Synthesis of Spacered Nucleoside Analogues Comprising a Difluorocyclopropane Moiety

René Csuk and Gisela Thiede

Institut für Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany

Reprint requests to Prof. Dr. R. Csuk. E-mail: csuk@chemie.uni-halle.de

Z. Naturforsch. 58b, 853-860 (2003); received June 5, 2003

A novel class of difluorinated cyclopropanoic nucleoside analogues containing a propyl spacer between the cyclopropane ring and the heterocycle has been prepared. Some of these compounds showed weak antitumor activity in prelimary screenings. The resolution of these racemic compounds on an analytical scale was performed by HPLC using chiral stationary phases.

Key words: Nucleoside Analogues, Cyclopropanes, HPLC

Introduction

Cyclopropane derived drugs have gained considerable attraction due to their ability to show a variety of promising biological activities. More recently, cyclopropane derived nucleoside analogues have been in the focus of interest as potential chemotherapeutic agents [1-4]. Thus, a number of compounds possessing an additional spacer or an unsaturated group between the cyclopropane and the heterocycle as well as compounds with a (in)direct attachment of the heterocycle but with two vicinal or geminal hydroxymethyl units at the cyclopropane skeleton have been accessed but only recently the first successful syntheses of several difluoro-cyclopropyl nucleoside analogues of types **A** and **B** have been reported [5-7].

As shown for several acyclonucleosides as penciclovir [8-10] decreased conformational flexibility as a consequence of the rather rigid cyclopropyl ring seems to be unfavourable both for the interaction with phosphorylating enzymes as well as for the interaction of the corresponding triphosphates with viral RNA polymerases [8].

Results and Discussion

To obtain higher flexibility in the difluoro cyclopropanoid nucleoside analogues series the synthesis of compounds of type **C** was planned.

[2,2-Bis(benzyloxymethyl)-3,3-difluoro-cyclopropyl]methanol (which has previously been prepared in several steps from easily accessible 1,3-dibenzyloxy-

Scheme 1. Target structures.

2-propanol) [6,11] was conveniently oxidized to the corresponding carbaldehyde with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) [12,13] in the presence of sodium hypochlorite and sodium bromide. Consequently, the carbaldehyde 1 was subjected to an Emmons-Horner reaction [14] to afford the chain elongated α,β -unsaturated ester 2 whose reduction with hydrogen in the presence of Pearlman's catalyst gave under simultaneous loss of the benzyl protecting groups the cyclopropylpropanoate 3. Silvlation of 3 with tert-butyldimethylsilvl chloride in dichloromethane/pyridine in the presence of catalytical amounts of dimethylaminopyridine gave 89% of 4 whose reduction with diisobutylaluminum hydride (DIBAH) at low temperatures yielded the corresponding (difluoro-cyclopropyl)propanol 5.

As previously shown, *Mitsunobu* reactions [15, 16] are well suited for the convenient introduction of heterocycles in good and reproducible high yields. Thus, **5** can be regarded as a well accessible starting material for the straightforward synthesis of the tar-

0932-0776 / 03 / 0900-0853 \$ 06.00 © 2003 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Scheme 2. Reactions: a) NaH/(EtO)P(O)CH₂CO₂Et; b) Pearlman's catalyst, MeOH, H₂; c) TBDMSiCl/DMAP; d) DIBAH, toluene, -40 °C; e) TPP, DIAD, N³-benzoyluracil (for **6**), N³-benzoyl-thymine (for **9**) and N³-benzoyl-5-fluoro-uracil (for **12**), respectively; f) NaOH/MeOH; g) Bu₄NF trihydrate, THF; h) NH₄OH; i) TPP, DIAD, adenine.

get molecules. Reaction of **5** with triphenylphosphane (TPP)/diisopropyl azodicarboxylate (DIAD) with N³benzoyl-uracil [5, 17] followed by chromatographic work-up gave 92% of fully protected **6**. Consecutive deprotection starting with a debenzoylation reaction gave 99% of **7** whose desilylation was achieved with tetra-*n*-butylammonium fluoride (TBAF) trihydrate to yield 82% of **8**.

In a similar way the key intermediate **5** was allowed to react under *Mitsunobu* conditions with N^3 -benzoyl-thymine [5, 18] to afford 83% of fully protected **9**. Debenzoylation of **9** gave **10** whose desily-lation under the same conditions as described above finally gave 82% of the (difluoro-bishydroxymethyl-cyclopropyl)thymine **11**.

Accordingly, the 5-fluoro-uracil-analogue **14** was obtained from **5** *via* **12** and **13** [19]. Compound **14** is characterized by the presence of three distinct ¹⁹F NMR signals two of them corresponding to the geminal diffuoromethylene group showing ${}^{2}J_{\rm F,F} = 162.2$ Hz whereas the fluorine substituent attached to the heterocycle is found at $\delta = -167.8$ ppm with ${}^{3}J_{\rm F,H} = 7.3$ Hz as expected from analogues.

This approach is equally well suited for the synthesis of analogues of both the purine and the pyrimidine type. Thus, reaction of **5** with unprotected adenine using the same *Mitsunobu* conditions as described above afforded 54% of **15** whose desilylation gave the (difluoro-bishydroxymethyl-cyclopropyl)adenine **16** in 78% yield.

Table 1. HPLC separation of the enantiomers of nucleoside analogues [Daicel Chiralpak AD columns, 4.6 mm \times 250 mm; 20 °C, hexane/2-propanol 90/10 (ν/ν)].

Compound	$t_{\mathbf{R}(1)}$ (min)	$t_{R(2)}$ (min)	α	λ (nm)
8	21.55	37.49	1.73	270
14	28.03	40.77	1.45	278
16	15.92	23.87	1.49	266

Several of these compounds showed weak to moderate antitumor activity. Since it is well known that for many nucleoside analogues the biological activity of these compounds resides only in one enantiomer, a suitable chromatographic separation/analytical method had to be developed. Exploring a variety of different chiral stationary phases, best suited seems the use of a Daicel Chiralpak AD column at 20 °C using hexane/2-propanol (90/10 v/v) as eluent. Thus, compounds **8**, **14** and **16** were easily separated into their respective enantiomers (*cf.* Table 1).

The stereoselective synthesis of these enantiomers and their incorporation in short artificial DNA and RNA fragments is presently under investigation in our labs.

Experimental Section

General methods: Melting points are uncorrected (*Leica* hot stage microscope), NMR spectra (internal Me₄Si) were recorded using the Varian spectrometers Gemini 200, Gemini 2000 or Unity 500 (δ given in ppm, *J* in Hz, internal Me₄Si for ¹H and ¹³C NMR spectra, internal CCl₃F was used for ¹⁹F NMR spectra, C'corresponds to the atoms of the heterocycle), IR spectra (film or KBr pellet) on a Perkin-Elmer FT-IR spectrometer Spectrum 1000, MS spectra were taken on a Intectra GmbH AMD 402 (electron impact, 70 eV) or on a Finnigan MAT LCQ 7000 (electron spray, voltage 4.5 kV, under nitrogen) instrument; Column chromatography was performed on silica gel 60 (FLUKA, 0.04–0.06 mm).

(\pm) -[2,2-Bis(benzyloxymethyl)-3,3-difluoro-cyclopropane]-carbaldehyde $((\pm) - 1)$

