Direct and Stereoselective Synthesis of 1,3-cis-3-Arylsulphonaminodeoxydisaccharides and Oligosaccharides

Feiqing Ding, Ronny William, Shuting Cai, Jimei Ma, and Xue-Wei Liu*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

Supporting Information

ABSTRACT: The 3-aminoglycosides are ubiquitous in biologically important classes of glycoconjugates and naturally occurring oligosaccharides. Despite the rapid growth in the development of synthetic method of 3-amino glycosides, the current state-of-the art suffers from limited substrate scope, low yields, long reaction times, and anomeric mixtures. This work presents a novel direct method for the synthesis of 1,3-*cis*-3-arylsulphonaminodeoxydisaccharides and oligosaccharides via α -selective glycosylation and hydroamination of glycal in a one-pot manner. This efficient multicomponent reaction methodology provides ready access to 1,3-*cis*-3-arylsulphonaminodeoxydisaccharides and allows derivatization by variation of each component.

INTRODUCTION

2,3-Di- and 2,3,6-trideoxyaminosaccharides are key components of many biologically active natural products,¹ and their synthesis is particularly challenging.² Significant attention has been placed on them over the past years as they constitute important elements in many pharmacological compounds. Noteworthy, their roles in aminodeoxy di- and oligosaccharide anthracycline antibiotics such as daunosaminyl daunosamine, rubomycin, marcellomycin, and aclacinomycin has been one of the main focus in recent years (Figure 1).³ The synthesis of 3amino-2,3-dideoxyglycosides with linkages to other sugar residues via either 1,3-*cis*- or 1,3-*trans*-3-amino *O*-glycosidic bonds have attracted growing interest due to their broad spectrum of applications in chemistry, medicine, and pharmaceutical fields.⁴

Stereocontrolled glycosylation in the assembly of glycosidic bonds in deoxysugar derivatives is inherently difficult to achieve because of the lack of stereodirecting substituents at C2.⁵ Therefore, many advances in the synthesis of 3-aminodeoxyglycosides in the past decades have predominantly focused on the stereoselective formation of glycosidic bond.⁶ However, the development of reliable methods for stereoselective construction of both α - and β -deoxyglycosides remains a challenging area of research. Although the α -deoxyglycosides are relatively more accessible than the β -anomers because of the anomeric effect, glycosylation of 2-deoxyglycosides under acidic conditions frequently provides a mixture of both anomers. In addition, the routinely used methods for the synthesis of 1,3-*cis*-3-aminodeoxydisaccharides and oligosaccharides employ an indirect approach whereby the glycosyl donors possess a protected heteroatom at C2 that directs facial selectivity of the reaction, and the protecting group can be cleaved at later stage.⁷

Our interest in drug discovery motivated us to devise new methodologies for the aminosugar syntheses.⁸ Recently, we derived a strategy for ready access to 3-arylsulphonamino-2,3dideoxysugars via regio- and stereoselective tandem hydroamination/glycosylation of glycal.9 In conjunction with our previous work, herein, we wish to report a direct and reliable synthetic approach that provides 1,3-cis-3-arylsulphonamino-2,3-deoxydisaccharides and oligosaccharides with not only exclusive anomeric stereoselectivity, but also a wide range of derivatization. We envisaged a straightforward synthesis of 1,3cis-3-arylsulphonamino-2,3-dideoxyglycosides by a three-component reaction of the glycosyl donor, glycosyl acceptor, and sulfonamide/carbamate in a one-pot manner. This methodology involves regio- and stereoselective tandem hydroamination/glycosylation on the protected glycal scaffold (Figure 2).

RESULTS AND DISCUSSION

We first sought to examine the feasibility in constructing the *N*-protected 1,3-*cis*-3-aminodeoxydisaccharides through a one-pot three-component reaction. In our initial studies, treatment of glycosyl donor 3,4,6-tri-*O*-acetyl-D-glucal (1a), glucose acceptor (2a) and *p*-toluenesulfonamide (3a) with 1.1 equiv of BF₃·OEt₂

 Received:
 August 6, 2011

 Published:
 May 31, 2012

Figure 2. Quick access to 1,3-cis-3-arylsulphonaminodeoxyglycosides via regio- and stereoselective tandem hydroamination/glycosylation of glycols.

A AcO AcO-	HO + HO + HO + HO + HO + HO	TsNH ₂ $\xrightarrow{\text{Promoter}}$ TsNH ₂ $\xrightarrow{\text{AcO}}$ $\text{AcO$	
		Ja 4a	
entry	promoter (equiv)	solvent	yield (%)
1	$BF_3 \cdot OEt_2$ (1.1)	DCE	19
2	TMSOTf (2.2)	DCE	trace
3	$SnCl_4$ (2.2)	DCE	trace
4	TsOH (2.2)	DCE	_c
5	$Cu(OTf)_2$ (2.2)	DCE	_
6	$BF_3 \cdot OEt_2$ (2.2)	DCE	68
7	$BF_3 \cdot OEt_2$ (2.2)	toluene	61
8	$BF_3 \cdot OEt_2$ (2.2)	THF	n.r. ^d
9	$BF_3 \cdot OEt_2$ (2.2)	MeCN	26

Table 1. Optimization of Reaction Conditions for Selective Formation of 1,3-cis-3-Arylsulphonaminodeoxydisaccharides^a

^{*a*}Reaction conditions: donor 1a (1 equiv), acceptor 2a (1.1 equiv), and TsNH₂ 3a (1.1 equiv) were mixed together in 2 mL/0.1 mmol of solvent under N₂ atmosphere, and finally promoter was added, 25 °C, 15 min. ^{*b*}Isolated yield. ^{*c*}Complex mixture. ^{*d*}No reaction.

in 1,2-dichloroethane (DCE) at room temperature for 15 min provided the desired 1,3-*cis*-3-tosylaminodeoxydisaccharide 4a in 19% yield (Table 1, entry 1). The structural and stereochemical characterization of 4a was determined by extensive NMR studies (¹H NMR, ¹³C NMR, COSY, HMQC, HMBC, NOESY, see the Supporting Information). Although the glycosylation reaction resulted in poor yield, the desired disaccharide 4a was isolated with exclusive α -selectivity. Further optimization revealed that an increase in promoter loading (2.2 equiv) led to an increase in the yield of 4a to 68% (Table 1, entry 6). In addition, trace amount of the desired disaccharide 4a was detected when the model glycosylation reaction was conducted in the presence of stronger Lewis acids such as TMSOTf (2.2 equiv) and SnCl₄ (2.2 equiv). On the other hand, the use of Lewis acid Cu(OTf)₂ as the glycosylation promoter did not result in the desired product (Table 1, entries 2, 3, and 5). Furthermore, a complex mixture of products was obtained in the presence of 2.2 equiv of strong Brönsted acid TfOH (Table 1, entry 4). Solvent screening demonstrated that DCE was the optimal solvent for the effective assembly of glycosidic linkage via this one-pot strategy (Table 1, entries 6–9). These results indicated that the optimal condition is employing 2.2 equiv of BF₃·OEt₂ with anhydrous DCE as solvent at room temperature for 15 min. It is noteworthy that the present one-pot methodology is operationally simple, and more importantly, the product in all cases was obtained as a pure diastereomer.

With the optimized condition in hand, we investigated versatility of the method by preparation of α -linked deoxyglycosides composing of various *N*-protected 2,3-dideoxy- and 2,3,6-

Article

			چ	3 + HO GPO	0 + R ¹	NH2 2	BI	F₃•OEt₂ ., rt, 15	2 min	R ¹ .NH O GPO	
Entry	/ 1	2	3	Product ^b	Yield(%) ^c	Entry	1	2	3	Product ^b	Yield(%) ^c
1	1a 1a 1b	2a 2b 2a	3 a	$\begin{array}{c} R^{1}O & \\ R^{1}O & \\ R^{1}O & \\ T_{S} & R^{2}O \\ 4a, R^{1} = Ac, R^{2} = Bn \\ 4b, R^{1} = Ac, R^{2} = Me \\ 4c, R^{1} = Piv, R^{2} = Bn \end{array}$	68 (4a) 69 (4b) 59 (4c)	9	1e	2d	3a	Ts O BnO Me Acology 4k	58
2	1 a	2c	3 a	Aco Aco Ts-NH Aco Aco Aco Aco Aco Aco Aco Aco Aco Aco	86	10	1a	2a	3b 3c	AcO ACO R. NH B_{DO} 4 a, R = Ns BRO 4 b, R = Ms B nO B nO B nO Me	69 (4la) 61 (4lb)
3	1a	2d	3 a	ACO ACO Ts ^{-NH} BNO 4e BNO Me	54			2g 2h		Accorded Acc	71 (4ma) 62 (4mb)
4	1a	2e	3a	AcO AcO Ts NH BzO Af BzO OMe	47	11	1f	2i 2j 2k	3a	4ma, R = Bn Ts 4mb, R = All 4mb, R = All 4mc, R = Propargyl 4n R = $-\frac{1}{2}$	67 (4mc) 55 (4n) 48 (4o)
5	1a	2f	3a	Aco Aco Ts ^{-NH} S OAc 4g Aco	53	12	1f	2a	3a	Aco Aco Aco Aco Aco Aco Aco Aco Aco Aco	46
6	1c	2a 2b	3 a	Aco Aco Ts NH O RO $^$	51 (4ha) 56 (4hb)	13	1f	2d	3a	Aco Aco Aco Aco Aco Aco Aco Aco Aco Aco	44
7	1d	2a	3 a	Aco OF OBn Aco OF OBn Aco OF OBn Aco OF OBn Aco OF OBn OBn Ai	81	14	1f	2e	3a	ACO ACO TS ^{NH} BZO BZO Me	43
8	1e	2a	3a 3d	AcoToH 4ja, R ₁ = Ts 4jb, R ₁ = Cbz	75 (4ja) 64 (4jb)	15	1g	2a	3a	Aco OAc Aco Aco Aco Ts NH O Bno Do 4s Bno OMe	54
,	Donor AcO 1a AcO AcO 1a	,OAc 		Piv Aco OAc	Aceptor RO OME 2a, R = Bn 2b, R = Me OAc AcO OAC ACO SH OAC 2f	AcO AcO BnOH 2c 2c 2c 2c 2c 2c 2c 2c 2c 2c 2c 2c 2c	DH C			$\begin{array}{c} OH OBz \\ OBz \\ OH \\ OH \\ OH \\ OH \\ Ch \\ 2k \\ 2k \\ 3a \\ 0H \\ OH \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \overset{O}{\underset{O}{\overset{O}{\overset{O}{\underset{O}{\overset{O}{\overset{O}{\overset{O}{\underset{O}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}{\overset{O}{{O}}{$

