<u>LETTERS</u>

Regioselective and Switchable *meso*-Aminations and Couplings of 5,15-Diarylchlorins

Qi Cheng,[†] Yu-Hao Qiu,[†] Sheng-Lin Luo,[‡] Li Shuai,[†] Yi Yuan,[†] Ying-Chun Chen,^{*,†,§}[®] and Qin Ouyang^{*,†}[®]

[†]College of Pharmacy, Third Military Medical University, Chongqing 400038, China

[‡]Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing 400038, China

[§]Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

Supporting Information

ABSTRACT: Controllable chemo- and regiodivergent amination reactions of anilines and chlorins are accomplished by employing different oxidants and substrates, constructing aminated chlorin monomers and dimers with high structural diversity. Importantly, besides preferential 20-*meso*-position, the oxidative amination was also realized at the inactive 10-*meso*-position by using phenyliodine bis(trifluoroacetate) (PIFA) and gold(III)-based reagents.

P orphyrin and chlorin derivatives have attracted significant attention due to their numerous applications, such as artificial photosynthetic systems, sensors, and nonlinear optical (NLO) devices.¹ Chlorins, structurally more similar to photosynthetic pigments, are especially valuable as photosensitizers for photodynamic therapy (PDT) owing to their strong absorptions in red band (600–700 nm).² Several chlorin derivatives, such as Verteporfin,³ Temoporfin,⁴ and Talaporfin⁵ (Figure 1), have been approved for clinical use to treat cancer, skin disease, and abnormal blood vessels, respectively.

Figure 1. Chlorin photosensitizers approved for clinical use.

In addition to the natural extraction and derivation of chlorophyll, chemical synthesis has been proven as a powerful approach to produce new chlorin derivatives for photosensitizer discovery.⁶ Beside modifying the pyrrole ring of porphyrins, introduction of substituted pyrroles before constructing chlorin rings was reported as a common synthetic strategy to generate multifarious *meso-* or β -substituted chlorin skeletons and

derivatives.⁷ Direct modifications at preferred 20-*meso*-position flanking the pyrroline ring of chlorins were rarely reported except bromination^{7b,8} and direct coupling reactions.⁹ The 10-*meso*position of chlorins was considered as an inactive site in comparison with 7,8- β -positions for the bromination,^{8c} though its functionalization might affect the physicochemical properties due to the short distance to the core of the ring. Developing a facile method to directly introduce *meso*-substituents, especially via amination reactions at inactive 10-position, would be extremely attractive, since amino groups are useful for dyesensitized solar cell development as electron donating groups¹⁰ and are favorable for drug discovery owing to their ubiquity in a variety of pharmaceuticals and natural products.

A variety of gold(III)-based catalysts have been reported to promote C–H aminations.¹¹ Specifically, an oxidative strategy by using phenyliodine diacetate (PIDA) and NaAuCl₄·2H₂O was presented to conduct the *meso*-amination of 5,10,20-trisubstituted porphyrins; however, for the amination of 5,15-diarylporphyrins, various porphyrin oligomers were generated.¹² Recently, as an environmentally friendly approach, hypervalent iodine(III) reagents have been successfully applied to synthesize *meso-meso* directly linked diporphyrins,¹³ fused diporphysins,¹⁴ and regioselective 20–20' linked chlorin dimers.⁹ Although numerous methods to construct C–N bonds for some kinds of special substrates have been reported using a metal-free oxidative strategy,¹⁵ simplex hypervalent iodine(III) reagents failed to

Received: June 9, 2017

promote the amination of porphyrins.¹² Compared with porphyrins, chlorins are easier to be oxidized due to their lower first oxidation potential,⁹ and have more diverse active sites to conduct amination, coupling, decomposition, or polymerization reactions. Thus, the reactions of chlorins and anilines by using oxidation strategies have more possibilities and challenges. Here we report our preliminary results by using hypervalent iodine(III) reagents or gold(III) salts for the preparation of chemo- and regioselective *meso*-aminated chlorin monomers and dimers. Importantly, besides preferential 20-*meso*-position, the amination was also conducted at the inactive 10-*meso*-position.