A solution of 2,2-[bis(benzyloxymethyl)-3,3-difluoro-cyclopropyl]methanol (12.36 g, 35.4 mmol), TEMPO (0.16 g, 0.7 mmol) in dichloromethane (88 ml) and a solution of KBr (0.83 g, 7.0 mmol) in water (0.81 ml) were vigorously stirred and cooled to -5 °C. The pH of NaOCl (70 ml, 1 M in water, 70 mmol) was adjusted to 9.5 by dissolving NaHCO₃ (0.45 g) immediately before use. This NaOCl solution was added over 10 min, keeping the temperature of the reaction mixture between 10 and 15 °C. The mixture was stirred for 10 min. The orange colored organic phase was separated and the aqueous phase was extracted with dichloromethane (75 ml). The combined organic phases were washed with 10% aqueous HCl (150 ml) containing KI (2.2 g), 10% aqueous Na₂S₂O₃ (75 ml), water (75 ml) and brine (75 ml). The organic phase was dried over MgSO₄, the solvent removed under reduced pressure and the remaining yellowish liquid was subjected to column chromatography (silica gel, nhexane/ethyl acetate 3:1) to afford 1 (11.2 g, 91%) as a colorless liquid. - R_F (n-hexane/ethyl acetate 3:1) 0.39. - UV/vis (methanol): λ_{max} (lg ε) = 260 nm (2.64). – IR (film): v = 3064w, 3031s, 2868s, 1716s, 1586w, 1496w, 1454m, 1407w, 1364w, 1256w, 1207w, 1172w, 1143m, 1093s, 1028m cm⁻¹. $- {}^{1}\text{H}$ NMR (400 MHz, CDCl₃): $\delta = 9.30$ (dd, ${}^{4}J_{\text{H,F}} =$ 1.6 Hz, ${}^{3}J_{H,H} = 5.5$ Hz, 1 H, COH); 7.41 – 7.26 (m, 10 H, phenyl); 4.58-4.49 (m, 4 H, CH2-phenyl); 4.11 and 3.89 (AB system, $J_{A,B} = 10.5 \text{ Hz}$, ${}^{4}J_{H,F} = 3.5 \text{ Hz}$, 2 H, CH₂O_{cis}), 3.89 and 3.44 (AB system, $J_{A,B} = 10.5$ Hz, ${}^{4}J_{H,F} = 1.2$ Hz, 2 H, CH₂O_{trans}), 2.38 (dd, ${}^{4}J_{H,F} = 1.6$ Hz, ${}^{3}J_{H,H} = 5.6$ Hz, 1 H, cyclopropyl). $-{}^{13}$ C NMR (100 MHz, CDCl₃): $\delta = 193.60$ $(dd, {}^{3}J_{C,F} = 4.0 \text{ Hz}, \text{HCO}), 138.68 (s, C_q \text{ phenyl}), 138.51 (s, C_q$ C_q phenyl), 129.62 – 128.83 (m, C_{phenyl}), 115.04 (dd, ${}^1J_{C,F}$ = 288.7, 294.7 Hz, CF₂), 74.27 (t, CH₂-phenyl), 74.01 (t, CH₂phenyl), 68.11 (dt, ${}^{3}J_{C,F} = 5.0$ Hz, CH₂O_{trans}), 62.59 (dt, ${}^{3}J_{C,F} = 5.0$ Hz, CH₂O_{*cis*}), 41.00 (t, ${}^{2}J_{C,F} = 9.0$ Hz, C-2), 40.12 (dt, ${}^{2}J_{C,F} = 11.0$ Hz, C-1). – ${}^{19}F$ NMR (188 MHz, CDCl₃): $\delta = -131.16$ (dd, ${}^{2}J_{F,F} = 164.5$ Hz, ${}^{3}J_{H,F} =$ 11.0 Hz, F), -141.58 (d, ${}^{2}J_{F,F} = 164.5$ Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol, N₂): m/z (%) = 402.2 (22) [MHNaMeOH]⁺, 401.2 (100) [MNaMeOH]⁺, 385.4 (11) [MLiMeOH]⁺, 369.3 (5) [MNa]⁺, 353.4 (1) [MLi]⁺.

$Ethyl[2,2-bis(benzyloxymethyl)-3,3-difluoro-cyclopropyl]-propenoate ((\pm) - 2)$

To a cooled suspension of sodium hydride (1.25 g, 32.2 mmol) in toluene (21 ml) under argon triethyl phosphonoacetate (7.22 ml, 32.2 mmol) was slowly added and stirred at room temperature until the evolution of hydrogen had ceased. The reaction mixture was cooled once again and a solution of 1 (11.16 g, 32.2 mmol) in toluene (10 ml) added. After stirring for 45 min the mixture was dissolved by the addition of a minimum amount of absolute ethanol. Stirring was continued for further 45 min. Then it was quenched by the addition of water. The product was extracted into ethyl acetate, the organic phase dried (MgSO₄) and the solvent evaporated. Purification was achieved by column chromatography (silica gel, n-hexane/ethyl acetate 3:1) to afford 2 (12.34 g, 92%) as a colorless liquid. - R_F (*n*-hexane/ethyl acetate 7:3) 0.46. – UV/vis (methanol): $\lambda_{\text{max}}(\lg \varepsilon) = 231 \text{ nm} (4.11). - \text{IR} (\text{film}): v = 3492 \text{w}, 3064 \text{m},$ 3031m, 2982m, 2871s, 1717s, 1650s, 1496m, 1454s, 1391m, 1367s, 1333m, 1254s, 1200s, 1145s, 1095s, 1029s cm⁻¹. – ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34 - 7.24$ (m, 10 H, phenyl), 6.70 (dd, ${}^{3}J_{\text{H,H}} = 9.8$ Hz, ${}^{4}J_{\text{H,F}} = 1.6$ Hz, 1 H,

CH-cyclopropyl), 6.04 (d, ${}^{3}J_{H,H} = 15.6$ Hz, 1 H, CH-CO₂), 4.55 – 4.43 (m, 4 H, CH₂-phenyl), 4.20 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 2 H, CH₂O), 3.78 and 3.66 (AB system, $J_{A,B} = 10.6$ Hz, ${}^{4}J_{\rm H,F} = 1.9$ Hz, 2 H, CH₂O_{cis}), 3.74 and 3.57 (AB system, $J_{A,B} = 10.4$ Hz, ${}^{4}J_{H,F} = 1.9$ Hz, 2 H, CH₂O_{trans}), 2.28 (m, 1 H, cyclopropyl), 1.28 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 3 H, CH₃). – ¹³C NMR (100 MHz, CDCl₃): δ = 165.65 (s, CO), 137.88 (dd, ${}^{3}J_{C,F} = 11.6$ Hz, CH-cyclopropyl), 137.49 (s, Cq phenyl), 137.46 (s, Cqphenyl), 128.54-127.69 (m, C_{phenvl}), 125.44 (d, CH-CO₂), 114.69 (dd, ${}^{1}J_{C,F}$ = 290.1, 297.5 Hz, CF₂), 73.16 (t, CH₂-phenyl), 72.87 (t, CH₂-phenyl), 67.13 (dt, ${}^{3}J_{C,F} = 5.8$ Hz, CH₂O_{trans}), 63.43 $(dt, {}^{3}J_{C,F} = 5.8 \text{ Hz}, \text{CH}_{2}\text{O}_{cis}), 60.39 \text{ (t, CH}_{2}\text{O}), 37.83 \text{ (t, }$ ${}^{2}J_{C,F} = 8.8$ Hz, C-2), 32.25 (dt, ${}^{2}J_{C,F} = 10.1$ Hz, C-1), 14.08 (q, CH₃). – ${}^{19}F$ NMR (188 MHz, CDCl₃): $\delta =$ -133.63 (dd, ${}^{2}J_{F,F} = 160.1$ Hz, ${}^{3}J_{H,F} = 10.9$ Hz, F), -142.98 (d, ${}^{2}J_{F,F} = 160.1$ Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol, N₂): *m*/*z* (%) = 440.1 (22) [MHNa]⁺, 439.1 (100) [MNa]⁺, 417.1 (6) [MH]⁺. – HR-MS: calcd. for C24H26F2O4: 416.1799; found: 416.1799. - Analysis for C₂₄H₂₆F₂O₄(416.47): calcd. C 69.22, H 6.29; found C 69.01, H 6.00.

(\pm)-*Ethyl*[3,3-*bis*(*hydroxymethyl*)-2,2-*difluoro-cyclo-propyl*]*propanoate* ((\pm) - **3**)

Pearlman's catalyst (0.72 g, 20%) was added to a solution of 2 (12.34 g, 29.6 mmol) in methanol (200 ml) under hydrogen atmospheric pressure. The reaction mixture was stirred at room temperature overnight. After filtration and evaporation of all volatiles the remaining residue was subjected to column chromatography (silica gel, n-hexane/ethyl acetate 2:1) to give 3 (5.85 g, 83%) as a colorless liquid. $-R_F$ (nhexane/ethyl acetate 1:2) 0.28. – UV/vis (methanol): λ_{max} $(\lg \varepsilon) = 207 \text{ nm} (2.40). - \text{IR} (\text{film}): v = 3401\text{m}, 2982\text{m},$ 2896m, 1732s, 1468s, 1421s, 1377m, 1263s, 1188s, 1138m, 1112m, 1033s cm⁻¹. – ¹H NMR (400 MHz, CDCl₃): δ = 4.13 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 2 H, CH₂O), 3.94–3.78 (m, 4 H, CH₂OH), 3.07 (br s, 2 H, OH), 2.46 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 2 H, CH₂CO), 1.86 (t, ${}^{3}J_{H,H} = 7.0$ Hz, 2 H, CH₂-cyclopropyl), 1.48 (m, 1 H, cyclopropyl), 1.25 (q, ${}^{3}J_{H,H} = 7.1$ Hz, 3 H, CH₃). – ¹³C NMR (100 MHz, CDCl₃): δ = 173.52 (s, CO), 115.47 (dd, ${}^{1}J_{C,F} = 286.7$, 295.0 Hz, CF₂), 63.57 (dt, ${}^{3}J_{C,F} = 5.8$ Hz, CH₂O_{trans}), 60.78 (t, CH₂O), 58.36 (dt, ${}^{3}J_{C,F} = 6.6$ Hz, CH₂O_{cis}), 35.31 (t, ${}^{2}J_{C,F} = 9.7$ Hz, C-3), 29.24 (dt, ${}^{2}J_{C,F} = 9.9$ Hz, C-1), 17.42 (dt, ${}^{3}J_{C,F} = 3.7$ Hz, CH₂-cyclopropyl), 13.94 (q, CH₃). – ¹⁹F NMR (188 MHz, CDCl₃): $\delta = -136.49$ (dd, ${}^{2}J_{F,F} = 162.7$ Hz, ${}^{3}J_{F,H} =$ 14.6 Hz, F), -148.99 (d, ${}^{2}J_{F,F} = 162.7$ Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol, N₂): m/z (%) = 261.2 (60) [MNa]⁺, 245.2 (15) [MLi]⁺, 239.0 (100) [MH]⁺. – HR-MS: calcd. for C10H16F2O4: 238.1016; found: 238.1016. - Analysis for C₁₀H₁₆F₂O₄ (238.23): calcd. C 50.42, H 6.77; found C 50.31, H 6.51.