Table 2. Substrate Scope Studies for BF₃·OEt₂-Promoted Three-Component α -Selective Glycosylation^{*a*}

^{*a*}Reaction conditions: donor 1 (1 equiv), acceptor 2 (1.1 equiv), and 3 (1.1 equiv) were mixed together in 2 mL/0.1 mmol of DCE under N₂ atmosphere, and finally BF₃·OEt₂ (2.2 equiv) was added, 25 °C, 15 min. ^{*b*}All products were characterized by ¹H NMR, ¹³C NMR, IR, and HRMS. ^{*c*}Isolated yield.

trideoxy-1,3-cis-3- aminodisaccharides and oligosaccharides 4a-4s (Table 2). We found that a combination of 2D NMR

spectroscopy methods such as COSY, HMQC, HMBC, NOESY (see the Supporting Information) is critical in

determining the structural and stereochemical outcome of the reaction. For example, the structure of product **4b** as shown in Figure 3 was analyzed from the result of such NMR studies. On

Figure 3. Selected data of ¹H NMR and NOESY for 1,3-*cis*-3-tosylaminodeoxydisaccharide 4b.

the basis of the COSY spectrum, we were able to assign each individual peak to the corresponding protons of the product. Appearance of small coupling constants $J_{\rm H1-H2}$ of 2.8 Hz for anomeric proton H-1 signal at δ 4.91 in ¹H NMR is diagnostic for α -linked glycosides. NOESY experiments further confirmed the stereochemical assignment at C1 and C3 position on the basis of observed correlation for N–H/H-5 and H-2a/H-4. In contrast, no correlation was observed in the signals for H-1/N–H or H-1/H-3. These results indicated that the newly introduced sulfonamido group and glycosyl acceptor are in *cis* configuration and the α -glycosyl linkage was formed.

The glycosylation of glucosides 2b and 2c, which possess free hydroxyl groups at C6 position, with 3,4,6-tri-O-acetyl-D-glucal (1a) and *p*-toluenesulfonamide (3a) under the optimized condition afforded the corresponding 1,3-cis-3-tosylamino-2,3deoxydisaccharides 4b and 4c in 69 and 86% yield, respectively (Table 2, entries 1, 2). Pivaloyl protected glycals also gave the desired product 4c in moderate yield under standard conditions. The possibility of secondary alcohol as viable nucleophilic glycosyl acceptor was also investigated. Accordingly, glycosylation of glycosides 2d and 2e possessing hydroxyl groups at C4 with glucal donor (1a) and *p*-toluenesulfonamide provided disaccharides 4e and 4f as pure α -isomers in poor yields (Table 2, entries 3, 4). When glucose thiol 2f was employed as the glycosyl acceptor, the corresponding S-linked deoxyglycoside 4g was obtained in slightly lower yield (Table 2, entry 5). Importantly, the α -linked 3-arylsulphonamino-2,3deoxydisaccharides did not decompose under the reaction conditions. In our protocol, we found that aromatic and aliphatic sulfonamides such as TsNH2, NsNH2, and MsNH2 worked particularly well for this reaction and provided the corresponding products in good yields and are anomerically pure (Table 2, entry 10). In the same manner, the reaction with benzyl carbamate (CbzNH₂) proceeded smoothly to afford the

corresponding 3-benzyloxycarbonylamino-2,3-dideoxydisaccharide 4t in moderate yields (Table 2, entry 8). Hydrogenolysis of the benzyloxycarbonyl (Cbz) group in the resulting product is expected to liberate the amino group.^{9b} For example, removal of the acetyl group by treating 3-benzyloxycarbonylamino-2,3-dideoxydisaccharide 4jb with NaOMe in methanol, followed by direct removal of the Cbz group through treatment with Pd/C under H₂ provided 3-amino-2,3-deoxydisaccharide 6 in 74% with exclusive stereo- and regioselection (Scheme 1). We next examined the glycosylation of 2a with a variety of glycosyl donors 1c-1e under BF₃·OEt₂-mediated conditions. All the reactions afforded the expected arylsulphonaminodeoxydisaccharides 4h-4k in moderate to good yields with exclusive α -selectivity (Table 2, entries 6–9). Similarly, N-protected 3amino-2,3-dideoxydisaccharides 4ma and 4mb were prepared by the treatment of disaccharides donor 1e with nucleophiles 2g and 2h bearing primary hydroxyl moieties (Table 2, entry 11). With this expedient protocol, we synthesized L-menthol glucoside 4n in 55% yield (Table 2, entry 11), which exemplifies a common 3-arylsulphonamino-2,3-dideoxydisaccharide motif appended to biologically important natural products. To demonstrate that the current method can be employed for oligosaccharide synthesis, a number of deoxytrisaccharides 4p-4s were prepared from disaccharide donors hex-O-acetyl-D-maltal (1f), hex-O-acetyl-D-lactal (1g), and acceptors (Table 2, entries 12-15). Further exploration revealed that a more armed donor 1h in which the hydroxyl group at C-4 and C-6 was protected by benzyl group failed to provide the desired N-protected 1,3-cis-3-aminodisaccharide (Scheme 2). To the best of our knowledge, the $BF_3 \cdot OEt_2$ -

Scheme 2. Three-Component Reaction with More Armed Donor 1h

promoted one-pot α -selective tandem hydroamination/glycosylation is the first example of a direct and stereoselective synthesis of *N*-protected 2,3-dideoxy- or 2,3,6-trideoxy-1,3-*cis*-3-aminodisaccharides and oligosaccharides.

In our initial attempt to probe the reaction mechanism, we found that when C-3 epimer of 3,4,6-*tri*-O-acetyl-D-glucal **1i** was reacted under the same reaction conditions, the disaccharide formed was of the same configuration as that obtained from the corresponding D-glucal in 64% yield (Scheme 3). This observation implies that both acetyl protected D-glucal and its epimer led to a common reactive intermediate that eventually converged to the resulting

Scheme 1. Deprotection of 3-Benzyloxycarbonylamino-2,3-dideoxydisaccharide 4jb to Synthesize 3-Amino-2,3-dideoxydisaccharide 6

Scheme 3. Three-Component Reaction with More Armed Donor 1i

Scheme 4. Proposed Reaction Mechanism

disaccharide. The use of $TMSN_3$, which lacks acidic hydrogen, did not result in desired product formation. Additionally, when secondary sulfonamide ($TsNHCH_3$) was employed as one of the nucleophiles, no desired disaccharide was obtained as well.

The diastereofacial selectivities observed in the absence of a directing group at C2 position is novel and prompted us to look into the mechanistic cause. Though a detailed mechanism of the present protocol still awaits further studies, a plausible pathway is postulated (Scheme 4). One possibility is that the reaction proceeds through allyloxocarbenium ion intermediate 7. Preferential attack of N-nucleophile occurs from stereoelectronically favored α face of the presumably almost planar conformation of the allyloxocarbenium intermediate to generate 8. Rapid proton transfer follows to generate the corresponding oxocarbenium ion. Subsequently, nucleophilic addition of carbohydrate oxygen or sulfur nucleophiles to the oxonium ion proceeds readily to furnish the desired product with high stereo- and regioselectivity. The observed α -anomeric selectivity can reasonably be explained by considering addition of O-nucleophile to the stereoelectronically preferred face of the more stable conformer.¹⁰ The facial selectivity might be further reinforced by possible effective coordination (hydrogen bonding) between the nitrogen and the incoming Onucleophile (ROH) as shown in structure 9.9,11 In this way, the carbohydrate alcohol or thiol is directed to attack pseudoaxially from the same face of the oxocarbenium ion on the C1 carbon to furnish the thermodynamically favored 1,3-cis α -isomer.

CONCLUSION

In conclusion, we have described a highly efficient direct and stereoselective one-pot procedure for assembly of *N*-protected 1,3-*cis*-3-aminodeoxydisaccharides and oligosaccharides via $BF_3 \cdot OEt_2$ -promoted hydroamination and α -selective glycosylation on glycal scaffold. This multicomponent reaction protocol offers simplicity over the conventional indirect method and the

exclusive stereoselectivity facilitated the purification to a great extent. Additionally, the method works with a broad range of disarmed sugars, and primary amines make derivatization possible. Because of the aforementioned advantages, the present methodology is believed to be able to find broad applications in glycochemistry.

EXPERIMENTAL SECTION

General Experimental Procedures. All solvents were distilled under nitrogen from the following drying agents immediately before use: tetrahydrofuran (THF) was distilled from sodium/benzophenone ketyl; dichloromethane and 1,2-dichloroethane were distilled from calcium hydride. BF3:OEt2 was distilled from calcium hydride before use. The 3,4-di-O-acetyl-6-deoxy-L-glucal (1a), glycosyl acceptor 2e, 2g-2k, and N-containing nucleophiles 3a-3d were purchased from commercial suppliers and used without further purification. Glycosyl acceptor 1b-1i and glycosyl acceptor 2a-2d, 2f were prepared according to literature reported procedure.¹² The promoters were purchased from commercial suppliers and used without further purification. Analytical thin layer chromatography (TLC) was performed using precoated silica gel plate. Visualization was achieved by UV light (254 nm) and/or KMnO₄ stain. Flash chromatography was performed using silica gel and a gradient solvent system (EtOAc/ hexane as eluent). NMR spectra were recorded at room temperature on Bruker ACF 300, Bruker DPX 400, Bruker AMX 500, and JEOL ECA 400 NMR spectrometers. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as follows: s (singlet), bs (broad singlet), d (doublet), t (triplet), dd (doublet of doublets), or m (multiplet). The number of protons (n) for a given resonance is indicated by nH, and coupling constants are reported in Hz. High resolution mass spectra (HRMS) were recorded on Waters Q-Tof premier mass spectrometer.