The initial reaction of chlorin 1 and *p*-toluidine 2a proceeded rapidly at room temperature in the presence of PIDA/NaAuCl₄· $2H_2O$ (1:1). Unfortunately, few products were generated by using conventional saturated sodium thiosulfate solution to quench the reaction.¹² However, as previously reported,¹⁴ NaBH₄/CH₃OH were used to terminate the reaction, producing an unusual 10,10'-diaminated, 20,20'-linked chlorin dimer 3a in 36% yield and 20-aminated chlorin 4a in 20% yield (Table 1,

Table 1. Screening Studies of Oxidative Reactions of Chlorin 1 and Anilines 2^a

^{*a*}Unless otherwise noted, reactions were performed with 1 (0.05 mmol), 2 (0.25 mmol), and oxidant in CH_2Cl_2 (30 mL) and quenched by NaBH₄/CH₃OH (10 mg/2 mL). ^{*b*}Isolated yield. ^{*c*}53% of 1 was recovered. ^{*d*}Together with 1.

entry 1). A higher yield of **3a** was obtained by increasing the amounts of NaAuCl₄·2H₂O (entry 2), and better selectivity with 68% yield of **3a** was observed by using NaAuCl₄·2H₂O independently (entry 3). No expected products were generated with PIDA (entry 4); however, phenyliodine bis-(trifluoroacetate) (PIFA) promoted the reaction effectively, and interestingly, 20-aminated chlorin **4a** was produced in a moderate yield (entry 5). The yield of **4a** could be improved to 65% by employing 1.5 equiv of oxidants (entry 7). Further addition of oxidants produced a complex mixture probably because of decomposition (entry 8). Other oxidants, such as AgSbF₆, FeCl₃, O₂, 2,3-dicyano-5,6-dichlorobenzoquinone (DDQ), PIDA/Cu(OAc)₂ (1:0.2), and PIDA/Sc(CF₃SO₃)₂ (1:0.2), failed to promote this amination, while porphyrin was

obtained as the major product in the reactions using $AgSbF_6$ or DDQ. Moreover, the amination could not be promoted in other solvents, such as THF, acetonitrile, and ethanol.

Beside the oxidant-controlled reaction, the substrates also played an important role in regulating the chemoselectivity. The reaction of 1 and N-methyl p-toluidine 2b produced 10,20diaminated chlorin 5a in a good yield with NaAuCl₄·H₂O, and trace amounts of chlorin dimer 3a were isolated (entry 9). Surprisingly, by using PIFA, a 10,10'-diaminated and 20,20'linked chlorin dimer 3b was generated in a good yield, and minor diaminated chlorin 5a was also isolated (Table 1, entry 10). Other possible products, such as 10,10'- or 10,20'-linked chlorin dimers were not observed and identified. The coupling reaction of 20-aminated chlorin 4a could not be further promoted by adding PIFA or gold(III) salt. In addition, we also tried similar amination reactions for other metal chlorins. PIFA failed to promote the amination of Pd^{II} and Ni^{II} chlorin (1-Ni^{II}, and 1-Pd^{II}, respectively), and self-coupling dimer also was not observed. In contrast, by using NaAuCl₄·H₂O as the oxidant, the reaction of Ni^{II} chlorin and **2a** resulted in complex products, while 1-Pd^{II} and 2a produced a mixture of 10,20-diaminated Pd^{II} chlorin **5a**-Pd^{II} and diaminated Pd^{II} porphyrin [for more details, see the Supporting Information (SI)].

The structures of these chlorins were confirmed by their NMR data and mass spectrometry. A complete ¹H NMR assignment for the individual protons of **3a**, **4a**, and **5a** was achieved by 2D-NMR studies (for more details, see the SI). Compared with **1**, the signals of H-10 and H-20 of **3a** disappeared (Figure 2). Beside

the upfield shifts of the proton signals near the 20-position (H-18 and H-2) due to the 20–20 connection, other β -Hs in **3a**, especially H-13 and H-7, showed obvious upfield shifts resulting from the introduction of *N*-substituent at the 10-position. Additionally, the interaction between H-2 and H-18 can be found in the ¹H-NOESY NMR spectra of **3a** and **3b** (see the SI), which further confirmed the linkage at 20-position. In the ¹H NMR spectrum of **4a**, the signal of H-20 disappeared and the signals of β -Hs-2,3,17,18 showed obvious upfield shifts due to the amination at 20-position. In contrast, beside the disappeared signals of β -Hs in the ¹H NMR spectrum of **5a** proved that the chlorin ring was diaminated at 10,20-*meso*-positions.

