Syntheses and remarkable photophysical properties of 5-(2-pyridyl) pyrazolate boron complexes; photoinduced electron transfer[†]

Chung-Chih Cheng,^{*a*} Wei-Shan Yu,^{*b*} Pi-Tai Chou,^{**b*} Shie-Ming Peng,^{*b*} Gene-Hsiang Lee,^{*b*} Pei-Chi Wu,^{*c*} Yi-Hwa Song^{*c*} and Yun Chi^{**c*}

^a Department of Chemistry, Fu-Jen Catholic University, 242, Shin Chuang, Taiwan, ROC

^b Department of Chemistry, National Taiwan University, 106, Taipei, Taiwan, ROC

^c Department of Chemistry, National Tsing Hua University, 300, Hsinchu, Taiwan, ROC.

E-mail: chop@ccms.ntu.edu.tw; ychi@mx.nthu.edu.tw

Received (in Cambridge, UK) 5th August 2003, Accepted 28th August 2003 First published as an Advance Article on the web 12th September 2003

A new series of pyridyl pyrazolate boron complexes 2a–e have been synthesized, in which 2a–c exhibit remarkable dual fluorescence properties due to the photoinduced electron transfer reaction.

Boron complexes with conjugated light-emitting π -systems have recently received considerable attention due to their potential uses in organic light emitting devices (OLED)¹ as well as biomolecular probes.² It has been a core interest to chemically modify the ligand chromophores so that the physical properties can be fine-tuned to achieve a designated function. In this communication, we report the syntheses and photophysical studies of a new series of 5-(2-pyridyl) pyrazolate boron complexes. 5-(2-Pyridyl) pyrazole was selected because it can function as a chelating ligand upon treatment with a boron compound such as BPh₃, giving a nearly planar, conjugated π system that was perfect for studying the photoluminescent properties.

Pathways leading to the synthesis of 5-(2-pyridyl) pyrazolate boron complexes are shown in Scheme 1. The required 2'-(2-pyridyl) pyrazoles (**1a–e**) were first synthesized using methods reported in the literature.³ Subsequently, treatment of **1a–e** with BPh₃ in THF solution affords the target BPh₂ complexes **2a–e** in good yields of \geq 87%. Similar treatment of **1a** with B(C₆F₅)₃, followed by recrystallization from a solution of CH₂Cl₂ and methanol, affords a colorless crystalline solid **2f** in 48% yield.

A typical crystal structure of **2a** is depicted in Fig. 1, along with the selected metric parameters. It is notable that the boron atom has a characteristic tetrahedral geometry with angles $N(1)-B(1)-N(2) = 93.43(13)^{\circ}$ and $C(10)-B(1)-C(16) = 117.30(15)^{\circ}$. The 5-(2-pyridyl) pyrazolate ligand is chelated to the boron atom with bond distances, B(1)-N(1) = 1.629(2) Å and B(1)-N(2) = 1.570(2) Å, for which the N(1)-B dative distance is found to be distinctively longer than that of the N(2)-B distance. This observation is consistent with the structural

† Electronic supplementary information (ESI) available: Photophysical experimental details, the spectral data of all boron complexes, and crystal data of 2a. See http://www.rsc.org/suppdata/cc/b3/b309374c/

data reported in other tetrahedrally arranged BPh₂ complexes with chelating ligands of (2-pyridyl)-7-azaindole and (2-pyridyl)-7-indole derivatives.⁴ Moreover, the phenyl rings are orthogonal to the 5-(2-pyridyl)pyrazolate ligand, which is confirmed by the observation of two nearly perpendicular dihedral angles of 73.9° - 77.1° . Their overall molecular structure resembles that of the 9,9-disubstituted fluorene compounds, which have been widely used as the most promising blue-phosphor in OLED applications.⁵

As listed in Table 1 the $S_0 \rightarrow S_1 (\pi \pi^*)$ absorption spectral features of **2a–e** ($\lambda_{max} \sim 315-350$ nm) in THF reveal bathochromic shifts with respect to their free ligands **1a–e** ($\lambda_{max} \sim 290-300$ nm). The $\pi-\pi^*$ transition of **2a–e** is principally localized on the planar pyridyl pyrazolate ligands, on which the HOMOs and LUMOs are mainly located at the pyrazolate and the pyridyl sites, respectively. The B–N covalent interaction is believed to exist at the pyrazolate side of the ligand, while the other N \rightarrow B dative bonding resides at the opposite, pyridyl moiety. It is thus anticipated that the electron-deficient BPh₂ substituent would exert large stabilization on the pyridyl π system due to its electron accepting capability with respect to

Fig. 1 The X-ray crystal structure of **2a**; selected bond distances: B1-N1 = 1.629(2), B1-N2 = 1.570(2), B1-C10 = 1.596(3), B1-C16 = 1.609(3), N1-C5 = 1.352(2), N2-C6 = 1.336(2), N2-N3 = 1.336(2) Å.

