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Conjugated to a Tautomeric Schiff Base

V. Deneva1,

N. Burdzhiev2,

E. Stanoeva2, and

L. Antonov1

1Institute of Organic Chemistry

with Centre of Phytochemistry,

Bulgarian Academy of Sciences,

Sofia, Bulgaria
2Faculty of Chemistry, University

of Sofia, Sofia, Bulgaria

ABSTRACT The spectral properties of a tautomeric Schiff base containing

aza-15-crown-5 moiety, namely N-((4-methylnaphthalen-1-yl)methylene)-

4-(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)aniline on addition of

alkali and alkaline earth metal ions were investigated. The newly synthe-

sized ligand exhibited very interesting color changes in presence of metal

ions: from yellow (free ligand) via colorlessness (enol tautomer complex)

to yellow–orange (keto tautomer complex). These changes result from 2

stepwise processes: complex formation and shift of the tautomeric equili-

brium between the tautomers after addition of the metal ions.

KEYWORDS alkali and alkaline earth metal ions, aza-15-crown-5, Schiff bases,

tautomerism

INTRODUCTION

Tautomerism is a process of exchange of a proton between two (or more)

forms, leading to redistribution of the electronic density in the whole

molecule[1] and changing substantially its spectral and photophysical

properties. In the case of the tautomeric azonaphthols and related Schiff

bases 1–6 (shown in Scheme 1), the effects of the temperature, solvents,

and substituents have been clarified,[2,3] potentially creating tools to shift

the tautomeric equilibrium toward the enol (E) or keto (K) form.

Almost the same can be stated for the complexation of azacrowns conju-

gated to a chromophore: It leads to electronic redistribution in the ligand

molecule.[4] The process influences the spectral and photophysical proper-

ties of the whole molecule. The stability of the complex obtained depends

on temperature, solvent, and mainly the electronic structure of the ligand.

This means that by changing one of these factors, one can change the

complex stability and its spectral properties.

Linking an azacrown ether to a tautomeric dye could lead to a double

effect of control. On the one hand, the shift in the position of the tautomeric

equilibrium will lead to electronic rearrangement in the molecule and con-

sequently to a change of its complexation abilities. On the other hand, the

process of complexation might lead to shift of the tautomeric equilibrium

toward a particular tautomer. In fact, these two competitive processes

can provide additional tools for design of switch on–off sensor molecules.

In our best knowledge, there is limited number of systems where the crown
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ether is linked in a way that can influence the tauto-

meric equilibrium, but the changes have never been

discussed in depth from this viewpoint.[5]

Previously we have synthesized a series of aza-

15-crown-5 (A15C5) moiety containing Schiff bases

and have shown the importance of position of crown

on the complexation abilities of the ligands.[6,7] In the

current article, we report the synthesis and the tauto-

meric changes upon complexation in a Schiff base,

where the A15C5 is conjugated to the tautomeric

system (compound 8). The properties of the new

ligand are discussed in comparison with the model

compound 7, where no complexation is possible.

MATERIALS AND METHODS

The synthesis of compounds 8 and 7 (the model

compound of 8 in respect to the free ligand tauto-

merism) is summarized in Scheme 2.

N-((4-methylnaphthalen-1-
yl)methylene)-4-(1,4,7,10-

tetraoxa-13-azacyclopentadecan-
13-yl)aniline (8)

From 4-hydroxy-1-naphthadehyde (0.086 g,

0.5 mmol) and 4-(1,4,7,10-tetraoxa-13-azacyclo-

pentadecan-13-yl)aniline[6] (0.171 g, 0.55 mmol),

benzene 0.216-g (93%) crystals of 1 are obtained

using the above procedure: mp 159–161�C.