In addition to PIFA-promoted self-coupling of chlorin,⁹ we also found 20-20'-linked chlorin dimer **6** could be synthesized regioselectively from NaAuCl₄·2H₂O and **1** in CH₂Cl₂ within 1 min in 45% yield in the presence of K₂CO₃. Subsequently, chlorin dimer **6** reacted with **2a** or **2b** under the optimized oxidative conditions. PIFA promoted the formation of C–N bond with secondary amine **2b** in a good yield (Table 2, entry 1),

Table 2. Oxidative *meso*-Amination of Chlorin Dimer 6 and Anilines 2^{a}

^{*a*}Unless otherwise noted, reactions were performed with chlorin dimer 6 (0.05 mmol), aniline 2 (0.25 mmol), and oxidant (0.075 mmol) in CH_2Cl_2 (30 mL) and quenched by $NaBH_4/CH_3OH$ (10 mg/2 mL). ^{*b*}Isolated yield.

while the reaction of **6** and **2a** resulted in a low yield (entry 2). In contrast, gold(III) salt showed high activity for the amination reaction of **6** with either **2a** or **2b**, efficiently producing **3a** and **3b** in high yields (entries 3 and 4). These results suggested that the formation of aminated chlorin dimer might proceed through the self-coupling reaction at 20-*meso*-position and sequential C–N bond formation at 10-*meso*-position. As a result, a step by step strategy using PIFA and gold(III) salt could be considered as a general protocol for preparing the aminated chlorin dimers with different aniline substrates.

According to density functional theory (DFT) calculations¹⁶ and experiments, we found that the reactivity of anilines, in a certain degree, depended on the energy of HOMO ($\varepsilon_{\text{HOMO}}$). For the reaction of *N*-unsubstituted anilines and chlorin by using PIFA, introducing an electron-donating methoxy group with higher $\varepsilon_{\text{HOMO}}$ facilitated the reaction (Table 3, entry 2). In

^{*a*}Unless otherwise noted, reactions were performed with chlorin 1 (0.05 mmol), aniline 2 (0.25 mmol), and oxidant (0.075 mmol) in CH_2Cl_2 (30 mL) and quenched by $NaBH_4/CH_3OH$ (10 mg/2 mL). ^{*b*}Isolated yield. ^{*c*}40% of 1 was recovered.

-5.45

NaAuCl₄.2H₂O

5d, 26

10

Bn

4-Me

contrast, using substrate with an electron-withdrawing group resulted in a poorer yield due to its lower $\varepsilon_{\text{HOMO}}$ (entry 3). Nevertheless, aniline with a 4-ester group failed to give the amination product, probably due to its low energy of HOMO (entry 4). The substituent position also affected the reaction, as using o-toluidine produced the aminated chlorin 4d in a fair yield (entry 5). Additionally, NaAuCl₄·2H₂O was used to produce diaminated chlorins 5 in moderate yields (entries 6-11). It is worth noting that minor aminated chlorin 4e was isolated along with 5c, since 4-fluoro-N-methylaniline has a relatively lower $\varepsilon_{\text{HOMO}}$ (-5.65 eV). It suggested that the oxidant might activate the meso-Hs at 10- and 20-positions sequentially. In addition to ε_{HOMO} , the steric hindrance also affected the reaction. Except that N-benzyl-p-toluidine could be used for the amination in a low yield (entry 11), other compounds with large steric hindrance or low $\varepsilon_{\rm HOMO}$ were not able to promote the amination, such as diphenylamine, carbazole, and N-(p-tolyl)acetamide. In addition to the literature reported single-electron transfer (SET) oxidation of chlorin,^{12,17} the $\varepsilon_{\rm HOMO}$ depended results suggested that the possible reaction mechanism may also involve the oxidation of aniline to a radical.

The natural population analysis (NPA) charges were further calculated to understand the regioselectivity.¹⁶ The meso-carbon at 20-position was evaluated to have higher electron density with a charge of -0.334, implying its activity for amination and selfcoupling. In contrast, the meso-carbon at 10-position, selectively proceeding amination rather than self-coupling,⁹ had a lower charge with a value of -0.184. Similarly, meso-carbon at 10position of 6 and 4a had similar charges (-0.176 and -0.170,respectively). However, the charges of 10-meso-carbons in these compounds were less negative than those of $7,8-\beta$ -carbons, which were consistent with the regioselectivity of bromination that involved a process of cation radical.^{8c} Due to the unusual selectivity, we proposed the formation of a complex radical from chlorin radical and aniline anion, in which the N atom of aniline was coordinated with the Zn atom of chlorin. The shorter distance between meso-C atom and coordinated N atom may be the possible reason for the unusual selectivity at inactive 10position (see the SI). As the amination could be conducted for 20- and 10-carbons sequentially, structural diversity may come from the competition between amination and self-coupling reaction at electron-rich 20-carbons.