A solution of 3 (5.85 g, 24.6 mmol), tert-butyldimethylsilyl chloride (9.08 g, 59.0 mmol) and a catalytic amount of DMAP in dry dichloromethane (25 ml) and dry pyridine (9.8 ml) was stirred at room temperature under argon for 48 h. Then all volatiles were removed under vacuum and the residue subjected to column chromatography (silica gel, *n*-hexane/ethyl acetate 8:1) to give 4 (10.22 g, 89%) as a colorless liquid. $-R_F$ (*n*-hexane/ethyl acetate 5:1) 0.62. -IR (film): v = 3411m, 2956s, 2930s, 2886m, 2858s, 1737s, 1473s, 1390m, 1377m, 1362m, 1257s, 1187s, 1139m, 1085s, 1034m cm⁻¹. – ¹H NMR (400 MHz, CDCl₃): δ = 4.12 (t, ${}^{3}J_{\text{H,H}} = 7.2 \text{ Hz}, 2 \text{ H}, \text{CH}_{2}\text{O}$, $3.94 - 3.44 \text{ (m, 4 H, CH}_{2}\text{O})$, 2.44–2.41 (m, 2 H, CH₂CO), 1.83 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 2 H, CH₂-cyclopropyl), 1.40-1.30 (m, 1 H, cyclopropyl), 1.24 (t, ${}^{3}J_{\text{H,H}} = 7.2 \text{ Hz}, \text{CH}_{3}$, 0.88 (m, 18 H, CH₃C), 0.06 – 0.03 (m, 12 H, CH₃Si). – ¹³C NMR (100 MHz, CDCl₃): δ = 173.98 (s, CO), 117.01 (dd, ${}^{1}J_{C,F} = 287.6$, 295.0 Hz, CF₂), 61.90 $(dt, {}^{3}J_{C,F} = 7.0 \text{ Hz}, CH_2O_{trans}), 61.32 (t, CH_2O), 56.88 (dt, dt)$ ${}^{3}J_{C,F} = 6.2$ Hz, CH₂O_{cis}), 37.33 (t, ${}^{2}J_{C,F} = 9.5$ Hz, C-2), 29.12 (dt, ${}^{2}J_{C,F} = 9.9$ Hz, C-1), 26.69 (q, CH₃C), 19.07 (s, CCH₃), 18.64 (dt, ${}^{3}J_{C,F} = 3.7$ Hz, CH₂-cyclopropyl), 15.05 (q, CH₃), -4.80 (q, CH₃Si). - ¹⁹F NMR (188 MHz, CDCl₃): $\delta = -136.98$ (dd, ${}^{2}J_{\text{F,F}} = 160.9$ Hz, ${}^{3}J_{\text{F,H}} = 14.7$ Hz, F), -149.33 (d, ${}^{2}J_{\rm F,F} = 160.9$ Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol, N₂): m/z (%) = 489.3 (100) [MNa]⁺, 467.2 (20) [MLi]⁺. - HR-MS calcd. for C₂₂H₄₄F₂O₄Si₂: 466.2746; found: 466.2746. - Analysis for C₂₂H₄₄F₂O₄Si₂ (466.76): calcd. C 56.61, H 9.50; found C 56.52, H 9.47.

(\pm)-[2,2-Bis(tert-butyldimethylsilyloxymethyl)-3,3-difluoro-cyclopropyl]propanol ((\pm) – **5**)

DIBAH (74.8 ml, 1.2 M in toluene, 89.8 mmol) was cooled to -40 °C under argon. A solution of 4 (10.22 g, 21.9 mmol) in dry toluene (31 ml) was added at this temperature. The reaction mixture was stirred at -40 °C for 2 h. and then quenched by the addition of methanol and water. The product was extracted into ethyl acetate, the organic phase dried (MgSO₄) and the solvent evaporated. Purification was achieved by column chromatography (silica gel, *n*-hexane/ethyl acetate 4:1) to afford 5 (8.00 g, 86%) as a colorless liquid. $-R_F$ (*n*-hexane/ethyl acetate 3:1) 0.43. -IR (film): v = 3350w, 2955s, 2930s, 2885m, 2858s, 1473s, 1390w, 1362w, 1257s, 1196w, 1169w, 1083s, 1006m cm⁻¹. -¹H NMR (400 MHz, CDCl₃): δ = 3.88 and 3.63 (AB system, $J_{AB} = 10.8$ Hz, ${}^{4}J_{H,F} = 2.1$ Hz, 2 H, CH₂O_{cis}), 3.79 (m, 2 H, CH₂OH), 3.66 and 3.51 (AB system, $J_{AB} = 10.3$ Hz, ${}^{4}J_{\text{H,F}} = 2.1$ Hz, 2 H, CH₂O_{trans}), 1.80 (br s, 1 H, OH), 1.67-1.61 (m, 2 H, CH2-cyclopropyl), 1.31-1.25 (m, 1 H, cyclopropyl), 0.87 (m, 18 H, CH₃C), 0.05-0.02 (m, 12 H, CH₃Si). – ¹³C NMR (100 MHz, CDCl₃): δ = 116.17 (dd, ${}^{1}J_{C,F} = 286.7$, 295.4 Hz, CF₂), 61.41 (dt, ${}^{3}J_{C,F} =$

5.8 Hz, CH₂OH_{trans}), 60.97 (t, CH₂OH), 56.17 (dt, ${}^{3}J_{C,F} =$ 6.7 Hz, CH₂OH_{cis}), 36.16 (t, ${}^{2}J_{C,F} =$ 10.1 Hz, C-2), 32.02 (t, CH₂CH₂OH), 28.90 (dt, ${}^{2}J_{C,F} =$ 10.1 Hz, C-1), 25.72 (q, CH₃C), 18.20 (dt, ${}^{3}J_{C,F} =$ 3.3 Hz, CH₂-cyclopropyl), -5.7 (q, CH₃Si). - ¹⁹F NMR (188 MHz, CDCl₃): $\delta =$ -136.95 (dd, ${}^{2}J_{F,F} =$ 160.8 Hz, ${}^{3}J_{F,H} =$ 14.6 Hz, F), -149.22 (d, ${}^{2}J_{F,F} =$ 160.8 Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol, N₂): m/z (%) = 447.2 (87.5) [MNa]⁺, 431.2 (67.5) [MLi]⁺, 425.1 (100) [MH]⁺. - HR-MS calcd. for C₂₀H₄₂F₂O₃Si₂ (424.72): calcd. C 56.56, H 9.97; found C 56.32, H 10.13.