IR (nujol): 3550–2500 (broad, OH), 1630 (C=N),

1120 (C�O�C) cm�1. 1H NMR d (CDCl3): 3.52–3.73

(16H, m, OCH2), 3.73–3.85 (4H, m, NCH2), 5.30

(1H, s, OH), 6.70 (2H, d, Ar, J¼ 9.1 Hz), 6.79 (1H,

d, Ar, J¼ 8.3 Hz), 7.23 (2H, d, Ar, J¼ 9.0 Hz), 7.49

(1H, ddd, Ar, J¼ 1.2 Hz, J¼ 6.9 Hz, J¼ 8.1 Hz), 7.60

(1H, ddd, Ar, J¼ 1.5 Hz, J¼ 6.9 Hz, J¼ 8.4 Hz), 7.87

(1H, d, Ar, J¼ 8.4 Hz), 8.34 (1H, dd, Ar, J¼ 1.1 Hz,

J¼ 8.3 Hz), 8.70 (1H, d, Ar, J¼ 8.3 Hz), 8.78 (1H, s,

CH). Anal. Calcd. for C27H32N2O5: C 69.81%, H

6.94%, N 6.03%; found C 69.44%, H 7.15%, N 6.61%.

4-((4-(Dimethylamino)-
phenylimino)methyl)naphthalen-

1-ol (7)

Solution of 4-hydroxy-1-naphthadehyde (0.086 g,

0.5 mmol) and N1,N1-dimethylbenzene-1,4-diamine

(0.068 g, 0.5 mmol) in benzene (25 ml) is refluxed

using Dean-Stark trap for 5 hr. After the completion

of the reaction, benzene is evaporated under redu-

ced pressure. The corresponding oil crystallized from

acetonitrile=toluene, thus yielding 0.075-g (52%)

crystals of 2: mp 187–189�C.

IR (nujol): 3550–2500 (broad, OH), 1630 (C=N)

cm�1 � 1H NMR d (CDCl3): 2.73 (6H, s, NCH3), 6.53

(2H, d, Ar, J¼ 9.0 Hz), 6.69 (1H, d, Ar, J¼ 8.0 Hz),

7.01 (2H, d, Ar, J¼ 9.0 Hz), 7.22 (1H, ddd, Ar,

J¼ 1.1, 6.8, 8.0 Hz), 7.34 (1H, ddd, Ar, J¼ 1.5, 6.8,

8.5 Hz), 7.64 (1H, d, Ar, J¼ 8.1 Hz), 8.07 (1H, dd,

Ar, J¼ 1.4, 8.2 Hz), 8.69 (1H, s, Ar), 8.85 (1H, br. s,

Ar). Anal. Calcd. for C19H18N2O: C 78.59%, H

6.25%, N 9.65%; found C 78.63%, H 5.92%, N 9.94%.

Melting points were taken on a Kofler hot-stage

apparatus and are uncorrected. IR spectra were

SCHEME 2 Synthesis of 7 and 8.

SCHEME 1 Keto–enol tautomerism in compounds 1–8.
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recorded on a Specord 75 instrument (Jena,

Germany). 1H NMR spectra (250.13MHz) were

obtained on a Bruker Avance DRX-250 spectrometer

(Bruker Optics; Germany). The chemical shifts are

given in parts per million (d) relative to tetramethyl-

silane as internal standard. Microanalyses were

performed on VarioEL III CHNS=O (Elementar

Analysensysteme GmbH; Germany).

The UV-Vis spectral measurements were performed

on JASCO V-570 UV-Vis-NIR spectrophotometer

(JASCO, Japan), equipped with a Julabo ED5 thermo-

stat (precision 1�C) at 20�C, in spectral-grade solvents.

The complexation was studied in dry acetonitrile.[8] AR

grade LiClO4 (Fluka), NaClO4 �H2O (Fluka),

Mg(ClO4)2 (Fluka), Ca(ClO4)2 � 4H2O (Aldrich),

Sr(ClO4)2 (Aldrich), Ba(ClO4)2 � aq (Fluka), and BeSO4 �
2H2O (Merck) were vacuum dried at 60�C from 3 to

5 days depending on the case. Spectral-grade acetoni-

trile (AcN) was dried with P2O5, distilled on CaH2, and

kept with molecular sieve.[8]

RESULTS AND DISCUSSION

Not surprisingly, the spectral properties of 8 as

free ligand are identical with those of 7. As seen in

Fig. 1, in acetone, only the enol (E) tautomer

(Scheme 1) exists, exhibiting a strong band c.