General Procedure for Synthesis of 1,3-*cis*-3-Arylsulphonaminodeoxydisaccharides and Oligosaccharides 4. To a solution of glycosyl donor 1 (0.1 mmol, 1.0 equiv) and nitrogen nucleophiles 3 (1.1 equiv) in DCE (2 mL, dry) was added glycosyl acceptor 2 (1.1 equiv) under N₂ atmosphere. BF₃·OEt₂ (2.2 equiv) was then added to this mixture. The reaction mixture was stirred for 15 min at room temperature, quenched with saturated NaHCO₃ (3 mL) and subsequently extracted with CH_2Cl_2 (3 × 5 mL). The extract was dried and concentrated. The residue was subjected to column chromatography (silica gel, hexane/EtOAc) to obtain pure 1,3-*cis*-3-arylsulphonaminodeoxydisaccharides or oligosaccharides 4.

Characterization of 1,3-cis-3-Tosylaminodeoxydisaccharide (4a). Compound 4a (gummy liquid, 57 mg, 68% yield) was prepared according to the general procedure from glycosyl donor 1a (27.2 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and ptoluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $\left[\alpha\right]_{20}^{D}$ = +45.2 (*c* 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.65 (d, J = 8.4 Hz, 2H), 7.23-7.39 (m, 17H), 6.08 (d, J = 9.2 Hz, 1H), 5.02 (d, J = 11.2 Hz, 1H), 4.95 (d, J = 10.8 Hz, 1H), 4.77-4.84 (m, 3H), 4.69-4.74(m, 2H), 4.62 (dd, J = 10.4, 3.6 Hz, 1H), 4.56 (d, J = 11.2 Hz, 1H), 4.26 (dd, J = 13.6, 4.8 Hz, 1H), 4.15 (m, 2H), 4.05 (t, J = 9.2 Hz, 1H), 3.81-3.91 (m, 1H), 3.70-3.75 (m, 1H), 3.72 (m, J = 11.2, 4.4 Hz, 1H), 3.55-3.58 (m, 2H), 3.46 (s, 3H), 3.34 (t, J = 9.2 Hz, 1H), 2.39(s, 3H), 2.07 (s, 3H), 2.02 (s, 3H), 1.80 (td, J = 10.4, 3.6 Hz, 1H), 1.52 (dd, J = 9.6, 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.7, 170.5, 143.3, 138.6, 138.1, 138.0, 137.9, 129.8, 128.5, 128.4, 128.3, 128.1, 128.01, 127.95, 127.92, 127.8, 127.7, 126.8, 97.9, 97.2, 81.8, 80.0, 78.6, 75.8, 75.3, 73.3, 69.3, 67.2, 66.8, 64.5, 62.6, 55.6, 47.9, 32.6, 21.5, 21.0, 20.8; IR (CHCl₃) 3426, 3024, 2932, 1744, 1643, 1450, 1366, 1242, 1157, 1057, 756 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C45H53NO13SNa 870.3142, found 870.3135.

1,3-cis-3-Tosylaminodeoxydisaccharide (4b). Compound 4b (gummy liquid, 43 mg, 69% yield) was prepared according to the general procedure from glycosyl donor 1a (27.2 mg, 0.1 mmol), glycosyl acceptor 2b (26 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +46.3 (c \ 1.0 \ CHCl_3); {}^{1}H$ NMR (CDCl₃, 400 MHz) δ 7.68 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 6.11 (d, J = 8.8 Hz, 1H), 4.91 (d, J = 2.8 Hz, 1H), 4.87 (d, J = 3.6 Hz, 1H), 4.65 (dd, J = 10.4, 3.6 Hz, 1H), 4.21-4.33 (m, 3H), 3.90-3.93 (m, 1H), 3.79 (dd, J = 10.0, 6.4 Hz, 1H), 3.68-3.72 (m, 1H), 3.64 (s, 3H), 3.62-3.53 (m, 1H), 3.57 (s, 3H), 3.50-3.53 (m, 1H), 3.55 (s, 3H), 3.47 (s, 3H), 3.19 (dd, J = 9.6, 3.6 Hz, 1H), 2.97 (t, J = 9.2 Hz, 1H), 2.42 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H), 1.82 (dt, J = 14.8, 3.6 Hz, 1H), 1.52 (dd, J = 14.8, 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.7, 170.5, 143.3, 138.1, 129.8, 126.8, 97.3, 97.2, 83.3, 81.8, 80.4, 69.4, 67.0, 66.9, 64.5, 62.7, 60.9, 60.7, 59.0, 55.5, 48.0, 32.6, 21.5, 21.05, 20.8; IR (CHCl₃) 3426, 2947, 2839, 1744, 1643, 1342, 1242, 1157, 1096, 1049, 903, 579 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₇H₄₁NO₁₃SNa 642.2198, found 642.2196.

1,3-cis-3-Tosylaminodeoxydisaccharide (4c). Compound 4c (gummy liquid, 54 mg, 59% yield) was prepared according to the general procedure from glycosyl donor 1b (40 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D}$ = +55.2 (c 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.65 (d, J = 8.0 Hz, 2H), 7.28–7.37 (m, 15H), 7.22 (d, J = 8.0 Hz, 2H), 5.95 (d, J = 9.2 Hz, 1H), 5.02 (d, J = 10.8 Hz, 1H), 4.95 (d, J = 11.2 Hz, 1H), 4.77-4.84 (m, 3H), 4.69-4.72 (m, 2H), 4.54 (d, J = 11.2 Hz, 1H), 3.94-3.96 (m, 1H), 3.84 (t, J = 8.0 Hz, 1H), 3.73 (dd, J = 10.4, 6.8 Hz, 1H), 3.57 (d, J = 10.4 Hz, 1H), 3.51 (dd, J = 10.0, 3.6 Hz, 1H), 3.46 (s, 3H), 3.30 (t, J = 9.6 Hz, 1H), 2.38 (s, 3H), 1.71 (dt, J = 14.8, 3.6 Hz, 1H), 1.33 (dd, J = 14.4, 2.4 Hz, 1H), 1.25 (s, 9H), 1.17 (s, 9H); 13 C NMR (CDCl₃, 100 MHz) δ 178.0, 177.6, 143.2, 138.6, 138.5, 138.0, 137.9, 129.8, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 127.6, 127.2, 127.1, 126.7, 97.9, 97.3, 81.8, 80.0, 78.6, 75.8, 75.3, 73.3, 69.7, 67.1, 66.9, 64.7, 62.7, 55.7, 48.4, 38.9, 32.4, 27.2, 27.0, 21.5, 14.2; IR (CHCl₃) 3419, 2972, 1732, 1629, 1454, 1346, 1284, 1165, 1091, 981, 752, 667 cm⁻¹; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₅₁H₆₆NO₁₃S 932.4255, found 932.4238.

1,3-*cis***-3-Tosylaminodeoxydisaccharide (4d).** Compound 4d (gummy liquid, 63 mg, 86% yield) was prepared according to the general procedure from glycosyl donor **1a** (27.2 mg, 0.1 mmol), glycosyl acceptor **2c** (39 mg, 0.11 mmol), and *p*-toluenesulfonamide **3a** (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +81.5$ (*c* 1.0 CHCl₃); ¹H

NMR (CDCl₃, 400 MHz) δ 7.79 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 6.34 (d, J = 3.6 Hz, 1H), 6.07 (d, J = 9.6 Hz, 1H), 5.54 (d, J = 10.0 Hz, 1H), 5.13 (d, J = 9.6 Hz, 1H), 5.03 (dd, J = 10.4, 3.6 Hz, 1H), 4.86 (d, J = 3.2 Hz, 1H), 4.64 (dd, J = 10.4, 4.0 Hz, 1H), 4.08–4.17 (m, 4H), 3.93–3.97 (m, 1H), 3.59 (dd, J = 12.4, 2.4 Hz, 1H), 3.57 (dd, J = 12.0, 2.0 Hz, 1H), 2.43 (s, 3H), 2.19 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.80 (dt, J = 14.8, 4.0 Hz, 1H), 1.55 (dd, J = 14.4, 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.7, 170.4, 170.1, 169.8, 169.6, 169.0, 143.2, 138.5, 129.7, 126.9, 97.6, 88.9, 71.0, 69.5, 69.4, 68.2, 66.9, 64.9, 64.5, 62.7, 47.9, 32.9, 21.5, 20.9, 20.85, 20.79, 20.7, 20.67, 20.5; IR (CHCl₃) 3317, 2947, 1751, 1435, 1373, 1219, 1157, 1041, 933, 756, 671, 601, 547 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₁H₄₁NO₁₇SNa 754.1951, found 754.1954.

1,3-cis-3-Tosylaminodeoxydisaccharide (4e). Compound 4e (gummy liquid, 46 mg, 54% yield) was prepared according to the general procedure from glycosyl donor 1a (27.2 mg, 0.1 mmol), glycosyl acceptor 2d (51.2 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +34.3 (c \ 1.0 \ CHCl_3);^{1}H$ NMR (CDCl₃, 400 MHz) δ 7.73 (d, J = 8.8 Hz, 2H), 7.29–7.38 (m, 12H), 7.22-7.25 (m, 3H),7.02-7.04 (m, 2H), 5.89 (d, J = 11.2 Hz, 1H), 5.25 (d, J = 3.6 Hz, 1H), 4.96 (d, J = 11.2 Hz, 1H), 4.72 (d, J = 8.8 Hz, 1H), 4.69 (d, J = 9.2 Hz, 1H) 4.58-4.62 (m, 3H), 4.50 (dd, J = 8.4, 3.6 Hz, 1H), 4.26 (d, J = 11.2 Hz, 1H), 4.08 (dd, J = 12.0, 4,4 Hz, 1H), 3.98-4.02 (m, 1H), 3.77-3.89 (m, 4H), 3.56-3.69 (m, 3H), 3.50 (dd, J = 8.4, 3.6 Hz, 1H), 3.45 (s, 3H), 2.38 (s, 3H), 2.09 (s, 3H), 1.98 (s, 3H), 1.51 (dt, J = 14.8, 4.0 Hz, 1H), 1.20 (dd, J = 14.4, 2.4 Hz, 1H); $^{13}{\rm C}$ NMR (CDCl₃, 100 MHz) δ 170.6, 170.3, 143.4, 138.3, 138.1, 137.7, 137.6, 129.8, 128.6, 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7, 127.4, 126.9, 98.7, 97.7, 82.3, 80.1, 77.2, 75.5, 73.5, 73.2, 69.7, 69.1, 67.0, 64.8, 62.7, 55.6, 47.7, 32.8, 21.5, 21.0, 20.8; IR (CHCl₂) 3433, 2924, 1743, 1643, 1450, 1357, 1242, 1157, 1049, 910, 740, 548 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C45H53NO13SNa 870.3133, found 870.3135.

