

SCIENCE

Bioorganic & Medicinal Chemistry Letters 13 (2003) 1129-1132

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Discovery of a Potent and Selective Agonist of the Prostaglandin EP₄ Receptor

Xavier Billot,[†] Anne Chateauneuf, Nathalie Chauret, Danielle Denis, Gillian Greig, Marie-Claude Mathieu, Kathleen M. Metters, Deborah M. Slipetz and Robert N. Young,*

Merck Frosst Centre for Therapeutic Research, PO Box 1005, Pointe Claire-Dorval, Québec, Canada H9R 4P8

Received 1 November 2002; accepted 20 December 2002

Abstract—Analogues of PGE₂ wherein the hydroxycyclopentanone ring has been replaced by a lactam have been prepared and evaluated as ligands for the EP₄ receptor. An optimized compound (**19a**) shows high potency and agonist efficacy at the EP₄ receptor and is highly selective over the other seven known prostaglandin receptors. \bigcirc 2003 Elsevier Science Ltd. All rights reserved.

Prostaglandin E_2 (PGE₂) is a potent pro-inflammatory mediator which manifests a variety of activities in the body through interaction with four distinct subtypes of receptor (termed EP receptors) namely EP1, EP2, EP3 and EP_4 .^{1,2} PGE₂ has multiple effects on bone including stimulation of resorption and formation³ as well as other systemic effects including induction of diarrhea and hypotension. PGE₂ has been shown to stimulate bone formation in rats and humans in vivo.⁴ However, the multiple side effects of PGE_2 have made it unsuitable for use as a bone-forming therapy. The major prostaglandin E receptor on bone cells is EP₄ and EP₄ receptor knockout mice have shown significant defects in bone metabolism.⁵ A recent study utilizing an EP₄ receptor antagonist has shown that the in vivo bone forming effects of PGE₂ in rats are effectively blocked by co-administration of the antagonist.⁶ Thus the hypothesis has been formed that a selective EP₄ receptor agonist could be a useful agent to promote bone growth.⁷

Receptor binding assays are available in our laboratory for all eight of the prostaglandin receptors⁸ and utilizing these assays we have screened for selective ligands at the EP_4 receptor. Such screening resulted in the identification of compound 1⁹ which exhibited nanomolar binding at the EP₄ receptor and essentially no activity at any other receptor in the prostaglandin receptor panel (entry 1, Table 1). The compound also displayed agonism in a functionally coupled cellular assay (EC₅₀ = 770 nM). Compound 1 was a mixture of four isomers and considering general homology with PGE₂, it was anticipated that activity should reside in one isomer only. Resynthesis of 1 as a pair of C-12 isomers (entries 2 and 3) revealed that the 12-(*R*)-enantiomer (corresponding to the natural PGE₂ stereochemistry) displayed the large majority of the activity. Analogues of 1 incorporating a 13,14 *trans*-double bond (entries 4 and 5) were prepared and again activity resided essentially in the 12-(*R*)enantiomer (these compounds were still unresolved at the C-15 center).

Our goal was to develop an EP_4 receptor agonist which would serve as an in vivo probe in a variety of assays of bone formation and therefore we sought to identify an analogue with a degree of metabolic stability which would be manifested in an improved in vivo half-life. PGE₂ has an extremely short half-life in vivo. As pros-

^{*}Corresponding author. Tel.: +1-514-428-2647; fax: +1-514-428-2624; e-mail:

[†]Current address: Gemin X Biotechnologies Inc., PO Box 477, Place du Parc, Montreal, Québec, Canada H2X 4A5.

 Table 1. Binding data for compounds at the prostaglandin receptors

Entry	Compd	Binding K_i (nM)			
		EP ₄	EP ₂	EP ₃	EP ₁ , DP, FP, IP, TP
1	1	35(n=1)	3000	2000	> 3000
2	6	28(n=2)	4050	700	> 13,000
3	8	1110(n=1)	3610	2315	> 13,000
4	7	$6.0 \pm 0.5 \ (n=5)$	6680	419	> 13,000
5	9	1410 (n=1)	>13,000	1220	>13,000
6	10a	3500 (n=1)	>13,000	>13,000	>13,000
7	10b	$2.6 \pm 0.1 \ (n=6)$	>13,000	>13,000	>13,000
8	10c	$3.6 \pm 0.2 \ (n=3)$	>13,000	>13,000	>13,000
9	10d	102 (n=2)	>13,000	2014	>13,000
10	12	2100 (n=1)	>13,000	>13,000	>13,000
11	10e	62 $(n=1)$	>13,000	10,560	>13,000
12	10f	12 (n=1)	>13,000	3340	>13,000
13	15a	$443 \pm 48 \ (n=4)$	>13,000	>13,000	>13,000
14	16a	$13 \pm 1 \ (n = 5)$	>13,000	>13,000	>13,000
15	16b	140 (n=1)	>13,000	>13,000	>13,000
16	16d	243 $(n=1)$	>13,000	>13,000	>13,000
17	16c	66 $(n=1)$	>13,000	>13,000	>13,000
18	19a + 19b	$2.5 \pm 0.2 \ (n=5)$	>13,000	>13,000	>13,000
19	19 a	$1.2\pm0.2~(n=4)$	>13,000	>13,000	>13,000
20	19b	$230 \pm 40 \ (n=3)$	>13,000	>13,000	>13,000