Table 1 Photophysical properties of 2 in THF (298K).

Solvent FHF	$\lambda_{ m max}/ m nm^a$	PL $\lambda_{\rm max}/{\rm nm}$	$\tau/ns^b \; F_1$	$\tau/ns^b F_2$	E _a c(kcal/ mol)
2a 2b 2c	320 315 320	375, 505 365, 488 374, 512	0.53 0.42 0.50	(0.52*, 18.3) (0.38*, 14.9) (0.48*, 11.5)	1.31 1.16 1.10
2d	350	460	16.4	-	-
2e 2f	340 325	430 382	9.9 6.8	_	_

^{*a*} Data was taken from the first vibronic peak. ^{*b*} Samples were degassed *via* three freeze-pump-thaw cycles. ^{*c*} obtained from the temperature dependent study in 2MTHF.* denotes the rise time

2628

that of the covalent characteristics of the pyrazolate fragment, resulting in significant red-shift from the corresponding **1a–e** ligands.

2d and 2e exhibited strong, single fluorescence maximized at 460 and 430 nm, respectively in THF (see Fig. 2 for 2e). Similar results were observed in the solid crystal. Conversely, while the solid crystal of 2a-c showed only one emission centered at 382, 360 and 370 nm, respectively, dual emission was observed in solution, consisting of a normal emission band (2a: 375, 2b: 365 and 2c: 374 nm, the F_1 band) and an anomalously large Stokes shifted emission (2a: 505, 2b: 488 and 2c: 512 nm, the F₂ band) in THF. The excitation spectra for both F_1 and F_2 bands are identical, which are also effectively the same as the absorption profile, excluding its origin from traces of impurity. In contrast to the nearly solvent independent F_1 emission frequency, the fluorescence peak frequency for the F_2 band was linearly proportional to solvent polarity (Δf) . † Accordingly, a change of dipole moment of ~ 6.6 Debye between ground and excited states was deduced.

Further insight into the correlation of dual emission properties was gained from the dynamic studies. As shown in Table 1 the lifetime of the F₁ band for **2a** was fitted to be ~0.53 ns (χ^2 = 1.02) at 298 K, while the F₂ band is apparently composed of rise and decay components that were fitted to be 0.52 ns and 18.3 ns, respectively (χ^2 = 1.05). The rise time of the F₂ band, within experimental error, is identical with the decay time of the F₁ band, supporting a precursor-successor type of relaxation mechanism. As shown in Fig. 3, the F₁/F₂ ratio for **2a** increased upon decreasing the temperature. The reaction rate monitored by the decay dynamics of the F₁ band or equivalently the rise dynamics of the F₂ band revealed significant temperature dependence (see insert of Fig. 3). Similar dual emission and precursor-successor related dynamics were also obtained for **2b** and **2c** and the results are listed in Table 1.

The above results can plausibly be rationalized by a mechanism incorporating a photoinduced electron transfer (ET) process from the phenyl moiety to the pyrazolate ligand. The separations from the center of two phenyl fragments to the center of pyridyl and pyrazolate ring systems are estimated to be 4.6–4.7 Å and 4.9–5.0 Å, respectively. These lengths are significantly shorter than the typical distance (~7 Å) that allows the occurrence of through-space electron transfer. The reduction peak potential of 5-(2-pyridyl) pyrazolate complexes **2a-b** and **2d-e** occurred at -1.67, -1.72, -1.76 and -1.86 V, respectively in CH₃CN. The decrease of reduction potential correlates well with the trend of electron withdrawing properties of substituents at the pyrazolate ligand. The result, in combitaion with the increase of the absorption energy gap being in the order of $2a \sim 2b \sim 2c > 2d$, 2e, qualitatively rationalizes the occurrence of ET in 2a-c. To further support for the phenyl ring acting as an electron donor in the proposed ET mechanism we also synthesized **2f** in which the absorption gap is similar to **2a**, whereas the phenyl ring is replaced by a perfluorophenyl moiety

Fig. 2 Emission spectra of (a) 2a (-**■**-), (b) 2b (-**●**-), (c) 2c (-**▲**-), (d) 2e (-**▼**-) and (e) 2f (-**□**-) in THF.