1,3-cis-3-Tosylaminodeoxydisaccharide (4f). Compound 4f (gummy liquid, 43 mg, 47% yield) was prepared according to the general procedure from glycosyl donor 1a (27.2 mg, 0.1 mmol), glycosyl acceptor 2e (56 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +98.6 (c \ 1.0 \ CHCl_3); {}^{1}H$ NMR (CDCl₃, 400 MHz) δ 8.10 (d, J = 7.2 Hz, 2H), 8.00–8.08 (m, 4H), 7.86 (d, J = 8.4 Hz, 2H), 7.33-7.46 (m, 11H), 6.03 (d, J = 9.2 Hz, 1H), 5.81 (dd, J = 11.2, 3.2 Hz, 1H), 5.61 (dd, J = 11.2, 3.6 Hz, 1H), 5.33 (d, J = 3.6 Hz, 1H), 4.95 (d, J = 3.2 Hz, 1H), 4.56 (d, J = 3.2 Hz, 1H), 4.49–4.56 (m, 2H), 4.43 (t, J = 6.8 Hz, 1H), 4.16–4.21 (m, 2H), 3.95–3.98 (m, 1H), 3.68 (dd, J = 9.2, 3.6 Hz, 1H), 3.49 (s, 3H), 3.24 (dd, J = 8.4, 3.0 Hz, 1H), 2.43 (s, 3H), 1.98 (s, 3H), 1.90 (s, 3H), 1.80 (dt, J = 14.8, 3.6 Hz, 1H), 1.62 (dd, J = 14.8, 2.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.4, 170.2, 166.0, 165.8, 143.4, 138.4, 133.7, 133.6, 133.3, 130.0, 129.7, 129.6, 129.3, 129.2, 128.8, 128.7, 128.6, 128.5, 128.4, 127.0, 126.9, 98.0, 97.5, 73.9, 69.4, 68.8, 67.6, 66.5, 64.9, 62.3, 61.9, 55.8, 47.7, 32.7, 21.6, 20.9, 20.6; IR (CHCl₃) 3333, 3063, 2955, 1728, 1450, 1265, 1111, 1057, 710 cm⁻¹; HRMS (ESI) *m*/ $z [M + H]^+$ calcd for C₄₅H₄₇NO₁₆SNa 912.2505, found 912.2513.

1,3-cis-3-Tosylaminodeoxydisaccharide (4g). Compound **4g** (gummy liquid, 40 mg, 53% yield) was prepared according to the general procedure from glycosyl donor **1a** (27.2 mg, 0.1 mmol), glycosyl acceptor **2f** (40 mg, 0.11 mmol), and *p*-toluenesulfonamide **3a** (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]^{D}_{20} = -1.5$ (*c* 0.5 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 5.68 (d, *J* = 10.0 Hz, 1H), 5.21 (t, *J* = 9.2 Hz, 1H), 5.05 (t, *J* = 10.0 Hz, 1H), 4.96 (t, *J* = 9.2 Hz, 1H), 4.86 (td, *J* = 10.8, 2.0 Hz, 1H), 4.68–4.73 (m, 2H), 4.27 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.78 (dd, *J* = 12.4, 2.4 Hz, 1H), 3.68 (dq, *J* = 10.0, 2.0 Hz, 1H), 3.54 (dq, *J* = 8.8, 1.6 Hz, 1H), 3.05 (td, *J* = 12.0, 4.0 Hz, 1H), 2.42 (s, 3H), 2.39–2.41 (m, 1H), 2.06 (s, 3H), 2.05 (s, 6H), 2.03 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.92–1.95 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.1, 170.5,

170.1, 169.7, 169.4, 169.2, 143.6, 138.5, 129.4, 127.2, 81.7, 81.3, 77.2, 76.0, 75.8, 73.8, 70.0, 68.3, 66.7, 62.6, 61.9, 44.5, 39.6, 21.5, 20.83, 20.76, 20.62, 20.59, 20.55; IR (CHCl₃) 3271, 2955, 1744, 1435, 1373, 1335, 1157, 1041, 910, 817, 756, 671, 586 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₁H₄₁NO₁₆S₂Na 770.1764, found 770.1764.

1,3-cis-3-Tosylaminodeoxydisaccharide (4ha). Compound 4ha (gummy liquid, 32 mg, 51% yield) was prepared according to the general procedure from glycosyl donor 1c (27.2 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +40.9 (c \ 1.0 \ \text{CHCl}_3); {}^{1}\text{H}$ NMR (CDCl₃, 400 MHz) δ 7.76 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.23 (d, J = 8.4 Hz, 1H), 4.96 (d, J = 2.8 Hz, 1H), 4.89 (d, J = 3.6 Hz, 1H), 4.76 (d, J = 2.4 Hz, 1H), 4.30 (t, J = 6.4 Hz, 1H), 4.04-4.07 (m, 2H), 3.72-3.80 (m, 2H), 3.65-3.64 (m, 1H), 3.63 (s, 3H), 3.59-3.56 (m, 1H), 3.57 (s, 3H), 3.54 (s, 3H), 3.53-3.50 (m, 1H), 3.49 (s, 3H), 3.22 (dd, J = 9.6, 3.6 Hz, 1H), 2.98 (t, J = 9.2 Hz, 1H), 2.42 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.99–2.03 (m, 1H), 1.52 (d, J = 14.8, 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.3, 169.5, 143.4, 138.0, 129.8, 127.0, 97.4, 97.0, 83.3, 81.9, 80.6, 77.2, 69.2, 67.8, 66.9, 63.4, 62.9, 60.9, 60.6, 59.0, 55.6, 47.6, 28.5, 21.5, 20.8; IR (CHCl₃) 3310, 2932, 2832, 1744, 1373, 1335, 1227, 1157, 1096, 1049 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₇H₄₁NO₁₃SNa 642.2195. found 642.2196.

1,3-cis-3-Tosylaminodeoxydisaccharide (4hb). Compound 4hb (gummy liquid, 47 mg, 56% yield) was prepared according to the general procedure from glycosyl donor 1a (27.2 mg, 0.1 mmol), glycosyl acceptor 2b (26 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +29.3 (c \ 1.0 \ \text{CHCl}_3); {}^{1}\text{H}$ NMR (CDCl₃, 400 MHz) δ 7.72 (d, J = 8.4 Hz, 2H), 7.27–7.40 (m, 14H), 7.23–7.26 (m, 3H), 6.21 (d, J = 8.4 Hz, 2H), 5.02 (d, J = 10.8 Hz, 1H), 4.95 (d, I = 11.2 Hz, 1H), 4.89 (d, I = 2.8 Hz, 1H), 4.78– 4.83 (m, 2H), 4.70–4.76 (m, 2H), 4.56 (d, J = 11.2 Hz, 1H), 4.24 (t, J = 6.0 Hz, 1H), 3.94-4.08 (m, 3H), 3.87 (td, J = 9.2, 3.6 Hz, 1H), 3.71 (dd, J = 10.4, 6.8 Hz, 1H), 3.56-3.64 (m, 3H), 3.48 (s, 3H), 3.32-3.37 (m, 1H), 2.40 (s, 3H), 2.06 (s, 3H), 1.96-2.01 (m, 1H), 1.92 (s, 3H), 1.50 (d, J = 14.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.4, 169.5, 143.4, 138.6, 138.04, 138.02, 137.97, 129.8, 128.51, 128.48, 128.46, 128.11, 128.05, 127.95, 127.88, 127.71, 127.68, 127.0, 97.9, 97.0, 81.8, 80.0, 78.7, 75.8, 75.2, 73.2, 69.3, 67.7, 66.9, 66.3, 62.8, 55.7, 47.6, 28.4, 21.5, 20.8, 20.7; IR (CHCl₃) 3317, 2916, 1744, 1405, 1427, 1366, 1227, 1157, 1087, 1049, 740, 702, 548 cm⁻¹; HRMS (ESI) m/z $[M + Na]^+$ calcd for $C_{45}H_{53}NO_{13}SNa$ 870.3144, found 870.3135.

1,3-cis-3-Tosylaminodeoxydisaccharide (4i). Compound 4i (gummy liquid, 69 mg, 81% yield) was prepared according to the general procedure from glycosyl donor 1d (27.2 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +9.0 (c \ 1.0 \ \text{CHCl}_3); {}^{1}\text{H}$ NMR (CDCl₃, 400 MHz) δ 7.69 (d, J = 8.4 Hz, 2H), 7.11–7.41 (m, 17H), 6.27 (d, J = 9.6 Hz, 1H), 5.07 (d, J = 10.8 Hz, 1H), 4.84 (d, J = 3.2 Hz, 1H), 4.72-4.81 (m, 4H), 4.58 (dd, J = 10.8, 4.0 Hz, 1H), 4.50 (d, J = 11.6 Hz, 1H), 4.35 (d, J = 1.6 Hz, 1H), 4.25 (dd, J = 12.0, 3.6)Hz, 1H), 4.17 (dd, J = 12.0, 2.0 Hz, 1H), 4.01-4.07 (m, 2H), 3.90-3.94 (m, 1H), 3.83 (dd, J = 9.6, 3.2 Hz, 1H), 3.65-3.72 (m, 2H), 3.49 (t, J = 8.8 Hz, 1H), 3.40 (s, 3H), 3.83 (dd, J = 10.0, 3.6 Hz, 1H), 2.35 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 1.61 (td, J = 12.4, 4.0 Hz, 1H), 1.17 (dd, J = 14.4, 3.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.7, 170.4, 143.0, 139.0, 138.9, 138.2, 138.1, 129.8, 128.3-128.4 (m, 5C), 128.1, 127.8, 127.7, 127.6, 126.6, 98.0, 96.1, 81.9, 80.7, 75.9, 75.5, 74.5, 73.4, 68.6, 66.9, 64.4, 63.9, 62.7, 55.4, 48.1, 32.6, 21.4, 21.0, 20.8; IR (CHCl₃) 3479, 3032, 2916, 1744, 1450, 1358, 1258, 1196, 1072, 1026, 741, 694 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C45H53NO13SNa 870.3132, found 870.3135.