As outlined in Figure 3, compared to 1, the absorption spectrum of 3a showed a broadened Soret band with a shoulder and a broadened Q bond ranging from 630-800 nm. Similar broadened and red-shift bonds were found in the spectrum of 4a. These broad bonds may result from their self-assemble behavior,

Figure 3. UV-vis spectra of 3a, 3b, 4a, 5a, and 1 in CH₂Cl₂.

because they become sharper when adding a little DMSO into CH₂Cl₂ (see the SI). In contrast, sharper bonds were observed in the spectra of **3b** and **5a**, since the *N*-substituents might block the self-assembly by steric hindrance. Meanwhile, **3b** and **5a** showed obvious red-shift for both Soret and Q bands. The Q bands' maximum absorption wavelength of **3b** and **5a** were 641 and 627 nm, respectively, while that of **1** was 613 nm. Moreover, the DFT calculations showed that introducing *meso-N*-substituents would lead to lower energies of LUMO and LUMO–1, which might be the reason for the red-shifted Q bands.¹⁶ Additionally, we also tested the relative fluorescence quantum yield and phototoxic activity of these synthesized chlorins, suggesting the amination of chlorin might be useful for developing potential new photosensitizers (see the SI).

In conclusion, we have investigated the reactions of anilines and chlorins by using different oxidants. Regioselective 20aminated products are efficiently produced by using PIFA oxidation of *N*-unsubstitued anilines and chlorins. Diamination reactions between *N*-substituted anilines and chlorins at 10- and 20-positions are successfully finished by employing NaAuCl₄· $2H_2O$. Interestingly, diaminated chlorin dimers have been obtained in the reactions of Zn^{II} chlorin monomers and *p*toluidine with NaAuCl₄· $2H_2O$ or *N*-methyl-*p*-toluidine with PIFA. It is worth mentioning that the amination could be conducted at the inactive 10-*meso*-position. These results should be helpful for producing more chlorin derivatives as structurally diverse *meso*-substituted photosensitizers. Additional results will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b01739.

Experimental procedures and characterization data for new compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: ycchen@scu.edu.cn

*E-mail: ouyangq@tmmu.edu.cn

ORCID [©]

Ying-Chun Chen: 0000-0003-1902-0979

Qin Ouyang: 0000-0002-1161-5102

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for financial support from the NSFC (21202201) and Third Military Medical University (2015XZH05).

REFERENCES

(1) For recent reviews, see: (a) Auwärter, W.; Écija, D.; Klappenberger, F.; Barth, J. V. *Nat. Chem.* **2015**, *7*, 105. (b) Ding, Y.; Zhu, W.-H.; Xie, Y. *Chem. Rev.* **2017**, *117*, 2203. (c) Lu, H.; Kobayashi, N. *Chem. Rev.* **2016**, *116*, 6184. (d) Bhupathiraju, N. V.; Rizvi, W.; Batteas, J. D.; Drain, C. M. Org. Biomol. Chem. **2016**, *14*, 389. (e) Jiang, L.; Gan, C. R.; Gao, J.; Loh, X. J. Small **2016**, *12*, 3609.

(2) For recent reviews, see: (a) Nyman, E. S.; Hynninen, P. H. J. Photochem. Photobiol., B 2004, 73, 1. (b) Garland, M. J.; Cassidy, C. M.; Woolfson, D.; Donnelly, R. F. Future Med. Chem. 2009, 1, 667. (c) Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K. Chem. Soc. Rev. 2011,

40, 340. (d) Sadanala, K. C.; Chaturvedi, P. K.; Seo, Y. M.; Kim, J. M.; Jo, Y. S.; Lee, Y. K.; Ahn, W. S. *Anticancer Res.* **2014**, *34*, 4657.

(3) For selected examples, see: (a) Karim, S. P.; Adelman, R. A. *Clin. Ophthalmol.* **2013**, *7*, 1867. (b) Zhang, H. B.; Ramakrishnan, S. K.; Triner, D.; Centofanti, B.; Maitra, D.; Győrffy, B.; Sebolt-Leopold, J. S.; Dame, M. K.; Varani, J.; Brenner, D. E.; Fearon, E. R.; Omary, M. B.; Shah, Y. M. *Sci. Signaling* **2015**, *8*, ra98.

(4) For recent reviews, see: (a) Senge, M. O.; Brandt, J. C. Photochem. Photobiol. **2011**, 87, 1240. (b) Senge, M. O. Photodiagn. Photodyn. Ther. **2012**, 9, 170. (c) de Visscher, S. A.; Dijkstra, P. U.; Tan, I. B.; Roodenburg, J. L.; Witjes, M. J. Oral Oncol. **2013**, 49, 192.

