-
omeric excess of product 3a and the enantiopurity of cat-
alyst 2a was examined to be directly proportional, which
indicated that asymmetric catalysis with partially resolved
chiral catalysts were not amplified and depleted
(Figure 2).8 Furthermore, the catalyst loading in an inves-
tigated range of 2.5–20 mol% had no influence on the ste-
reoselectivity.

Based on the preliminary experiment and the absolute
configuration of 3a, we proposed a transition state A,
which also represents the lowest energy conformation
(Figure 3). In transition state A, the Re face of the carbo-
nyl of 4-nitrobenzaldehyde is much more accessible to the
Re face of enamine to provide the product with absolute
configuration of 2S,3R. The interaction of two Si faces
will strongly increase the repulsion between phenyl sub-
units as seen in transition state B. The repulsion between
pyrrolidine and the carbon chain of donor would also be
unfavorable to the formation of (2R,3S)-product. syn-
Conjugate addition would increase the repulsion either

Table 1 Optimization Studies

Entry Catalyst Yield (%)a dr (syn/anti)b ee (%) (anti)c

1 1a 56 25:75 90

2 1b 91 35:65 87

3 1c 73 46:54 65

4 1d 96 20:80 97

5 1e 99 18:82 98

6 2a 84 12:88 98

7 2b 69 35:65 53

8 2c 81 22:78 91

9 2d 99 34:66 84

10d 2a 56 13:87 98

11d,e 2a 99 8:92 99

a Isolated yields.
b Determined by 1H NMR.
c Determined by HPLC analysis.
d Catalyst loading: 5 mol%.
e Reaction conditions: NMP as solvent, 30 h.
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between phenyl subunits or between the pyrrolidine ring
and the carbon chain of donor as in C or D, respectively.

In summary, enantioselective secondary amine–amide-
catalyzed cross-aldol reaction of aldehydes has been de-
veloped, which could provide a practical, enantioselective

organocatalytic strategy to some important carbon–car-
bon bond formations. The rational introduction of two cat-
alytic active sites improves not only the stereoselectivities
but also the reactivities. Further work is underway to de-
velop, understand and apply this new method of enantio-
selective coupling reaction of aldehydes.
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Table 2 Investigation on Other Selected Aldehydes7

Products x Time 
(h)

Yield 
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dr 
(syn/anti)b

ee (%) 
(anti)c
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5 30 99 8:92
99 
(2R,3S)

3b
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3c

20 30 99 25:75 95

3d

20 80 87 15:85 97

3e

20 80 51 – 77

3f

10 20 88 15:85 99

3g

10 20 93 22:78 96

3h

10 20 95 19:81 92

a Isolated yields.
b Determined by 1H NMR.
c Determined by HPLC analysis.
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Figure 2 The relation between product 3a and catalyst 2a in enan-
tioselectivity.

Figure 3 Proposed transition state A → D (another prolinamide unit
was omitted). Ar = 4-nitrophenyl.
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