1,3-cis-3-Tosylaminodeoxydisaccharide (4ja). Compound 4ja (gummy liquid, 59 mg, 75% yield) was prepared according to the general procedure from glycosyl donor **1e** (22 mg, 0.1 mmol), glycosyl acceptor **2a** (51.2 mg, 0.11 mmol), and *p*-toluenesulfonamide **3a** (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/

ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = -5.28$ (*c* 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.32–7.41 (m, 7H), 7.25–7.31 (m, 3H), 7.20–7.22 (m, 3H), 7.12–7.16 (m, 4H), 6.29 (d, *J* = 9.6 Hz, 1H), 5.07 (d, *J* = 10.8 Hz, 1H), 4.72–4.81 (m, 5H), 4.49 (d, *J* = 11.2 Hz, 1H), 4.27–4.31 (m, 2H), 4.04 (t, *J* = 8.8 Hz, 1H), 3.91– 3.98 (m, 1H), 3.80–3.87 (m, 2H), 3.66–3.73 (m, 2H), 3.50 (t, *J* = 9.6 Hz, 1H), 3.41 (s, 3H), 3.30 (dd, *J* = 10.0, 2.0 Hz, 1H), 2.34 (s, 3H), 2.08 (s, 3H), 1.59 (dd, *J* = 14.4, 3.2 Hz, 1H), 1.18 (dd, *J* = 14.4, 2.4 Hz, 1H), 1.16 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.7, 142.9, 139.1, 138.9, 138.2, 138.1, 129.8, 128.3–128.4 (m, 5C), 128.1, 127.8, 127.7, 127.6, 126.7, 98.0, 96.1, 81.9, 80.6, 76.2, 75.6, 74.5, 73.4, 72.6, 68.8, 64.1, 62.0, 55.4, 48.1, 32.9, 21.4, 21.1, 17.4; IR (CHCl₃) 3302, 2932, 1736, 1450, 1342, 1234, 1157, 1064, 1026, 987, 910, 817, 748,702, 671 cm⁻¹; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₄₃H₅₁NO₁₁SNa 812.3082, found 812.3081.

1,3-cis-3-Benzyloxycarbonylaminodeoxydisaccharide (4jb). Compound 4jb (gummy liquid, 49 mg, 64% yield) was prepared according to the general procedure from glycosyl donor 1e (22 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and benzyl carbamate 3d (17 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D}$ = -12.2 (c 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.25-7.34 (m, 20H), 6.32 (d, J = 9.6 Hz, 1H), 5.10 (d, J = 12.8 Hz, 1H), 4.87–4.98 (m, 3H), 4.80 (d, J = 9.6 Hz, 1H), 4.43-4.63 (m, 6H), 4.31-4.34 (m, 1H)1H), 3.91-4.01 (m, 2H), 3.83 (dd, J = 2.0, 10.0 Hz, 1H), 3.74-3.79 (m, 1H), 3.46-3.52 (m, 2H), 3.38-3.42 (m, 1H), 3.29 (s, 3H), 1.96 (dt, J = 10.8, 3.6 Hz, 1H),1.91 (s, 3H), 1.82 (dd, J = 14.4, 2.0 Hz, 1H), 1.15 (d, J = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.2, 156.3, 138.7, 138.2, 138.1, 137.1, 128.5, 128.3-124 (m, 4C), 128.1, 128.0, 127.9, 127.89, 127.8, 127.7, 127.66, 98.0, 96.4, 82.1, 80.6, 75.8, 75.0, 73.2, 73.19, 69.5, 66.2, 65.1, 61.7, 55.2, 45.4, 33.4, 20.8, 17.4; IR (CHCl₃) 3402, 2931, 1728, 1512, 1430, 1366, 127, 1065, 910, 748 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₄₄H₅₁NO₁₁Na 792.3356, found 792.3360.

1,3-cis-3-Tosylaminodeoxydisaccharide (4k). Compound 4k (gummy liquid, 46 mg, 58% yield) was prepared according to the general procedure from glycosyl donor 1e (22 mg, 0.1 mmol), glycosyl acceptor 2d (51.2 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = -17.8$ (c 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.69 (d, J = 7.6 Hz, 2H), 7.43 (d, J = 7.2 Hz, 2H), 7.24–7.33 (m, 15H), 5.84 (d, J = 8.8 Hz, 1H), 5.19 (d, J = 10.8 Hz, 1H), 4.73-4.78 (m, 4H), 4.60-4.63 (m, 4H), 4.35 (d, J = 12.0Hz, 1H), 4.15 (d, J = 2.4 Hz, 2H), 3.84 (t, J = 8.0 Hz, 1H), 3.60-3.69 (m, 2H), 3.53 (dd, J = 10.8, 2.0 Hz, 1H), 3.43 (dd, J = 10.8, 2.4 Hz, 1H), 3.40 (s, 3H), 2.41 (s, 3H), 1.93 (s, 3H), 1.49 (dt, J = 14.4, 4.0 Hz, 1H), 1.28 (dd, J = 14.0, 2.8 Hz, 1H), 0.67 (d, J = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.5, 143.4, 138.7, 138.5, 138.0, 137.3, 129.6, 128.5, 128.4, 128.2, 128.14, 128.10, 128.0, 127.9, 127.3, 127.2, 127.0, 98.0, 96.7, 80.8, 79.6, 75.6, 74.2, 73.6, 73.3, 72.6, 70.1, 68.3, 62.2, 55.5, 48.1, 33.4, 21.5, 20.9, 16.8; IR (CHCl₃) 3318, 2932, 2862, 1736, 1450, 1342, 1242, 1165, 1096, 1049 cm⁻¹; HRMS (ESI) *m/z* [M + Na]⁺ calcd for $C_{43}H_{51}NO_{11}SNa$ 812.3073, found 812.3081.

1,3-cis-3-Mesylaminodeoxydisaccharide (4la). Compound 4la (gummy liquid, 60 mg, 69% yield) was prepared according to the general procedure from glycosyl donor 1a (27.2 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and p-nitrosulfonamide 3b (23 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +44.0$ (c 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 8.28 (d, J = 8.8 Hz, 2H), 7.94 (d, J = 8.8 Hz, 2H), 7.26-7.39 (m, 15H), 6.38 (d, J = 9.2 Hz, 1H), 5.01 (d, J = 11.2 Hz, 1H), 4.96 (d, J = 11.2 Hz, 1H), 4.86 (d, J = 2.8 Hz, 1H), 4.80–4.83 (m, 2H), 4.63–4.71 (m, 3H), 4.56 (d, J = 8.8 Hz, 1H), 4.25 (dd, J = 12.4, 4.4 Hz, 1H), 4.12-4.17 (m, 2H), 4.06 (t, J = 9.2 Hz, 12)1H), 3.97-4.00 (m, 1H), 3.83-3.87 (m, 1H), 3.75 (dd, J = 10.4, 6.4 Hz, 1H), 3.60 (dd, J = 10.0, 1.6 Hz, 1H), 3.53 (t, J = 9.6, 3.6 Hz, 1H), 3.44 (s, 3H), 3.34 (t, J = 9.6 Hz, 1H), 2.07 (s, 3H), 2.01 (s, 3H), 1.86 (dt, J = 10.8, 3.6 Hz, 1H), 1.51 (dd, J = 14.4, 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.5, 170.3, 150.0, 147.1, 138.5, 138.1 137.9, 128.53, 128.51, 128.47, 128.2, 128.03, 127.96, 127.9, 127.8, 127.69,

124.4, 98.1, 97.1, 81.6, 80.2, 78.6, 77.2, 75.8, 75.2, 73.4, 69.4, 67.2, 66.7, 64.5, 62.5, 55.7, 48.5, 32.7, 20.9, 20.7; IR (CHCl₃) 3309, 2932, 1744, 1527, 1350, 1234, 1056, 856, 740, 694, 617 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₄₄H₅₀N₂O₁₅SNa 901.2827, found 901.2835.

1,3-cis-3-Nosylaminodeoxydisaccharide (4lb). Compound 4lb (gummy liquid, 47 mg, 61% yield) was prepared according to the general procedure from glycosyl donor 1a (27.2 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and methanesulfonamide 3c (11 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]^{D}_{20} = +47.3 (c \ 1.0 \ \text{CHCl}_{3}); {}^{1}\text{H}$ NMR (CDCl₃, 400 MHz) δ 7.26–7.38 (m, 15H), 5.95 (d, J = 8.8 Hz, 1H), 4.92-5.01 (m, 2H), 4.68-4.82 (m, 4H), 4.55 (d, J = 11.2 Hz, 1H), 4.28 (d, J = 12.0, 4.4 Hz, 1H), 4.09–4.16 (m, 2H), 4.03 (t, J = 9.2 Hz, 1H), 3.85-3.97 (m, 1H), 3.69 (dd, J = 10.4, 7.2 Hz, 1H), 3.62 (dd, J = 10.4, 2.4 Hz, 1H), 3.54 (dd, J = 9.6, 3.6 Hz, 1H), 3.43 (s, 3),3.31 (t, J = 9.2 Hz, 1H), 2.87 (s, 3H), 2.17 (s, 3H), 2.11 (dt, J = 12.0, 4.4 Hz, 1H), 2.09 (s, 3H), 2.04 (s, 3H), 2.00 (dd, J = 14.4, 2.4 Hz, 1H); 13 C NMR (CDCl₃, 100 MHz) δ 170.6, 170.0, 138.6, 138.1, 138.0, 128.5, 128.4, 128.3, 128.04, 128.0, 127.9, 127.88, 127.7, 127.6, 97.9, 97.0, 81.8, 80.1, 78.7, 75.8, 75.1, 69.3, 67.1, 67.05, 64.5, 62.6, 55.5, 48.5, 41.6, 33.8, 30.9, 21.0, 20.7; IR (CHCl₂) 3332, 2924, 1744, 1450, 1365, 1334, 1234, 1149, 1056, 910, 748, 702 cm⁻¹; HRMS (ESI) $m/z [M + Na]^+$ calcd for $C_{39}H_{49}NO_{13}SNa$ 794.2825, found 794.2822.