Fig. 3 Temperature-dependent emission spectra of 2a in 2MTHF at 298–150 K. Insert: The plot for $\ln(k_{ot})$ versus the reciprocal of temperatures.

to increase the relative oxidation potential. As a result, ET process is prohibited in 2f, as indicated by a unique, normal emission band maximum at 382 nm (see Fig. 2).

The drastic difference in photophysics between single crystal (single, normal emission) and solution phase (dual emission) in **2a–c** is intriguing. The logarithm plot of the ET rate⁶ vs. 1/T is sufficiently linear (insert of Fig. 3), from which a barrier of 1.31 kcal mol⁻¹ and a frequency factor of $1.88 \times 10^{10} \text{ s}^{-1}$ were deduced for 2a. The E_a value obtained for 2a-c (see Table 1) is on a similar magnitude as the viscosity barrier (~1.82 kcal mol⁻¹) in 2-methyltetrahydrofuran (2MTHF), indicating that certain large amplitude motions may couple with the ET process. Both X-ray and AM1 approaches indicate that the phenyl rings are nearly orthogonal to the (2-pyridyl) pyrazolate ligand in 2a-f, of which the configuration may prohibit the ET process.[‡] It is thus tentatively proposed that in solution phase the ET mechanism may incorporate rotation of the phenyl ring to an optimum oreintation so that a through-space ET reaction can take place.

Due to the straightforward syntheses of boron complexes it is feasible to adjust the D/A strength so that the degrees of chargetransfer interactions and consequently the luminescence efficiency can be fine-tuned. An ideal boron-ligands system for devices may exhibit both LE and CT emissions covering an entire white-light region. Work on other systems such as imidazoles and triazoles is currently in progress.

Notes and references

CCDC 201833. See http://www.rsc.org/suppdata/cc/b3/b309374c/ for crystallographic data in .cif or other electronic format.

- (a) Q. Wu, M. Esteghamatian, N.-X. Hu, Z. Popovic, G. Enright, Y. Tao, M. D'Iorio and S. Wang, *Chem. Mater.*, 2000, **12**, 79; (b) Y. Li, Y. Liu, W. Bu, J. Guo and Y. Wang, *Chem. Commun.*, 2000, 1551; Y. Liu, J. Guo, H. Zhang and Y. Wang, *Angew. Chem., Int. Ed.*, 2002, **41**, 182.
- For example, see:(a) T. D. James, K. R. A. S. Sandanayake and S. Shinkai, *Angew. Chem., Int. Ed.*, 1996, **35**, 1910; (b) K. Rurack, M. Kollmannsberger and J. Daub, *Angew. Chem., Int. Ed.*, 2001, **40**, 385; (c) N. DiCesare and J. R. Lakowicz, *J. Phys. Chem.*, 2001, **105**, 6834; (d) W. Yang, H. He and D. G. Drueckhammer, *Angew. Chem., Int. Ed.*, 2001, **40**, 1714; (e) J. Killoran, L. Allen, J. F. Gallagher, W. M. Gallagher and D. F. O'Shea, *Chem. Commun.*, 2002, 1862.
- 3 (a) A. Satake and T. Nakata, J. Am. Chem. Soc., 1998, **120**, 10391; (b) W. R. Thiel and J. Eppinger, Chem. Eur. J., 1997, **3**, 696.
- 4 (a) S.-F. Liu, Q. Wu, H. L. Schmider, H. Aziz, N.-X. Hu, Z. Popovic and S. Wang, J. Am. Chem. Soc., 2000, **122**, 3671; (b) Q. Liu, M. S. Mudadu, H. Schmider, R. Thummel, Y. Tao and S. Wang, Organometallics, 2002, **21**, 4743.
- 5 For example, see:(*a*) U. Mitschke and P. Bauerle, *J. Mater. Chem.*, 2000, 10, 1471; (*b*) A. J. Campbell, D. D. C. Bradley, T. Virgili, D. G. Lidzey and H. Antoniadis, *Appl. Phys. Lett.*, 2001, 79, 3872.
- 6 $k_{\rm et}$ was deduced by $k_{\rm obs} k_{\rm nr}$. The $k_{\rm obs}$ value for **2f** was taken as $k_{\rm nr}$ due to its non-ET process. Note $lnk_{\rm et}T^{1/2}$ vs. 1/T is also sufficiently linear mainly due to the much larger $k_{\rm et}$ value.