(\pm)-3-Benzoyl-1-[(2,2-bis(tert-Butyldimethylsilyloxymethyl)-3,3-difluoro-cyclopropyl-propyl]1,2,3,4-tetrahydro-pyrimidine-2,4-dione) ((\pm) – **6**)

To a mixture of 5 (2.00 g, 4.7 mmol), TPP (2.41 g, 9.4 mmol) and N³-benzoyluracil (2.03 g, 9.4 mmol) in dry 1,4-dioxane (29 ml) a solution of DIAD (1.91 g, 9.4 mmol) in dry 1,4-dioxane (60 ml) was added dropwise under argon over a period of 2 h. The reaction mixture was stirred overnight, the solvent evaporated and the remaining yellowish oil purified by column chromatography (silica gel, nhexane/ethyl acetate 3:1) to afford 6 (2.69 g, 92%) as a white solid, contaminated with some impurities that were easily removed after the next reaction step; an analytical sample was obtained by column chromatography (silica gel RP-18, methanol/water 8:3); m.p. 78-79 °C. - R_F (n-hexane/ethyl acetate 3:1) 0.30. – UV/vis (methanol): λ_{max} (lg $\varepsilon = 257$ nm (4.26). – IR (film): v = 3089m, 2955s, 2930s, 2885s, 2857s, 1750s, 1706s, 1668s, 1599m, 1560m, 1472s, 1438s, 1389s, 1347s, 1255s, 1177s, 1083s, 1005m cm⁻¹. – ¹H NMR (400 MHz, CD₃OD): $\delta = 7.94 - 7.53$ (m, 5 H, benzoyl), 7.55 (d, ${}^{3}J_{H,H} = 8.2$ Hz, 1 H, 6-H), 5.79 (d, ${}^{3}J_{H,H} = 8.0$ Hz, 1 H, 5-H), 3.93 and 3.69 (AB, $J_{AB} = 10.7$ Hz, ${}^{4}J_{H,F} =$ 1.8 Hz, 2 H, CH_2O_{cis}), 3.86 and 3.55 (AB, $J_{AB} = 10.4$ Hz, ${}^{4}J_{\text{H,H}} = 1.7$ Hz, 2 H, CH₂O_{trans}), 3.81 (t, ${}^{3}J_{\text{H,H}} = 7.3$ Hz, 2 H, CH₂N), 1.88-1.78 (m, 2 H, CH₂-cyclopropyl), 1.62-1.54 (m, 2 H, CH₂), 1.47 - 1.42 (m, 1 H, cyclopropyl), 0.90 -0.88 (m, 18 H, CH₃C), 0.07 – 0.00 (m, 12 H, CH₃Si). – ¹³C NMR (100 MHz, CD₃OD): $\delta = 170.36$ (s, CO), 164.89 (s, C-4'), 151.55 (s, C-2'), 147.54 (d, C-6'), 136.48 (s, C_a), 133.15 (d, C_{para}phenyl), 131.53 (d, C_{ortho}phenyl), 130.55 (d, C_{meta} phenyl), 117.57 (dd, ${}^{1}J_{C,F} = 286.7$, 294.6 Hz, CF₂), 102.33 (d, C-5'), 62.15 (dt, ${}^{3}J_{C,F} = 6.6$ Hz, CH₂O_{trans}), 57.13 (dt, ${}^{3}J_{C,F} = 6.3$ Hz, CH₂O_{*cis*}), 49.54 (t, CH₂N), 37.66 (t, ${}^{2}J_{C,F} = 9.9$ Hz, C-2), 29.69 (dt, ${}^{2}J_{C,F} = 9.9$ Hz, C-1), 29.56 (s, CCH₃), 26.35 (q, CH₃C), 26.32 (q, CH₃C), 20.05 (dt, ${}^{3}J_{C,F} = 3.3$ Hz, CH₂-cyclopropyl), 19.05 (dt, ${}^{4}J_{C,F} =$ 1.2 Hz, CH₂), -5.35 - -5.43 (m, CH₃Si). $-{}^{19}$ F NMR (188 MHz, CD₃OD): $\delta = -134.26$ (dd, ${}^{2}J_{F,F} = 162.6$ Hz, ${}^{3}J_{\text{F},\text{H}} = 14.7 \text{ Hz}, \text{ F}$), $-146.70 \text{ (d, } {}^{2}J_{\text{F},\text{F}} = 162.6 \text{ Hz}, \text{ F'}$). -HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol, N₂): m/z (%)

= 645.3 (100) [MNa]⁺, 623.2 (10) [MH]⁺. – HR-MS: calcd. for $C_{31}H_{48}F_2N_2O_5Si_2$: 622.3069; found: 622.3069. – Analysis for $C_{31}H_{48}F_2N_2O_5Si_2$ (622.81): calcd. C 59.78, H 7.77, N 4.50; found C 59.59, H 7.42, N 4.49.

(\pm) -1-[(2,2-Bis(tert-butyldimethylsilyloxymethyl)-3,3-difluoro-cyclopropyl-propyl]1,2,3,4-tetrahydro-pyrimidine-2,4-dione) ((\pm) – **7**)

A solution of 6 (2.69 g, 4.3 mmol) in methanol (45 ml) was treated with ammonium hydroxide (18 ml, 25%) overnight. The volatiles were evaporated and the remaining oil was subjected to column chromatography (silica gel, nhexane/ethyl acetate 1:1) to give 7 (2.20 g, 99%) as a white solid; m.p. 82-84 °C. – R_F (*n*-hexane/ethyl acetate 1:1) 0.47. – UV/vis (methanol): $\lambda_{max}(\lg \epsilon) = 269$ nm (3.97). – IR (KBr): v = 2957s, 2931s, 2886s, 2858s, 1681s, 1473s, 1430m, 1390m, 1361m, 1257s, 1198m, 1173m, 1081s, 1006m cm⁻¹. – ¹H-NMR (400 MHz, CD₃OD): δ = 7.55 (d, ${}^{3}J_{H,H} = 7.8$ Hz, 1 H, 6'-H), 5.63 (d, ${}^{3}J_{H,H} = 7.8$ Hz, 1 H, 5'-H), 3.92 and 3.68 (AB system, $J_{AB} = 10.7$ Hz, ${}^{4}J_{\rm H,F} = 1.9$ Hz, 2 H, CH₂O_{cis}), 3.86 and 3.55 (AB system, $J_{AB} = 10.4$ Hz, ${}^{4}J_{H,F} = 1.8$ Hz, 2 H, CH_2O_{trans}), 3.76 (t, ${}^{3}J_{H,H} = 7.1$ Hz, 2 H, CH₂N), 1.82–1.77 (m, 2 H, CH2-cyclopropyl), 1.58-1.54 (m, 2 H, CH2), 1.46-1.42 (m, 1 H, cyclopropyl), 0.89 (s, 18 H, CH₃C), 0.78-0.06 (m, 12 H, CH₃Si). - ¹³C-NMR (100 MHz, CD₃OD): $\delta = 166.88$ (s, C-4'), 152.93 (s, C-2'), 147.23 (d, C-6'), 117.61 (dd, ${}^{1}J_{C,F} = 286.7$, 295.0 Hz, CF₂), 102.41 (d, C-5'), 62.16 (dt, ${}^{3}J_{C,F} = 7.0$ Hz, CH₂O_{trans}), 57.09 (dt, ${}^{3}J_{C,F} = 6.2$ Hz, CH₂O_{cis}), 48.95 (t, CH₂N), 37.63 (t, ${}^{2}J_{C,F} = 9.9$ Hz, C-2), 29.74 (dt, ${}^{2}J_{C,F} = 9.9$ Hz, C-1), 29.64 (s, CCH₃), 26.32 (q, CH₃C), 26.31 (q, CH₃C), 19.99 (dt, ${}^{3}J_{C,F} = 3.7$ Hz, CH₂-cyclopropyl), 19.04 (dt, ${}^{4}J_{C,F} = 1.7$ Hz, CH₂), -5.36 - -5.45 (m, CH₃Si). $-{}^{19}$ F NMR (188 MHz, CD₃OD): $\delta = -134.29$ (dd, ${}^{2}J_{F,F} = 164.4$ Hz, ${}^{3}J_{F,H} = 14.7$ Hz, F), -146.77 (d, ${}^{2}J_{F,F} = 164.4$ Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol, N₂): m/z (%) = 541.2 (100) [MNa]⁺, 519.2 (63) [MH]⁺. - HR-MS calcd. for C24H44F2N2O4Si2: 518.2807; found: 518.2807. - Analysis for C₂₄H₄₄F₂N₂O₄Si₂ (518.80): calcd. C 55.56, H 8.55, N 5.40; found C 55.43, H 8.34, N 5.23.

(\pm) -1-[(2,2-Difluoro-3,3-bis(hydroxymethyl)-cyclopropyl)propyl]-1,2,3,4-tetrahydro-pyrimidine-2,4-dione ((\pm) – 8)

To a solution of **7** (2.20 g, 4.2 mmol) in THF (40 ml) was added tetra-*n*-butylammonium fluoride trihydrate (7.95 g, 25.2 mmol). After stirring overnight the solvent was evaporated and the residue subjected to column chromatography (silica gel, ethyl acetate/methanol 8:1) to afford **8** (1.00 g, 82%) as a white solid; m.p. 136–138 °C. – R_F (ethyl acetate/methanol 5:1) 0.61. – UV/vis (methanol): λ_{max} (lg ε) = 258 nm (3.93). – IR (KBr): ν = 3462m, 3421m, 2959m, 2564w, 1678s, 1467m, 1402w, 1364w, 1351m, 1276m,