1,3-cis-3-Tosylaminodeoxydisaccharide (4ma). Compound 4ma (gummy liquid, 55 mg, 71% yield) was prepared according to the general procedure from glycosyl donor 1f (56 mg, 0.1 mmol), glycosyl acceptor 2g (12 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +105.2$ (c 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (d, J = 8.4 Hz, 2H), 7.35–7.42 (m, 3H), 7.27-7.29 (m, 4H), 5.85 (d, J = 10.0 Hz, 1H), 5.42-5.47(m, 2H), 5.25 (dd, J = 3.6, 10.4 Hz, 1H), 5.11 (t, J = 9.6 Hz, 1H), 4.79 (d, J = 2.4 Hz, 1H), 4.71 (d, J = 12.0 Hz, 1H), 4.49 (dd, J = 2.8, 12.0 Hz)Hz, 1H), 4.43 (d, J = 11.6 Hz, 1H), 4.31 (dd, J = 12.0, 4.0 Hz, 1H), 4.19 (dd, J = 11.6, 4.0 Hz, 1H), 4.09-4.17 (m, 2H), 3.90-3.97 (m, 2H), 3.75 (dd, J = 9.6, 4.0 Hz, 1H), 2.43 (s, 3H), 2.18 (s, 3H), 2.10 (s, 6H), 2.03 (s, 3H), 1.99 (s, 3H), 1.55 (dt, J = 14.8, 3.6 Hz, 1H), 1.25 (dd, J = 14.8, 2.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 170.4, 170.3, 169.9, 169.5, 143.5, 138.3, 136.6, 129.8, 128.7, 128.3, 127.8, 126.8, 96.2, 91.9, 70.1, 69.8, 68.7, 68.5, 68.4, 68.2, 65.8, 63.1, 61.7, 46.3, 31.6, 21.6, 20.9, 20.8, 20.7, 20.63, 20.61; IR (CHCl₃) 3302, 3024, 2954, 1751, 1435, 1373, 1334, 1226, 1165, 1041, 910, 756, 671 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₆H₄₅NO₁₆SNa 802.2357, found 802.2359.

1,3-cis-3-Tosylaminodeoxydisaccharide (4mb). Compound 4mb (gummy liquid, 45 mg, 62% yield) was prepared according to the general procedure from glycosyl donor 1f (56 mg, 0.1 mmol), glycosyl acceptor 2h (7 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +79.1 (c \ 1.0 \ CHCl_3); {}^{1}H$ NMR (CDCl₃, 400 MHz) δ 7.72 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 5.85-5.91 (m, 2H), 5.44-5.49 (m, 2H), 5.25-5.31 (m, 3H), 5.14 (t, J = 9.6 Hz, 1H), 4.78 (d, J = 2.4 Hz, 1H), 4.51 (dd, J = 12.0, 2.8 Hz, 1H), 4.33 (dd, J = 12.0, 4.4 Hz, 1H), 4.18-4.25 (m, 2H), 4.12-4.15 (m, 2H), 3.92-3.99 (m, 3H), 3.76 (dd, J = 9.6, 4.0 Hz, 1H), 2.45 (s, 3H), 2.22 (s, 3H), 2.13 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H), 1.57 (dt, J = 14.8, 3.6 Hz, 1H), 1.23–1.29 (m, 1H); $^{13}\mathrm{C}$ NMR (CDCl₃, 100 MHz) δ 170.6, 170.5, 170.3, 170.0, 169.6, 143.6, 138.2, 133.1, 129.9, 126.8, 117.9, 96.3, 91.6, 77.2, 70.0, 68.6, 68.5, 68.4, 68.2, 68.1, 65.5, 63.0, 61.6, 46.2, 31.6, 21.6, 21.0, 20.8, 20.7, 20.6; IR (CHCl₃) 3309, 2916, 1751, 1435, 1373, 1334, 1226, 1165, 1041, 910, 817, 756, 678 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C32H43NO16SNa 752.2200, found 752.2197.

1,3-cis-3-Tosylaminodeoxydisaccharide (4mc). Compound 4mc (gummy liquid, 49 mg, 67% yield) was prepared according to the general procedure from glycosyl donor **1f** (56 mg, 0.1 mmol), glycosyl acceptor **2i** (7 mg, 0.11 mmol), and *p*-toluenesulfonamide **3a** (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +67.4$ (*c* 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0

Hz, 2H), 5.69 (d, *J* = 10.0 Hz, 1H), 5.42–5.46 (m, 1H), 5.24 (dd, *J* = 10.4, 2.4 Hz, 1H), 5.12 (t, *J* = 10.0 Hz, 1H), 4.93 (d, *J* = 1.6 Hz, 1H), 4.47 (dd, *J* = 12.0, 2.4 Hz, 1H), 4.19–4.33 (m, 3H), 4.09–4.17 (m, 4H), 3.95–3.98 (m, 1H), 3.75 (dd, *J* = 9.6, 4.0 Hz, 1H), 2.49 (t, *J* = 2.4 Hz, 1H), 2.43 (s, 3H), 2.20 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H), 1.61 (dt, *J* = 14.4, 3.6 Hz, 1H), 1.31 (dd, *J* = 14.8, 2.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 170.4, 170.3, 170.0, 169.6, 143.6, 138.1, 129.9, 126.8, 95.7, 92.1, 78.2, 75.4, 70.0, 68.6, 68.4, 68.1, 66.1, 62.9, 61.7, 60.4, 54.9, 46.2, 31.5, 21.5, 20.9, 20.8, 20.7, 20.6, 14.2; IR (CHCl₃) 3413, 1657, 1542, 1364, 1217, 1154, 1049, 687 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₂H₄₁NO₁₆SNa 750.2044, found 750.2042.

1,3-cis-3-Tosylaminodeoxydisaccharide (4n). Compound 4n (gummy liquid, 45 mg, 55% yield) was prepared according to the general procedure from glycosyl donor 1f (56 mg, 0.1 mmol), glycosyl acceptor 2j (18 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +83.4$ (c 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.66 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 7.6 Hz, 2H), 5.94 (d, J = 10.0 Hz, 1H), 5.42-5.48 (m, 2H), 5.27 (dd, J = 10.4, 3.6 Hz, 1H), 5.11 (t, J = 10.0 Hz, 1H), 4.76 (d, J = 2.8 Hz, 1H), 4.45 (dd, J = 11.6, 2.4 Hz, 1H), 4.31 (dd, J = 11.6, 4.8 Hz, 1H), 4.20-4.29 (m, 1H), 4.17 (d, J = 3.6 Hz, 1H), 4.09–4.13 (m, 1H), 3.87–3.93 (m, 2H), 3.69 (dd, J = 10.0, 4.0 Hz, 1H), 3.24 (td, J = 9.6, 4.0 Hz, 1H), 2.42 (s, 3H), 2.20 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H), 1.73-1.80 (m, 1H), 1.63-1.67 (m, 2H), 1.48 (dt, J = 14.4, 3.6 Hz, 1H), 1.38-1.41 (m, 1H), 1.10-1.28 (m, 4H), 0.85-0.98 (m, 8H), 0.63 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 170.5, 170.4, 170.0, 169.6, 143.5, 138.2, 129.7, 126.7, 99.1, 91.2, 82.3, 70.0, 68.5, 68.4, 68.1, 68.0, 65.3, 63.3, 61.7, 48.9, 46.1, 43.1, 34.0, 32.0, 31.7, 25.5, 22.8, 22.3, 21.6, 21.4, 21.0, 20.9, 20.7, 20.66, 20.6, 15.8; IR (CHCl₃) 3302, 2924, 2870, 1751, 1435, 1373, 1334, 1226, 1165, 1041, 910, 756, 671, 555 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₉H₅₇NO₁₆SNa 850.3309, found 850.3296.

1,3-cis-3-Tosylaminodeoxydisaccharide (40). Compound 40 (gummy liquid, 40 mg, 48% yield) was prepared according to the general procedure from glycosyl donor 1f (56 mg, 0.1 mmol), glycosyl acceptor 2k (17 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D}$ = +108.1 (c 1.0 CHCl₃); ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta$ 7.71 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 6.29 (d, J = 9.6 Hz, 1H), 5.44-5.51 (m, 2H), 5.29 (dd, J = 10.5, 3.9 Hz, 1H), 5.10-5.17 (m, 2H), 4.43-4.46 (m, 1H), 4.30-4.37 (m, 2H), 4.22 (dd, J = 12.6, 1.8 Hz, 1H), 4.11-4.15 (m, 1H), 3.88-3.97 (m, 2H), 3.71 (dd, J = 9.6, 3.6 Hz, 1H), 2.45 (s, 3H), 2.23 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H), 1.61-1.86 (m, 15H), 1.48 (dt, J = 14.4, 3.6 Hz, 1H), 0.96–1.05 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 170.5, 170.4, 170.0, 169.6, 143.4, 138.4, 129.7, 126.8, 91.2, 90.3, 75.9, 70.1, 68.4-68.5 (m, 4C), 68.0, 67.2, 65.4, 62.8, 61.7, 46.3, 42.5, 36.1, 32.3, 30.6, 21.6, 21.0, 20.8, 20.7, 20.6; IR (CHCl₃) 3294, 2916, 2854, 1751, 1435, 1372, 1226, 1165, 1041, 756, 678 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C39H53NO16SNa 846.2980, found 846.2983.