400 nm.[9] In proton donor and=or polar solvents, a

low intensive band c. 500 nm, belonging to the keto

(K) tautomer, is observed. In general, the content of

the keto tautomer is low as it is in the related azo-

naphthols (1) with electron donative substituent in

the phenyl ring.[2]

Herzfeld and Nagy[10] showed that the addition of

CaCl2 in absolute ethanol leads to change in the posi-

tion of the tautomeric equilibrium in some Schiff

bases. Similar, weaker effects are observed upon

addition of various alkali and alkaline earth salts.

As seen from Fig. 2, the addition of NaClO4,

Mg(ClO4)2, or Sr(ClO4)2 to solution of 7 causes

changes in the intensities of the E (decrease) and K

(increase) maxima. The tautomeric equilibrium is

most sensitive to addition of Mg2þ in dry AcN. In

chloroform, such changes are observed only in

presence of Mg(ClO4)2. In addition, the shift in

the tautomeric equilibrium is not instantaneous:

The system reaches equilibrium in the frame of days.

Up to now, the effect of the alkali and alkaline earth

metal ions on the tautomeric equilibrium has

FIGURE 1 Absorption spectra of 7 (C¼1.90 �10�5mol=l) in etha-

nol (þ þ þ), CHCl3 (— — —), CH3COCH3 (o o o), and AcN (········).

FIGURE 2 Absorption spectra of 7 in dry AcN (——, c¼
6.90 � 10�5mol=l) with addition of Mg(ClO4)2 (

444

, c¼
2.15 � 10�6mol=l), Sr(ClO4)2 (&&&, c¼8.50 � 10�5mol=l), and

NaClO4 (444, c¼ 3.13 �10�5mol=l).
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remained unexplained[10,11] and has had to be taken

into account in the study of the complexation of 8.

Consequently, in the case of 8, two competitive

processes could be expected with addition of metal

perchlorate: complex formation, involving the

A15C5 moiety, and shift in the tautomeric equili-

brium toward the K form as result of the metal-salt

addition. According to the spectral changes caused

upon addition, the alkali and alkaline earth ions

can be divided (see Scheme 3 for overall description

of the processes):

4. no spectral changes at all: Be2þ;

5. appearance and simultaneous rise of intensive

absorption maximum at 360 nm and low intensive

band at 460 nm (Fig. 3): Liþ and Naþ;

6. initial appearance of aforementioned maxima fol-

lowed by a decrease of intensity of the band at

360 nm and raise of the band at 460 nm with

further addition of the salt (Figs. 3 and 4): Ca2þ,

Sr2þ and Ba2þ;

7. increase of intensity of already existing maximum

of the keto form at 500 nm, that is, no complexa-

tion (compare Figs. 2 and 4): Mg2þ.

Initially the spectral changes in all metal ions,

except Mg2þ, are equivalent (Fig. 3): appearance of

new bands at 360 nm and 460 nm and rise of their

intensity upon salt addition. Simultaneously there is

decrease of the existing bands at 400 and 500 nm

as seen in second derivative spectra of 8 (Fig. 5).

Upon further addition of the perchlorate in the case

of Ca2þ, Sr2þ and Ba2þ, the intensity of the band at

360 nm reaches maximum and begins to decrease.

At the same time, an elevation of the band at

460 nm is observed (Fig. 4).

The observed spectral changes suggest that the

complexation and the change in the tautomeric equi-

librium proceed consecutively (Scheme 3). Initially,

upon addition of the metal salt, both tautomers of

8 individually bind the metal ions without a change

in the position of the tautomeric equilibrium. In

the complex, the nitrogen atom from A15C5 is

involved,[7] effectively leading to its switch-off from

the chromophore tautomeric system. Hence, the

absorption spectra of the complexes of the tautomers

should be the same as in 6, where there is no substi-

tuent in the phenyl ring. Actually it is observed in

Fig. 6: The absorption maxima of 6 in dry AcN are

at 360 nm (E form) and 460 nm (K form), and with

addition of Sr(ClO4)2 the content of the keto tauto-

mer increases. After 8 has been fully consumed as

a free ligand, the excess of the metal salt leads to shift

of the tautomeric equilibrium toward the keto tauto-

mer complex (8K0). In the frame of such a scheme,SCHEME 3 Complexation and tautomerism in 8.