1238w, 1195w, 1158w, 1119w, 1033m cm⁻¹. – ¹H NMR (400 MHz, CD₃OD): $\delta = 7.57$ (d, ${}^{3}J_{\text{H,H}} = 7.8$ Hz, 1 H, 6'-H), 5.65 (d, ${}^{3}J_{H,H} = 7.8$ Hz, 1 H, 5'-H), 3.81 and 3.71 (AB system, $J_{AB} = 10.5 \text{ Hz}$, ${}^{4}J_{H,F} = 1.9 \text{ Hz}$, 2 H, CH₂O_{cis}), 3.79 - 3.74 and 3.66 (AB system, $J_{AB} = 11.7$ Hz, ${}^{4}J_{H,F} =$ 1.9 Hz, 2 H, CH₂O_{trans}), 3.79-3.74 (m, 2 H, CH₂N), 1.82-1.74 (m, 2 H, CH₂-cyclopropyl), 1.62-1.48 (m, 2 H, CH₂), 1.39-1.29 (m, 1 H, cyclopropyl). - ¹³C NMR (100 MHz, CD₃OD): $\delta = 166.70$ (s, C-4'), 152.80 (s, C-2'), 147.17 (d, C-6'), 117.52 (dd, ${}^{1}J_{C,F} = 286.2$, 293.6 Hz, CF₂), 102.30 (d, C-5'), 61.46 (dt, ${}^{3}J_{C,F} = 6.9$ Hz, CH₂O_{trans}), 56.58 (dt, ${}^{3}J_{C,F} = 6.9$ Hz, CH₂O_{cis}), 40.08 (t, CH₂N), 37.18 (t, ${}^{2}J_{C,F} = 9.3$ Hz, C-3), 30.20 (dt, ${}^{2}J_{C,F} = 10.0$ Hz, C-1), 19.20 (dt, ${}^{3}J_{C,F} = 3.9$ Hz, CH₂-cyclopropyl). – ${}^{19}F$ NMR (188 MHz, CD₃OD): $\delta = -134.21$ (dd, ${}^{2}J_{F,F} = 162.7$ Hz, ${}^{3}J_{\rm F,H} = 162.7$ Hz, ${}^{3}J_{\rm F,H} = 14.6$ Hz, F), -146.69 (d, ${}^{2}J_{\rm F,F} =$ 162.7 Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 µl/min, methanol, N₂): m/z (%) = 602.8 (36) [M₂Na]⁺, 586.9 (53) [M₂Li]⁺, 313.2 (25) [MNa]⁺, 297.2 (100) [MLi]⁺. – HR-MS calcd. for C12H16F2N2O4: 290.1078; found: 290.1078. - Analysis for C12H16F2N2O4 (290.27): calcd. C 49.66, H 5.56, N 9.65; found C 49.51, H 5.29, N 9.42.

(\pm) -3-Benzoyl-1-[(2,2-bis(tert-butyldimethylsilyloxymethyl)-3,3-difluoro-cyclopropyl)propyl]-5-methyl-1,2,3,4-tetrahydro-pyrimidine-2,4-dione ((\pm) – **9**)

The reaction was performed under the conditions as described for 6 using 5 (2.00 g, 4.7 mmol), TPP (2.41 g, 9.4 mmol), N³-benzoylthymine (2.16 g, 9.4 mmol), 1,4dioxane (28 ml) and DIAD (1.91 g, 9.4 mmol) in 1,4-dioxane (59 ml). After evaporation of the solvents and purification by column chromatography (silica gel, n-hexane/ethyl acetate 7:3) 9 (2.48 g, 83%) was obtained as a colorless gel, contaminated with some impurities that were easily separated in the next reaction step; an analytical sample was obtained by column chromatography (silica gel RP-18, methanol/water 10:1). $-R_F$ (*n*-hexane/ethyl acetate = 7:3) 0.27. - UV/vis (methanol): λ_{max} (lg ε) = 258 nm (4.25). – IR (KBr): v = 3436m, 3069m, 2956s, 2930s, 2886m, 2856s, 2363w, 1751s, 1702s, 1660s, 1600m, 1472s, 1463s, 1438s, 1388m, 1352m, 1257s, 1172m, 1082s, 1005m cm⁻¹. - ¹H NMR (400 MHz, CD₃OD): $\delta = 7.91 - 7.52$ (m, 6 H, phenyl, 6'-H), 3.92 and 3.68 (AB system, $J_{AB} = 10.8$ Hz, ${}^{4}J_{H,F} = 1.6$ Hz, 2 H, CH₂O_{cis}), 3.86 and 3.54 (AB system, $J_{AB} = 10.5$ Hz, ${}^{4}J_{\text{H,F}} = 1.6 \text{ Hz}, 2 \text{ H}, \text{CH}_{2}\text{O}_{trans}), 3.78 \text{ (t, }{}^{3}J_{\text{H,H}} = 7.2 \text{ Hz},$ 2 H, CH₂N), 1.84-1.82 (m, 2 H, CH₂-cyclopropyl), 1.61-1.54 (m, 2 H, CH₂), 1.48-1.43 (m, 1 H, cyclopropyl), 0.90-0.89 (m, 18 H, CH₃C), 0.07-0.06 (m, 12 H, CH₃Si). - ¹³C NMR (100 MHz, CD₃OD): δ = 170.57 (s, CO), 165.40 (s, C-4'), 151.59 (s, C-2'), 143.47 (d, C-6'), 136.49 (s, Cq phenyl), 133.16 (d, Cpara phenyl), 131.53(d, Cortho phenyl), 130.56 (d, C_{meta} phenyl), 117.66 (dd, ${}^{1}J_{C,F} = 286.3$, 294.6 Hz, CF₂), 110.91 (d, C-5'), 62.17 (dt, ${}^{3}J_{C,F} = 6.6$ Hz,

CH₂O_{*trans*}), 57.13 (dt, ${}^{3}J_{C,F} = 6.2$ Hz, CH₂O_{*cis*}), 37.66 (t, C-2), 29.38 (dt, ${}^{2}J_{C,F} = 9.5$ Hz, C-1), 29.58 (s, CCH₃), 26.34 (q, CH₃C), 26.32 (q, CH₃C), 20.03 (dt, CH₂-cyclopropyl), 18.61 (dt, ${}^{4}J_{C,F} = 2.0$ Hz, CH₂), -5.79 - 5.88 (m, CH₃Si). $-{}^{19}F$ NMR (188 MHz, CD₃OD): $\delta = -134.26$ (dd, ${}^{2}J_{F,F} = 164.4$ Hz, ${}^{3}J_{F,H} = 14.6$ Hz,F), -146.73 (d, ${}^{2}J_{F,F} = 164.4$ Hz, F"). - HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol + LiClO₄, N₂): m/z (%) = 643.3 (100) [MLi]⁺. - HR-MS calcd. for C₃₂H₅₀F₂N₂O₅Si₂ : 636.3226; found: 636.3226. - Analysis for C₃₂H₅₀F₂N₂O₅Si₂ (636.86): calcd. C 60.34, H 7.91, N 4.40; found C 60.22, H 8.09, N 4.25.

(\pm) -1-[(2,2-Bis(tert-butyldimethylsilyloxymethyl)-3,3-difluoro-cyclopropyl)propyl]-5-methyl-1,2,3,4tetrahydropyrimidine-2,4-dione ((\pm) – **10**)

A solution of 9 (2.48 g, 3.9 mmol) in methanol (40 ml) was treated with ammonium hydroxide (16 ml) overnight. The volatiles were evaporated and the remaining oil was subjected to column chromatography (silica gel, n-hexane/ethyl acetate 6:4) to give 10 (1.43 g, 69%) as a white solid; m. p. 133 °C. – R_F (*n*-hexane/ethyl acetate 6:4) 0.33. – UV/vis (methanol): λ_{max} (lg ε) = 277 nm (3.96). – IR (KBr): v = 3438m, 3162w, 3030m, 2955m, 2932m, 2887m, 2859m, 1682s, 1475m, 1428w,1387w, 1361w, 1332w, 1256m, 1222w, 1154w, 1077m, 1009w cm⁻¹. - ¹H NMR (400 MHz, CD₃OD): $\delta = 7.40$ (d, ${}^{4}J_{H,H} = 1.2$ Hz, 1 H, 6'-H), 3.92 and 3.68 (AB, $J_{AB} = 10.8$ Hz, ${}^{4}J_{H,F} =$ 2.1 Hz, 2 H, CH_2O_{cis}), 3.86 and 3.55 (AB, $J_{AB} = 10.7$ Hz, ${}^{4}J_{\text{H,F}} = 1.9 \text{ Hz}, 2 \text{ H}, \text{CH}_{2}\text{O}_{trans}$), 3.73 (t, ${}^{3}J_{\text{H,H}} = 7.2 \text{ Hz}, 2$ H, CH₂N), 1.85 (d, ${}^{4}J_{H,H} = 1.2$ Hz, 3 H, CH₃) 1.83 (m, 2 H, CH₂-cyclopropyl), 1.57-1.51 (m, 2 H, CH₂), 1.47-1.40 (m, 1 H, cyclopropyl), 0.90-0.88 (m, 18 H, CH₃C), 0.07-0.06 (m, 12 H, CH₃Si). – ¹³C-NMR (100 MHz, CD₃OD): δ = 166.58 (s, C-4'), 152.64 (s, C-2'), 142.64 (d, C-6'), 117.18 $(dd, {}^{1}J_{C,F} = 286.3, 294.6 \text{ Hz}, CF_{2}), 110.88 (s, C-5'), 61.73$ (dt, ${}^{3}J_{C,F} = 7.0$ Hz, CH₂O_{trans}), 56.50 (dt, ${}^{3}J_{C,F} = 6.6$ Hz, CH_2O_{cis}), 48.24 (t, CH_2N), 37.20 (t, ${}^2J_{C,F} = 9.1$ Hz, C-2), 29.32 (dt, ${}^{2}J_{C,F} = 9.7$ Hz, C-1), 25.86 (q, CH₃C), 19.55 (dt, ${}^{3}J_{C,F} = 3.7$ Hz, CH₂-cyclopropyl), 18.59 (dt, ${}^{4}J_{C,F} =$ 2.9 Hz, CH2), -5.60 - 5.91 (m, CH₃Si). - ¹⁹F NMR (188 MHz, CD₃OD): $\delta = -134.29$ (dd, ${}^{2}J_{\text{F},\text{F}} = 162.6$ Hz, ${}^{3}J_{\text{F,H}} = 14.6$ Hz, F), -146.80 (d, ${}^{2}J_{\text{F,F}} = 162.6$ Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 µl/min, methanol + LiClO₄, N₂): m/z (%) = 539.3 (100) [MLi]⁺. – HR-MS calcd. for C25H46F2N2O4Si2: 532.2964; found: 532.2964. - Analysis for C₂₅H₄₆F₂N₂O₄Si₂ (532.82): calcd. C 56.36, H 8.70, N 5.26; found C 56.11, H 8.51, N 5.01.