1,3-cis-3-Tosylaminodeoxytrisaccharide (4p). Compound 4p (gummy liquid, 52 mg, 46% yield) was prepared according to the general procedure from glycosyl donor 1f (56 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and *p*-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +61.6$ (*c* 1.0 CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.28–7.39 (m, 15H), 7.23 (d, *J* = 8.0 Hz, 2H), 5.87 (d, *J* = 11.2 Hz, 1H), 5.43–5.49 (m, 2H), 5.29 (dd, *J* = 12.4, 3.6 Hz, 1H), 5.12 (t, *J* = 9.6 Hz, 1H), 5.04 (d, *J* = 11.2 Hz, 1H), 4.98 (d, *J* = 11.2 Hz, 1H), 4.78–4.86 (m, 2H), 4.70–4.74 (m, 3H), 4.57 (d, *J* = 11.2 Hz, 1H), 4.45 (dd, *J* = 12.4, 4.0 Hz, 1H), 4.19 (dd, *J* = 10.0, 2.4 Hz, 2H), 4.03–4.10 (m, 3H), 3.79–3.92 (m, 3H), 3.70–3.74 (m, 2H), 3.51–3.56 (m, 2H), 3.47 (s, 3H), 3.34 (t, *J* = 8.4 Hz, 1H), 2.39 (s, 3H), 2.17 (s, 3H), 2.10 (s, 3H), 2.03(s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.50–1.54 (m, 1H), 1.20–1.25 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 170.4, 170.2, 170.0, 169.5, 143.5, 138.7, 138.3, 138.0, 129.9, 128.6, 128.5, 128.4, 128.3,

The Journal of Organic Chemistry

128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 126.7, 98.0, 97.2, 91.5, 81.8, 80.1, 78.6, 75.6, 75.3, 73.3, 70.2, 69.6, 68.5, 68.4, 68.0, 67.7, 67.2, 65.4, 62.8, 61.6, 55.8, 46.1, 31.6, 30.9, 21.5, 20.9, 20.8, 20.7, 20.6; IR (CHCl₃) 3417, 1751, 1643, 1365, 1226, 1041, 740, 555 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₅₇H₆₉NO₂₁SNa 1158.3986, found 1158.3981.

1,3-cis-3-Tosylaminodeoxytrisaccharide (4q). Compound 4q (gummy liquid, 50 mg, 44% yield) was prepared according to the general procedure from glycosyl donor 1f (56 mg, 0.1 mmol), glycosyl acceptor 2d (51.2 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D}$ = +44.3 (c 1.0 CHCl₃); ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 7.76 \text{ (d, } J = 6.8 \text{ Hz}, 2\text{H}), 7.22-7.45 \text{ (m, 15H)},$ 7.00 (d, J = 6.0 Hz, 2H), 6.21 (d, J = 10.0 Hz, 1H), 5.51 (t, J = 6.0 Hz, 1H), 5.45 (d, J = 4.8 Hz, 1H), 5.26-5.28 (m, 1H), 5.14 (d, J = 4.8 Hz, 1H), 5.12 (t, J = 9.2 Hz, 1H), 4.88 (d, J = 10.8 Hz, 1H), 4.79 (d, J =12.0 Hz, 1H), 4.70 (d, J = 12.8 Hz, 1H), 4.57-4.65 (m, 4H), 4.02-4.17 (m, 5H), 3.88-3.91 (m, 2H), 3.37-3.77 (m, 3H), 3.49-3.59 (m, 2H), 3.46 (s, 3H), 2.39 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H), 1.95–1.98 (m, 4H), 1.11 (d, J = 13.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 170.3, 170.2, 170.0, 169.5, 143.4, 138.9, 137.7, 137.0, 129.9, 128.7, 128.6, 128.4, 128.3, 128.1, 128.2, 127.9, 127.8, 127.7, 127.6, 126.9, 97.8, 97.3, 91.2, 82.7, 79.9, 76.7, 76.5, 75.5, 73.6, 73.3, 70.2, 70.1, 69.0, 68.7, 68.5, 68.1, 68.0, 65.7, 63.0, 61.6, 55.6, 45.6, 31.6, 21.5, 20.8, 20.7, 20.6, 20.5; IR (CHCl₃) 3433, 2945, 1746, 1447, 1241, 1040, 765 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C57H69NO21SNa 1158.3975, found 1158.3972.

1,3-cis-3-Tosylaminodeoxytrisaccharide (4r). Compound 4r (gummy liquid, 50 mg, 43% yield) was prepared according to the general procedure from glycosyl donor 1f (56 mg, 0.1 mmol), glycosyl acceptor 2e (56 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D}$ = +104.2 (c 1.0 CHCl₃); ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 8.11 \text{ (d, } J = 7.2 \text{ Hz}, 2\text{H}), 7.99-8.01 \text{ (m, 4H)},$ 7.89 (d, J = 8.4 Hz, 2H), 7.70-7.72 (m, 1H), 7.45-7.60 (m, 6H), 7.34-7.38 (m, 4H), 5.92-5.96 (m, 2H), 5.55 (dd, J = 10.8, 3.6Hz,1H), 5.46 (d, J = 2.0 Hz, 1H), 5.37 (d, J = 3.6 Hz, 1H), 5.28–5.30 (m, 2H), 5.08–5.11 (m, 2H), 4.84 (d, J = 2.4 Hz, 1H), 4.40–4.48 (m, 3H), 4.23-4.25 (m, 1H), 4.08 (dd, J = 10.4, 6.0 Hz, 1H), 3.98-4.02 (m, 2H), 3.72 (dt, J = 14.4, 2.4 Hz, 1H), 3.62 (dd, J = 9.6, 4.0 Hz, 1H), 3.58 (dd, J = 12.0, 2.0 Hz, 1H), 3.49 (s, 3H), 3.44 (dd, J = 12.0, 4.4 Hz, 1H), 2.45 (s, 3H), 2.30 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.88 (s, 3H), 1.54 (dt, J = 14.8, 3.6 Hz, 1H), 1.40 (dd, J = 14.4, 2.8 Hz, 1H); 13 C NMR (CDCl₃, 100 MHz) δ 170.6, 170.5, 170.0, 169.9, 169.5, 165.9, 165.8, 165.7, 143.7, 138.3, 134.5, 133.6, 133.3, 130.1, 129.9, 129.6, 129.3, 129.2, 129.1, 128.7, 128.5, 128.4, 128.3, 127.0, 97.4, 97.3, 91.4, 73.2, 70.2, 69.2, 68.7, 68.6, 68.5, 68.4, 67.8, 67.6, 65.8, 62.3, 62.0, 61.5, 55.8, 45.8, 31.5, 21.6, 21.1, 20.71, 20.68, 20.62, 20.59; IR (CHCl₃) 3317, 2954, 1728, 1597, 1450, 1365, 1226, 1165, 1103, 1041, 910, 756, 709 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C57H63NO24SNa 1200.3357, found 1200.3358.

1,3-cis-3-Tosylaminodeoxytrisaccharide (4s). Compound 4s (gummy liquid, 61 mg, 54% yield) was prepared according to the general procedure from glycosyl donor 1g (56 mg, 0.1 mmol), glycosyl acceptor 2a (51.2 mg, 0.11 mmol), and p-toluenesulfonamide 3a (18.8 mg, 0.11 mmol) and purified by column chromatography (hexane/ ethyl acetate = 2:1 to 1:1): $[\alpha]_{20}^{D} = +2.38$ (c 1.0 CHCl₃); ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 7.71 \text{ (d, } J = 8.0 \text{ Hz}, 2\text{H}), 7.23-7.39 \text{ (m, 17H)},$ 5.37 (d, J = 2.8 Hz, 1H), 5.22 (d, J = 6.0 Hz, 1H), 5.15 (dd, J = 10.4, 7.6 Hz, 1H), 4.97-5.01 (m, 2H), 4.78-4.86 (m, 3H), 4.69-4.73 (m, 2H), 4.65 (d, J = 3.6 Hz, 1H), 4.45 (d, J = 3.6 Hz, 1H), 4.43 (d, J = 8.0 Hz, 1H), 4.15-4.17 (m, 1H), 4.05-4.11 (m, 2H), 3.89-4.00 (m, 5H), 3.66-3.71 (m, 3H), 3.51-3.56 (m, 2H), 3.46 (t, J = 9.2 Hz, 1H), 3.35 (s, 3H), 2.28 (s, 3H), 2.11-2.18 (m, 4H), 2.04 (s, 3H), 2.03(s, 6H), 1.99 (s, 3H), 1.46 (dt, J = 13.6, 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.33, 170.27, 170.1, 170.0, 169.4, 143.7, 138.8, 138.3, 138.2, 137.4, 129.8, 128.4-128.5 (m, 6C), 128.13, 128.10, 127.9, 127.8, 127.7, 127.6, 127.1, 101.7, 98.2, 97.9, 82.0, 80.0, 75.8, 75.0, 73.3, 72.5, 71.0, 70.5, 69.7, 68.6, 67.3, 66.7, 64.1, 60.9, 55.1, 47.4, 32.3, 21.3, 20.8, 20.7, 20.6, 20.5; IR (CHCl₃) 3302, 2924, 1751, 1450, 1365, 1334, 1226, 1157, 1072, 910, 817, 748, 702, 601 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ calcd for C₅₇H₆₉NO₂₁SNa 1158.3975, found 1158.3981.

Procedure for Deprotection of 3-Benzyloxycarbonylamino-2,3-dideoxydisaccharide 4ib to Synthesize 3-Amino-2,3dideoxydisaccharide 6. To a solution of 3-benzyloxycarbonylamino-2,3-dideoxydisaccharide 4jb (71.0 mg, 0.1 mmol) in MeOH (2 mL) was added NaOMe (3.0 mg, 0.03 mmol, 0.3 equiv) under N₂ atmosphere. The reaction mixture was stirred at room temperature for 5 h, filtered with silica gel, and washed with MeOH. The filtrate was concentrated. The crude product 5 was dissolved in MeOH (2 mL), and palladium on carbon (10%, 7 mg) was added. The mixture was filtered through a pad of Celite and washed with EtOAc. The solvent was evaporated under reduced pressure, and the residue was subjected to column chromatography (silica gel, CHCl₃/MeOH = 1:1) to obtain 3-amino-2,3-dideoxydisaccharide 6 (two-step yield: 74%).