FIGURE 3 Complex formation according to Scheme 3: Absorp-

tion spectra of 8 in dry AcN (——, c¼1.72 �10�5mol=l) with

addition of LiClO4 (OOO, c¼ 1.85 � 10�4mol=l), NaClO4 (444,

c¼ 9.80 � 10�4mol=l), Ba(ClO4)2 (^^^, c¼2.30 � 10�5mol=l),

Ca(ClO4)2 (���, c¼3.06 � 10�6mol=l), and Sr(ClO4)2 (&&&, c¼
4.10 � 10�6mol=l).
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the interactionwith Liþ andNaþ is limited in the process

of complexation due to their weaker binding ability

with A15C5.[4] In the case of Ca2þ, Sr2þ, and Ba2þ,

whose sizes correspond to A15C5 cavity, the effective

complexation leads to full consumption of the free

ligand, and the further salt addition changes the equili-

brium between the tautomeric complexes 8E0 and 8K0.

The complexity of the processes in solution and

the lack of instantaneous shift of the equilibria do

not allow us to estimate the corresponding equili-

brium constants with acceptable precision. In gen-

eral, we can conclude that the complexation ability

of the new ligand 8 toward alkaline earth metal ions

is larger than that toward alkali ions. However, the

curves on Fig. 3, showing the maximal changes

achieved under addition of the metal salt and attrib-

uted to the complex formation, could be used as

indication of the binding ability of the ligand toward

the metal ions. Taking into account the concentra-

tions of the metal salts, which lead to final complex

formation (no further changes related to complexa-

tion), we can conclude the following order of

increase of the stability constants of the complexes

between ligand 8 and the metal ions: Naþ< Liþ<

Ba2þ< Sr2þ�Ca2þ, in accordance with the pre-

viously reported best complexation ability of A15C5

toward Ca2þ.[4,12]

FIGURE 5 Second derivative spectra of 8 (- - - , c¼3.20 .10�5

mol=l) with stepwise addition of Sr(ClO4)2 c¼2.00 � 10�7mol=l,

c¼ 4.00 �10�7mol=l, c¼ 8.00 �10�7mol=l, 2.00 �10�6mol=l, 4.10 �
10�6mol=l, 8.10 � 10�6mol=l, 2.43 � 10�5mol=l, 4.00 �10�5mol=l,

8.10 �10�5mol=l, c¼1.62 �10�4mol=l (—).

FIGURE 6 Absorption spectra of 6 in dry AcN (—, c¼ 4.50 �
10�4mol=l) with addition of Sr(ClO4)2 (- - - , c¼6.68 �10�5mol=l).

FIGURE 4 Change in the position of the tautomeric equilibrium

between 8E0 and 8K0 (Scheme 3): Absorption spectra of 8 in dry

AcN (——, c¼2.60 �10�5mol=l) with further addition of Mg(ClO4)2
(

444

, c¼ 9.90 �10�5mol=l), Ca(ClO4)2 (���, c¼ 3.06 �10�5mol=l),

and Sr(ClO4)2 (&&&, c¼ 4.00 �10�5mol=l).
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CONCLUSIONS

The spectral changes upon addition of alkali and

alkaline earth metal ions in a newly synthesized

ligand where the A15C5 moiety is conjugated to a

tautomeric system were investigated. In the case of

alkali ions, a process of complexation was observed,

causing hypsochromic shift in the positions of the

tautomeric bands. The addition of Ca2þ, Sr2þ, and

Ba2þ initially leads to complex formation, but after

the free ligand has been fully consumed, a shift of

the tautomeric equilibrium toward keto tautomer

complex with the metal ion was observed with addi-

tion of excess of metal salt. The lack of instantaneous

shift of the equilibria does not allow one to estimate

the corresponding equilibrium constants with

acceptable precision, but in general we can state that

the complexation ability of the new ligand toward

alkaline earth metal ions is larger than that toward

alkali ions. This is the first discussion of the effect

of the metal-salt addition on the tautomeric equili-

brium in crown ether containing tautomeric Schiff

bases.
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