(\pm) -1-[(2,2-Difluoro-3,3-bis(hydroxymethyl)-cyclopropyl)-propyl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione $((\pm) - 11)$

To a solution of **10** (1.43 g, 2.7 mmol) in THF (36 ml) was added tetra-*n*-butylammonium fluoride trihydrate

(5.06 g, 16 mmol). After stirring overnight the solvent was evaporated and the residue subjected to column chromatography (silica gel, ethyl acetate/methanol 3:1) to afford 8 (6.74 g, 82%) as a white solid; m.p. 108 °C. – R_F (ethyl acetate/methanol 3:1) 0.23. – UV/vis (methanol): λ_{max} (lg ε) = 277 nm (3.98). – IR (film): v = 3399s, 2955s, 2519m, 2369m, 2071m, 1682s, 1472s, 1360s, 1284m, 1217s, 1133m, 1117m, 1033m cm⁻¹. – ¹H NMR (400MHz, CD₃OD): δ = 7.45 (d, ${}^{4}J_{\text{H.H}} = 1.2$ Hz, 1 H, 6'-H), 3.82–3.64 (m, 6 H, CH2OH, CH2N), 1.81-1.71 (m, 2 H, CH2-cyclopropyl), 1.64-1.47 (m, 3 H, cyclopropane, CH₂). - ¹³C NMR (100 MHz, CD₃OD): δ = 167.06 (s, C-4'), 153.15 (s, C-2'), 143.18 (d, C-6'), 117.68 (dd, ${}^{1}J_{C,F} = 286.0, 294.6$ Hz, CF₂), 111.40 (s, C-5'), 61.55 (dt, ${}^{3}J_{C,F} = 6.2$ Hz, CH₂O_{trans}), 56.66 (dt, ${}^{3}J_{C,F} = 5.8$ Hz, CH₂O_{*cis*}), 48.72 (t, CH₂N), 37.17 (t, ${}^{2}J_{C,F} = 9.9$ Hz, C-3), 30.21 (dt, ${}^{2}J_{C,F} = 9.9$ Hz, C-1), 19.87 (dt, ${}^{3}J_{C,F} = 3.7$ Hz, CH₂-cyclopropyl), 12.08 (q, CH₃). – ¹⁹F NMR (188 MHz, CD₃OD): δ = –134.26 (dd, ${}^{2}J_{\rm F,F} = 162.5$ Hz, ${}^{3}J_{\rm F,H} = 14.6$ Hz, F), -146.76 (d, ${}^{2}J_{\rm F,F} =$ 162.5 Hz, F'). – HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol + LiClO₄, N₂): m/z (%) = 311.2 (100)[MLi]⁺. - HR-MS calcd. for $C_{13}H_{18}F_2N_2O_4$: 304.1234; found: 304.1234. - Analysis for C13H18F2N2O4 (304.30): calcd. C 51.31, H 5.96, N 9.21; found C 51.09, H 6.02, N 9.31.

(\pm) -3-Benzoyl-1-[(2,2-bis(tert-butyldimethylsilyloxymethyl)-3,3-difluorocyclopropyl)propyl]-5-fluoro-1,2,3,4tetrahydropyrimidine-2,4-dione ((\pm) – **12**)

The reaction was performed under the conditions described for compound 6 using 5 (2.00 g, 4.7 mmol), TPP (2.41 g, 9.4 mmol), N³-benzoyl-5-fluorouracil (2.40 g, 9.4 mmol), 1,4-dioxane (28 ml) and DIAD (1.91 g, 9.4 mmol) in 1,4-dioxane (42 ml). After evaporation of the solvents and purification by column chromatography (silica gel, n-hexane/ethyl acetate 3:1) 12 (1.50 g, 50%) was obtained as a white solid, contaminated with some impurities that were easily separated in the next reaction step; an analytical sample was obtained by column chromatography (silica gel RP-18, methanol/water 10:1); m.p. 92 °C. - R_F (*n*-hexane/ethyl acetate 3:1) 0.30. – UV/vis (methanol): λ_{max} (lg ε) = 258 nm (4.24). – IR (KBr): v = 3457s, 2956s, 2930s, 2886s, 2856s, 1755s, 1715s, 1674s, 1600m, 1472s, 1450s, 1361m, 1257s, 1163m, 1081s cm⁻¹. - ¹H NMR (400 MHz, CD₃OD): $\delta = 8.02$ (d, ${}^{3}J_{\text{H,H}} = 6.2$ Hz, 1 H, 6'-H), 7.97-7.54 (m, 5 H, phenyl), 3.93 and 3.68 (AB system, $J_{AB} = 10.7$ Hz, ${}^{4}J_{H,F} = 1.9$ Hz, 2 H, CH₂O_{cis}), 3.87 and 3.55 (AB system, $J_{AB} = 10.4$ Hz, ${}^{4}J_{H,F} = 1.8$ Hz, 2 H, CH₂O_{trans}), 3.79 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 2 H, CH₂N), 1.89 (m, 2 H, CH₂-cyclopropyl), 1.62-1.55 (m, 2 H, CH₂), 1.48-1.40 (m, 1 H, cyclopropyl), 0.89 (m, 18 H, CH₃C), 0.07 - 0.05 (m, 12 H, CH₃Si). - ¹³C NMR (100 MHz, CD₃OD): $\delta = 169.08$ (s, CO), 158.55 (d, ${}^{2}J_{C,F} = 27.3$ Hz, C-4'), 150.28 (s, C-2'),141.37 (d, ${}^{1}J_{C,F} = 235.4$ Hz, C-5',

136.73 (s, C_q-phenyl), 132.8 (d, C_{para}-phenyl), 131.70 (d, ²J_{C,F} = 33.6 Hz, C-6'), 131.69 (d, C_{ortho}-phenyl), 130.62 (d, C_{meta}-phenyl), 117.60 (dd, ¹J_{C,F} = 295.0 Hz, CF₂), 62.16 (dt, ³J_{C,F} = 7.4 Hz, CH₂O_{trans}), 57.16 (dt, ³J_{C,F} = 6.2 Hz, CH₂O_{cis}), 49.70 (t, CH₂N), 37.66 (t, ²J_{C,F} = 9.7 Hz, C-2), 29.65 (dt, ²J_{C,F} = 10.2 Hz, C-1), 29.36 (s, CCH₃), 26.29 (q, CH₃C), 20.01 (dt, ³J_{C,F} = 3.7 Hz, CH₂cyclopropyl), 19.03 (dt, ⁴J_{C,F} = 2.4 Hz, CH₂), -5.38 – -5.47 (m, CH₃Si). – ¹⁹F NMR (188 MHz, CD₃OD): δ = -134.32 (dd, ²J_{F,F} = 164.5 Hz, ³J_{F,H} = 14.6 Hz, F), -146.75 (d, ²J_{F,F} = 164.5 Hz, F'), -166.75 (s, F''). – HR-MS calcd. for C₃₁H₄₇F₃N₂O₅Si₂: 640.2975; found: 640.2975. – Analysis for C₃₁H₄₇F₃N₂O₅Si₂ (640.90): calcd. C 58.10, H 7.39, N 4.37; found C 57.98, H 7.19.