1,3-*cis*-**3**-**Benzyloxycarbonylaminodeoxydisaccharide** (5). Data: ¹H NMR (CDCl₃, 400 MHz) δ 7.24–7.33 (m, 20H), 6.42 (d, *J* = 8.0 Hz, 1H), 5.07 (q, *J* = 12.4 Hz, 2H), 5.01 (d, *J* = 12.4 Hz, 1H), 4.95 (d, *J* = 10.8 Hz, 1H), 4.79 (d, *J* = 10.8 Hz, 1H), 4.40–4.57 (m, 5H), 4.11–4.18 (m, 1H), 3.98 (t, *J* = 9.2 Hz, 1H), 3.82 (d, *J* = 10.0 Hz, 1H), 3.73–3.75 (m, 2H), 3.45–3.50 (m, 2H), 3.37–3.38 (m, 2H), 3.26 (s, 3H), 3.03–3.05 (m, 1H), 1.81–1.94 (m, 2H), 1.26 (d, *J* = 5.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 158.4, 138.7, 138.2, 138.13, 137.08, 136.4, 128.6, 128.49, 128.45, 128.41, 128.23, 128.15, 128.10, 128.05, 127.93, 127.86, 127.8, 127.7, 97.8, 96.1, 82.0, 80.5, 75.8, 75.0, 73.6, 73.2, 69.4, 67.0, 64.9, 64.4, 55.2, 48.7, 33.4, 17.5; HRMS (ESI) m/z [M + Na]⁺ calcd for C₄₂H₄₉NO₁₀Na 750.3254, found 750.3259.

1,3-*cis*-**3-Aminodeoxydisaccharide (6).** Data: $[\alpha]_{20}^{\rm D} = 2.02$ (*c* 1.0 MeOH); ¹H NMR (CD₃OD, 400 MHz) δ 4.59 (d, J = 3.6 Hz, 1H), 3.80 (dd, J = 2.4, 10.8 Hz, 1H), 3.70–3.76 (m, 1H), 3.45–3.52 (m, 1H), 3.31 (s, 3H), 3.19–3.30 (m, 4H), 3.02–3.07 (m, 1H), 1.80–1.96 (m, 2H), 1.15 (d, J = 6.0 Hz, 3H); ¹³C NMR (CD₃OD, 100 MHz) δ 100.0, 96.9, 73.7, 72.1, 71.4, 70.7, 69.7, 65.8, 63.0, 54.3, 33.1, 16.9; HRMS (ESI) m/z [M + H]⁺ calcd for C₁₃H₂₆NO₈ 324.1658, found 324.1653.

ASSOCIATED CONTENT

S Supporting Information

NMR spectra of compounds 4a-4r, 5, and 6. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: xuewei@ntu.edu.sg.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge Nanyang Technological University (RG50/08) and the Ministry of Education, Singapore (MOE 2009-T2-1-030) for the financial support of this research.

REFERENCES

 (1) (a) Boltje, T. J.; Buskas, T.; Boons, G. J. Nat. Chem. 2009, 1, 611-622. (b) He, X.; Agnihotri, G.; Liu, H. W. Chem. Rev. 2000, 100, 4615-4661. (c) Kirschning, A.; Bechthold, F. W.; Rohr, J. In Bioorganic Chemistry: Deoxysugars, Polyketides and Related Classes: Synthesis; Biosynthesis: Enzymes; Springer: Berlin, 1997; pp 1-84.
 (d) Varki, A. Glycobiology 1993, 3, 97-130.

(2) (a) Boons, G. J. Tetrahedron 1996, 52, 1095–1121. (b) Animati,
F.; Arcamone, F.; Berettoni, M.; Cipollone, A.; Franciotti, M.;
Lombardi, P. J. Chem. Soc., Perkin Trans. 1 1996, 1327–1329.
(c) Kolar, C.; Kneissl, G.; Wolf, H.; Kampchen, T. Carbohydr. Res.
1990, 208, 111–116.

(3) Wang, A. H. J. Curr. Opin. Struct. Biol. 1992, 2, 361-368.

The Journal of Organic Chemistry

(4) Temperini, C.; Messori, L.; Orioli, P.; Bugno, C. D.; Animati, F.; Ughetto, G. Nucleic Acids Res. **2003**, 31, 1464–1469. (b) He, X. M.; Liu, H. W. Curr. Opin. Chem. Biol. **2002**, 6, 590–597.

(5) (a) Varki, A.; Cummings, R.; Esko, J.; Freeze, H.; Hart, G.; Marth, J. Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1999. For recent reviews: (b) Dwek, R. A.; Butters, T. D. Chem. Rev. 2002, 102, 283–284. (c) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357–2364. (d) Dove, A. Nat. Biotechnol. 2001, 19, 913–917. (e) Kobata, A. Glycoconjugate J. 2001, 17, 443–464. (f) Koeller, K. M.; Wong, C. H. Nat. Biotechnol. 2000, 18, 835–841.

(6) For recent syntheses of 3-aminodeoxyglycosides, see: (a) Matsushima, Y.; Kino, J. Eur. J. Org. Chem. 2010, 2206-2211. (b) Shi, W.; Coleman, R. S.; Lowary, T. L. Org. Biomol. Chem. 2009, 7, 3709-3722. (c) Colinas, P. A.; Nicolás, A. N.; Bravo, R. D. J. Carbohydr. Chem. 2008, 27, 141-147. (d) Fan, E.; Shi, W.; Lowary, T. L. J. Org. Chem. 2007, 72, 2917-2928. (e) Friestad, G. K.; Jiang, T.; Mathies, A. K. Org. Lett. 2007, 9, 777-780. (f) Hayman, C. M.; Larsen, D. S.; Simpson, J.; Bailey, K. B.; Gill, G. S. Org. Biomol. Chem. 2006, 4, 2794-2800. (g) Matthew, T. M.; Peng, T.; Christopher, M. H.; Robert, S. C.; Lowary, T. L. J. Org. Chem. 2006, 71, 8059-8070. (h) Parker, K. A.; Chang, W. Org. Lett. 2005, 7, 1785-1788. (i) Trost, B. M.; Jiang, C. H.; Hammer, K. Synthesis 2005, 3335-3345. (j) Parker, K. A.; Chang, W. Org. Lett. 2003, 5, 3891-3893. (k) Colinas, P. A.; Bravo, R. D. Org. Lett. 2003, 5, 4509-4511. (1) Ginesta, X.; Pasto, M.; Pericas, M. A.; Riera, A. Org. Lett. 2003, 5, 3001-3004. (m) Cutchins, W. W.; McDonald, F. E. Org. Lett. 2002, 4, 749-752. (n) Sibi, M.; Lu, J.; Edwards, J. J. Org. Chem. 1997, 62, 5864-5872 and references therein.

(7) For reviews, see: (a) Carmona, A. T.; Moreno-Vargas, A. J.; Robina, I. Curr. Org. Synth. 2008, 5, 33-60. (b) Klefel, M. J.; Itzstein, M. Chem. Rev. 2002, 102, 471-490. (c) Boons, G. J.; Demchenko, A. V. Chem. Rev. 2000, 100, 4539-4565. (d) Marzabadi, C. H.; Franck, R. W. Tetrahedron 2000, 56, 8385-8417. (e) Hallis, T. M.; Liu, H. Acc. Chem. Res. 1999, 32, 579-588. (f) Kirschning, A.; Bechtold, A. F. W.; Rohr, J. Top. Curr. Chem. 1997, 188, 1-84.

(8) (a) Lorpitthaya, R.; Xie, Z. Z.; Sophy, K. B.; Kuo, J. L.; Liu, X.-W. Chem.—Eur. J. 2010, 16, 588–594. (b) Ding, F. Q.; William, R.; Gorityala, B. K.; Ma, J. M.; Wang, S. M.; Liu, X.-W. Tetrahedron Lett. 2010, 51, 3146–3148. (c) Sudibya, H. G.; Ma, J. M.; Dong, X.; Ng, S.; Li, L.-J.; Liu, X.-W.; Chen, P. Angew. Chem., Int. Ed. 2009, 48, 2723–2726. (d) Yang, R. L.; Pasunooti, K. K.; Li, F.; Liu, X.-W.; Liu, C.-F. J. Am. Chem. Soc. 2009, 131, 13592–13593.

(9) (a) Ding, F. Q.; William, R.; Wang, S. M.; Gorityala, B. K.; Liu, X.-W. Org. Biomol. Chem. **2011**, 9, 3929–3939. (b) Ding, F. Q.; William, R.; Wang, F.; Ma, J. M.; Ji, L.; Liu, X.-W. Org. Lett. **2011**, 13, 652–655.

(10) Krumper, J. R.; Salamant, W. A.; Woerpel, K. A. J. Org. Chem. 2009, 74, 8039–8050.

(11) (a) Bussolo, V. D.; Romano, M. R.; Pineschi, M.; Crotti, P. Org. Lett. **2005**, *7*, 1299–1302. (b) Bussolo, V. D.; Caselli, M.; Romano, M. R.; Pineschi, M.; Crotti, P. J. Org. Chem. **2004**, *69*, 7383–7386.

(12) (a) Adriano, A. M.; Dasciana, S. R.; Marco, F.; Roberto, F. L.; Jose, M. G.; Jose, M. P. *Tetrahedron* **2008**, 64, 10721. (b) Nobuo, T.; Izumi, O.; Shigeki, Y.; Junzo, N. *Carbohydr. Res.* **2008**, 343, 2675. (c) Wallach, L.; Latifeh, N.; Scott, D. T. *Carbohydr. Res.* **2005**, 340, 1213. (d) Crich, D.; Li, H. *J. Org. Chem.* **2000**, 65, 801. (e) Shull, B. K.; Wu, Z.; Koreeda, M. *J. Carbohydr. Chem.* **1996**, 15, 955.