(5) For selected examples, see: (a) Wang, S.; Bromley, E.; Xu, L.; Chen, J. C.; Keltner, L. *Expert Opin. Pharmacother.* **2010**, *11*, 133. (b) Miki, Y.; Akimoto, J.; Hiranuma, M.; Fujiwara, Y. J. *Toxicol. Sci.* **2014**, 39, 821.

(6) For a comprehensive review, see: Taniguchi, M.; Lindsey, J. S. Chem. Rev. 2017, 117, 344.

(7) For a recent review, see: (a) Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem. 2004, 47, 3897. (b) Lindsey, J. S. Chem. Rev. 2015, 115, 6534. For selected examples, see: (c) Bruckner, C.; Gotz, D. C. G.; Fox, S. P.; Ryppa, C.; McCarthy, J. R.; Bruhn, T.; Akhigbe, J.; Banerjee, S.; Daddario, P.; Daniell, H. W.; Zeller, M.; Boyle, R. W.; Bringmann, G. J. Am. Chem. Soc. 2011, 133, 8740. (d) Ke, X.-S.; Chang, Y.; Chen, J.-Z.; Tian, J. W.; Mack, J.; Cheng, X.; Shen, Z.; Zhang, J.-L. J. Am. Chem. Soc. 2014, 136, 9598.

(8) (a) Muthiah, C.; Ptaszek, M.; Nguyen, T. M.; Flack, K. M.; Lindsey, J. S. J. Org. Chem. 2007, 72, 7736. (b) Fan, D. Z.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5350. (c) Muthiah, C.; Lahaye, D.; Taniguchi, M.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2009, 74, 3237. (d) Xiong, R. S.; Arkhypchuk, A. I.; Kovacs, D.; Orthaber, A.; Borbas, K. E. Chem. Commun. 2016, 52, 9056.

(9) Ouyang, Q.; Yan, K.-Q.; Zhu, Y.-Z.; Zhang, C.-H.; Liu, J.-Z.; Chen, C.; Zheng, J.-Y. Org. Lett. **2012**, *14*, 2746.

(10) For recent reviews, see: (a) Urbani, M.; Gratzel, M.; Nazeeruddin, M. K.; Torres, T. *Chem. Rev.* **2014**, *114*, 12330. (b) Higashino, T.; Imahori, H. *Dalton Trans.* **2015**, *44*, 448.

(11) For recent reviews, see: (a) Li, Z.; Brouwer, C.; He, C. *Chem. Rev.* **2008**, *108*, 3239. (b) Corma, A.; Leyva-Perez, A.; Sabater, M. J. *Chem. Rev.* **2011**, *111*, 1657.

(12) Shen, D.-M.; Liu, C.; Chen, X.-G.; Chen, Q.-Y. J. Org. Chem. 2009, 74, 206.

(13) Jin, L.-M.; Chen, L.; Yin, J.-J.; Guo, C.-C.; Chen, Q.-Y. Eur. J. Org. Chem. 2005, 2005, 3994.

(14) Ouyang, Q.; Zhu, Y.-Z.; Zhang, C.-H.; Yan, K.-Q.; Li, Y.-C.; Zheng, J.-Y. Org. Lett. 2009, 11, 5266.

(15) For selected examples, see: (a) Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605. (b) Samanta, R.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P. Org. Lett. 2012, 14, 5518. (c) Chen, H.; Kaga, A.; Chiba, S. Org. Lett. 2014, 16, 6136. (d) Manna, S.; Serebrennikova, P. O.; Utepova, I. A.; Antonchick, A. P.; Chupakhin, O. N. Org. Lett. 2015, 17, 4588. (e) Zenzola, M.; Doran, R.; Degennaro, L.; Luisi, R.; Bull, J. A. Angew. Chem., Int. Ed. 2016, 55, 7203.

(16) DFT calculations were carried out with the GAUSSIAN 09 packages. See the SI.

(17) For selected recent examples, see: (a) Hou, K. P.; Qi, M.; Liu, J. J.; Bao, X. G.; Schaefer, H. F. *J. Org. Chem.* **2015**, *80*, 5795. (b) Hartmann, M.; Li, Y.; Muck-Lichtenfeld, C.; Studer, A. *Chem. - Eur. J.* **2016**, *22*, 3485. (c) Morimoto, K.; Sakamoto, K.; Ohshika, T.; Dohi, T.; Kita, Y. Angew. Chem., Int. Ed. **2016**, *55*, 3652.