(\pm) -1-[(2,2-Bis(tert-butyldimethylsilyloxymethyl)-3,3-difluoro-cyclopropy)lpropyl]-5-fluoro-1,2,3,4-tetrahydropyrimidine-2,4-dione ((\pm) – **13**)

A solution of 12 (1.50 g, 2.3 mmol) in methanol (60 ml) was treated with ammonium hydroxide (15 ml, 25%) overnight. The volatiles were evaporated and the remaining oil was subjected to column chromatography (silica gel, nhexane/ethyl acetate 1:1) to give 13 (1.06 g, 86%) as a white solid; m.p. 86-88 °C. $-R_F$ (*n*-hexane/ethyl acetate 1:1) 0.19. – UV/vis (methanol): λ_{max} (lg ε) = 278 nm (3.97). – IR (KBr): v = 3433m, 3063w, 2957m, 2932m, 2886w, 2859m, 2289w, 1723m, 1660m, 1473m, 1388m, 1362w, 1329w, 1254m, 1170w, 1154w, 1104m, 1077m, 1006w cm⁻¹. – ¹H NMR (400 MHz, CD₃OD): $\delta = 7.82$ (d, ${}^{3}J_{\text{H,F}} = 6.3$ Hz, 1 H, 6'-H), 3.93 and 3.68 (AB system, $J_{AB} = 10.7$ Hz, ${}^{4}J_{\text{H,F}} = 1.9 \text{ Hz}, 2 \text{ H}, \text{CH}_{2}\text{O}_{cis}$), 3.87 and 3.53 (AB system, $J_{AB} = 10.4$ Hz, ${}^{4}J_{H,F} = 1.8$ Hz, 2 H, CH₂O_{trans}), 3.73 (t, ${}^{3}J_{\rm H,H} = 7.2$ Hz, 2 H, CH₂N), 1.83–1.77 (m, 2 H, CH₂cyclopropyl), 1.58-1.49 (m, 2 H, CH₂), 1.46-1.42 (m, 1 H, cyclopropyl), 0.90 (s, 18 H, CH₃C), 0.08-0.06 (m, 12 H, CH₃Si). – ¹³C NMR (100 MHz, CD₃OD): δ = 159.93 (d, ${}^{2}J_{C,F} = 26.1$ Hz, C-4'), 151.59 (s, C-2'), 141.82 (d, ${}^{1}J_{C,F} = 233.3$ Hz, C-5', 130.13 (d, ${}^{2}J_{C,F} = 33.1$ Hz, C-6', 117.57 (dd, ${}^{1}J_{C,F} = 286.3$, 296.0 Hz, CF₂), 62.17 (dt, ${}^{3}J_{C,F} = 7.0$ Hz, CH₂O_{trans}), 57.11 (dt, ${}^{3}J_{C,F} = 6.2$ Hz, CH_2O_{cis}), 49.09 (t, CH_2N), 37.64 (t, ${}^2J_{C,F} = 9.0$ Hz, C-2), 29.71 (dt, ${}^{2}J_{C,F} = 9.7$ Hz, C-1), 29.46 (s, CCH₃), 26.30 (q, CH₃C), 19.94 (dt, ${}^{3}J_{C,F} = 3.7$ Hz, CH₂-cyclopropyl), 19.03 $(dt, {}^{4}J_{C,F} = 2.5 \text{ Hz}), -5.37 - -5.45 \text{ (m, CH_3Si)}, -{}^{19}\text{F NMR}$ (188 MHz, CD₃OD): $\delta = -134.31$ (dd, ${}^{2}J_{\text{F,F}} = 162.6$ Hz, ${}^{3}J_{\text{F,H}} = 14.6$ Hz, F), -146.82 (d, ${}^{2}J_{\text{F,F}} = 162.6$ Hz, F'), -167.86 (d, ${}^{3}J_{F,H} = 7.3$ Hz, F"). - HPLC-MS (ESI, 4.1 kV, 8 μ l/min, methanol + LiClO₄): m/z (%) = 543.3 (100) [MLi]⁺. - HR-MS calcd. for C₂₄H₄₃F₃N₂O₄Si₂: 536.2713; found: 536.2713. - Analysis for C24H43F3N2O4Si2 (536.79): calcd. C 53.70, H 8.07, N 5.22; found C 53.56, H 8.15, N 5.33.

To a solution of 13 (1.06 g, 2.0 mmol) in THF (20 ml) was added tetra-n-butylammonium fluoride trihydrate (3.78 g, 12 mmol). After stirring overnight the solvent was evaporated and the residue subjected to column chromatography (silica gel, ethyl acetate/methanol 8:1) to afford 14 (0.61 g, 99%) as a white solid; m.p. 152 - 154 °C. $- R_F$ (ethyl acetate/methanol 8:1) 0.40. – UV/vis (methanol): λ_{max} $(\lg \varepsilon) = 278 \text{ nm} (3.94). - \text{IR} (\text{KBr}): v = 3462\text{m}, 3409\text{m},$ 3073m, 2959m, 2883w, 2841w, 2565s, 2530s, 2358w, 2219m, 2127w, 1674s, 1524w, 1476m, 1444m, 1388m, 1364s, 1320m, 1300m, 1282m, 1263m, 1227s, 1186m, 1159m, 1132m, 1116m, 1060m, 1044s, 1026s cm $^{-1}$. – $^{1}\mathrm{H}$ NMR (400 MHz, CD₃OD): $\delta = 7.83$ (d, ${}^{3}J_{\text{H,F}} = 6.2$ Hz, 1 H, 6'-H), 3.83-3.64 (m, 6 H, CH2OH, CH2N), 1.83-1.73 (m, 2 H, CH₂-cyclopropyl), 1.65-1.47 (m, 3 H, cyclopropane, CH₂). – ¹³C NMR (100 MHz, CD₃OD): δ = 159.98 (d, $^{2}J_{C,F} = 25.7$ Hz, C-4'), 151.66 (s, C-2'), 141.84 (d, $^{1}J_{C,F} =$ 232.8 Hz, C-5'), 131.16 (d, ${}^{2}J_{C,F} = 33.1$ Hz, C-6'), 117.66 (dd, ${}^{1}J_{C,F} = 285.9$, 294.6 Hz, CF₂), 61.57 (dt, ${}^{3}J_{C,F} =$ 6.6 Hz, CH₂O_{trans}), 56.65 (dt, ${}^{3}J_{C,F} = 6.6$ Hz, CH₂O_{cis}), 49.17 (t, CH₂N), 37.16 (t, ${}^{2}J_{C,F} = 9.9$ Hz, C-3), 30.16 (dt, ${}^{2}J_{C,F} = 9.9$ Hz, C-1), 19.82 (dt, ${}^{3}J_{C,F} = 3.7$ Hz, CH₂cyclopropyl). $-{}^{19}$ F NMR (188 MHz, CD₃OD): $\delta = -134.27$ (dd, ${}^{2}J_{F,F} = 162.6$ Hz, ${}^{3}J_{F,H} = 14.6$ Hz, F), -146.74 (d, ${}^{2}J_{F,F} = 162.6$ Hz, F'), -167.78 (d, ${}^{3}J_{F,H} = 7.3$ Hz, F"). - HPLC-MS (ESI, 4.1 kV, 8 µl/min, methanol + LiClO₄, N₂): m/z (%) = 315.1 (100) [MLi]⁺. – HR-MS calcd. for C₁₂H₁₅F₃N₂O₄: 308.0984; found: 308.0984. – Analysis for C₁₂H₁₅F₃N₂O₄ (308.26): calcd. C 46.76, H 4.90, N 9.09; found C 46.51, H 4.73, N 9.15.

(\pm) -9-[(2,2-Bis(tert-butyldimethylsilyloxymethyl)-3,3-difluoro-cyclopropyl]-9H-6-purineamine ((\pm) – **15**)

The reaction was performed under the conditions as described for compound 6 using 5 (2.00 g, 4.7 mmol), TPP (2.41 g, 9.4 mmol), adenine (1.28 g, 9.4 mmol), 1,4-dioxane (52 ml) and DIAD (1.91 g, 9.4 mmol) in 1,4-dioxane (25 ml). After evaporation of the solvents and purification by column chromatography (silica gel, ethyl acetate/methanol 20:1) 15 (1.37 g, 54%) was obtained as a white solid, contaminated with some impurities that were easily separated in the next reaction step; an analytical sample was obtained by column chromatography (silica gel RP-18, methanol/water 10:1); m.p. 79 °C. – R_F (ethyl acetate/methanol = 20:1) 0.16. – UV/vis (methanol): λ_{max} (lg ε) = 266 nm (4.08). - IR (KBr): v = 3425m, 2956m, 2930m, 2888m, 2858m, 1648m, 1601m, 1575m, 1474m, 1439m, 1418w, 1361w, 1326w, 1304m, 1257m, 1189m, 1082m, 1006w cm⁻¹. – ¹H NMR (400 MHz, CD₃OD): $\delta = 8.18$ (s, 1 H, 2'-H), 8.11 (s, 1

H, 8'-H), 4.26 (t, ${}^{3}J_{H,H} = 6.8$ Hz, 2 H, CH₂N), 3.83 and 3.60 (AB system, $J_{AB} = 10.6$ Hz, 2 H, CH_2O_{cis}), 3.82 and 3.53 (AB system, $J_{AB} = 10.4$ Hz, 2 H, CH_2O_{trans}), 2.02 - 1.96(m, 2 H, CH₂-cyclopropyl), 1.53 - 1.50 (m, 2 H, CH₂), 1.47 -1.42 (m, 1 H, cyclopropyl) 0.87-0.82 (m, 18 H, CH₃C), 0.04-0.01 (m, 12 H, CH₃Si). - ¹³C NMR (100 MHz, CD₃OD): $\delta = 157.54$ (s, C-6'), 153.91 (s, C-2'), 150.92 (d, C-4'), 142.72 (d, C-8'), 117.60 (dd, ${}^{1}J_{C,F} = 286.1$, 295.4 Hz, CF₂), 62.10 (dt, ${}^{3}J_{C,F} = 7.0$ Hz, CH₂O_{trans}), 57.03 (dt, ${}^{3}J_{C,F} = 6.2 \text{ Hz}, \text{CH}_{2}\text{O}_{cis}$, 44.29 (t, CH₂N), 37.59 (t, ${}^{2}J_{C,F} =$ 10.4 Hz, C-2), 30.70 (s, CCH₃), 29.65 (dt, ${}^{2}J_{C,F} = 9.5$ Hz, C-1), 26.28 (q, CH₃C), 26.26 (q, CH₃C), 20.20 (dt, ${}^{3}J_{C,F} =$ 3.7 Hz, CH₂-cyclopropyl), 19.00 (dt, CH₂), -5.38--5.51 (m, CH₃Si). – ¹⁹F NMR (188 MHz, CD₃OD): $\delta = -134.30$ (dd, ${}^{2}J_{F,F} = 162.6$ Hz, ${}^{3}J_{F,H} = 14.7$ Hz, F), -146.83 (d, ${}^{2}J_{\text{F,F}} = 162.6 \text{ Hz}, \text{ F}'). - \text{HPLC-MS}$ (ESI, 4.1 kV, 8 μ l/min, methanol + TFA, N₂): m/z (%) = 542.3 (100) [MH]⁺. - HR-MS calcd. for C₂₅H₄₄F₂N₅O₂Si₂: 541.3079; found: 541.3079. – Analysis for $C_{27}H_{49}F_2N_5O_2Si_2$ (541.84): calcd. C 55.42, H 8.37, N 12.93; found C 55.39, H 8.28, N 12.99.

(\pm)-[3-(6-Amino-9H-purinylpropyl)-2,2-difluoro-1,1-bis-(hydroxymethyl)-cyclopropyl]methanol ((\pm) - **16**)

To a solution of **15** (1.37 g, 2.5 mmol) in THF (25 ml) was added tetra-*n*-butylammonium fluoride trihydrate (4.72 g, 15 mmol). After stirring overnight the solvent was evaporated and the residue subjected to column chromatography (silica gel, ethyl acetate/methanol) to afford **16** (0.61 g, 78%)

as a white solid; m.p. 158 °C. – R_F (ethyl acetate/methanol 1:1) 0.27. – UV/vis (methanol): λ_{max} (lg ε) = 266 nm (4.11). – IR (KBr): v = 3387w, 2930w, 2385w, 1671m, 1610m, 1578w, 1473w, 1335w, 1302w, 1262w, 1163w, 1037w cm⁻¹. $- {}^{1}$ H NMR (400 MHz, CD₃OD): $\delta = 8.20$ (s, 1 H, 2'-H), 8.12 (s, 1 H, 8'-H), 4.27-4.23 (m, 2 H, CH₂N), 3.78-3.63 (m, 4 H, CH₂OH), 2.03-1.91 (m, 2 H, CH₂cyclopropyl), 1.66-1.39 (m, 3 H, CH₂, cyclopropyl). - ¹³C NMR (100 MHz, CD₃OD): $\delta = 157.52$ (s, C-6'), 153.87 (d, C-2'), 150.83 (s, C-4'), 142.84 (d, C-8'), 120.19 (s, C-5'), 117.65 (dd, ${}^{1}J_{C,F} = 285.9$, 294.6 Hz, CF₂), 61.48 (dt, CH₂O_{trans}), 56.61 (dt, CH₂O_{cis}), 44.41 (t, CH₂N), 37.21 (t, ${}^{2}J_{C,F} = 9.3$ Hz, C-3), 30.09 (dt, ${}^{2}J_{C,F} = 9.7$ Hz, C-1), 20.10 (dt, ${}^{3}J_{C,F} = 3.7$ Hz, CH₂-cyclopropyl). – ${}^{19}F$ NMR (188 MHz, CD₃OD): $\delta = -134.37$ (dd, ${}^{2}J_{F,F} = 162.6$ Hz, ${}^{3}J_{\text{F,F}} = 14.6$ Hz, F), -146.83 (d, ${}^{2}J_{\text{F,F}} = 162.6$ Hz, F'). - HPLC-MS (ESI, 4.1 kV, 8 µl/min, methanol + TFA, N₂): m/z (%) = 314.3 (100) [MH]⁺. – HR-MS calcd. for C13H17F2N5O2: 313.1250; found: 313.1251. - Analysis for C₁₃H₁₇F₂N₅O₂ (313.31): calcd. C 49.84, H 5.47, N 22.35; found C 49.75, H 5.51, N 22.46.

Acknowledgments

Financial support by the European Communities (SC1*-CT92-0780) and the Fonds der Chemischen Industrie is gratefully acknowledged. We like to thank Dr. K. Mohr and Mrs. R. Ziehn for their help with the HPLC separations, Dr. R. Kluge for the ESI-MS measurements and Dr. D. Ströhl for numerous NMR spectra.

- L. Agrofoglio, E. Shas, A. Farese, R. Condom, S. R. Challand, R. A. Earl, R. Guedj, Tetrahedron 50, 10611 (1994).
- [2] D. M. Huryn, M. Okabe, Chem. Rev. 92, 1745 (1992).
- [3] V. E. Marquez, M. I. Lim, Med. Res. Rev. 6, 1 (1986).
- [4] A. D. Borthwick, K. Biggadike, Tetrahedron 48, 571 (1992).
- [5] R. Csuk, L. Eversmann, Tetrahedron 54, 6445 (1998).
- [6] R. Csuk, G. Thiede, Tetrahedron **55**, 739 (1999).
- [7] Y. L. Qiu, J. Zemlickka, Nucleosides Nucleotides 18, 2285 (1999).
- [8] M. R. Harnden, R. L. Jarvest, T. H. Bacon, M. R. Boyd, J. Med. Chem. **30**, 1636 (1987).
- [9] M. R. Boyd, T. H. Bacon, D. Sutton, Agents Chemother., 32, 358 (1988).
- [10] M. R. Boyd, T. H. Bacon, D. Sutton, M. Cole, Agents Chemother. **31**, 1238 (1987).
- [11] K. K. Ogilvie, N. Nguyen-Ba, M. F. Gillen, B. K. Radatus, U. O. Cheriyan, H. R. Hanna, K. O. Smith, K. S. Gallowa, Can. J. Chem. 62, 241 (1984).

- [12] P.L. Anelli, S. Banfi, F. Montanari, S. Quici, J. Org. Chem. 54, 2970 (1989).
- [13] P.L. Anelli, F. Montanari, S. Quici, Org. Synth. 69, 212 (1990).
- [14] D. R. Haynes, C. K. H. Tseng, V. E. Marquez, J. Med. Chem. 30, 943 (1987).
- [15] R. Csuk, A. Kern, Tetrahedron 55, 8409 (1999).
- [16] O. Mitsunobu, Synthesis 1 (1981).
- [17] M.J. Perez-Perez, J. Rozenski, R. Busson, P.J. Herdewijn, J. Org. Chem. 60, 1531 (1995).
- [18] A. Novacek, D. Hesoun, J. Gut, Coll. Czech. Chem. Commun. **30**, 1890 (1965).
- [19] I. Verhaeggen, A. van Aerschat, L. van Meervelt, J. Rozenski, L. Wiebe, R. Snoeck, G. Andrei, J. Balzarini, E. De Clercq, J. Med. Chem. 38, 826 (1995).