taglandin metabolism is known to involve both β -oxidation of the acid chain and terminal oxidation of the lipophilic chain, it was decided to explore whether these chains could be modified to inhibit or block the expected metabolism while maintaining potency at the EP4 receptor and full functional efficacy. Initially, a variety of compounds were prepared wherein the terminal lipophilic group had been replaced by an aryl ring or a cyclohexyl ring. Introduction of the cyclohexyl ring adjacent to the hydroxy group at C-15 was accompanied by a dramatic drop loss in binding activity (entry 6). Replacement of the C-17 to 20 chain with a phenyl ring yielded a potent binding compound which retained its in vitro efficacy in the cell assay (EC₅₀ = 28 nM) (see entry 7). Substitution of the aryl ring by a methoxy methyl group (entry 8) (a substitution shown to be optimal in other studies on EP₄-selective PGE₂ analogues)¹⁰ yielded a potent compound (10c) but with no advantage over 10b. Homologation of the chain (entry 9) led to an important drop in activity. A major route of in vivo metabolism of the prostaglandins involves 15dehydrogenation.¹¹ Although such oxidation was not observed in hepatocyte incubations (with 10b), this type of oxidation is known to generally take place through extra-hepatic metabolism in mammals.¹² We therefore prepared the corresponding 15-methyl substituted analogue (10c). The compound, however, was dramatically less potent (entry 10). In order to block the 16-position to potential benzylic oxidation, 16,16-distubstituted analogues (entry 11 and 12) were prepared and were found to largely retain the binding activity compared to the **10b**. However, these substitutions did not lead to a significant increase in in vitro metabolic stability and so it was decided to maintain the terminal methylene aryl group as in compound **10b** and investigate potential substitution and analogues on the acid-bearing chain.

Preliminary in vivo evaluation of compound 10b dosed intravenously to a rat revealed a relatively short half-life

 $(t_{1/2} = \langle 20 \text{ min})$ and in vitro metabolism studies in rat hepatocytes indicated significant β -oxidation of the acid chain. Compounds bearing a β -sulfur atom in an acidic chain are blocked to β -oxidation and, therefore, the corresponding β -thio compound (16a, entry 14) was prepared and was found to be approximately 4-fold less potent than the corresponding methylene compound (10b). Homologation of the chain led to a 10-fold loss in binding activity (entry 15). Examination of the metabolic fate of compound 16a in incubation with rat hepatocytes indicated the compound was significantly more metabolically stable than 10b (data not shown). A major metabolite, however, was observed and was identified as the corresponding sulfoxide. An alternative method to block β -oxidation of the acid chain could be to replace the acid group with an acid equivalent such as a tetrazole that may not be recognized by the β -oxidation enzymes. Thus, a variety of tetrazolyl analogues of **10b** were prepared and evaluated for their potency, binding and metabolism. The S-tetrazole compound (entry 16) was less potent than the corresponding straight chain acid. However, the homologue (entry 17) retained considerable activity at the EP₄ receptor. Replacement of the acid group in compound 10b with a tetrazole, however, led to a compound approximately 2fold *more* potent than the parent (entry 18). This compound was resolved into its two diastereoisomers (isomeric at C-15) (entries 19 and 20) through chromatographic separation and virtually all the binding activity was found to reside with one isomer (19a) $(IC_{50} = 1.4 \text{ nM}; IC_{50} \text{ for PGE2 is } 0.7 \text{ nM})$ presumably having the natural PGE_2 stereochemistry at C-15. This compound was evaluated in rat hepatocytes for metabolic stability and found to be essentially unchanged after incubation for 2 h. Dosed intravenously in rats, the compound had a much improved half-life $(t_{1/2} = ca 2)$ h). Examination of bile from rats dosed with 19a indicated that the compound was excreted largely unchanged. Compound 19a was shown to be highly selective for the EP4 receptor with no significant binding observed at greater than 14 µM on any of the other receptors. Compound 19a was a full agonist in the cell efficacy assay with an EC₅₀ of 2.5 ± 1.0 nM (n = 5). This is comparable to the EC_{50} of PGE_2 itself $[EC_{50} = 3.0 \pm 0.4 \text{ nM} (n=8)].$

Compound 3 was synthesized from (R)-pyroglutamic acid (2) through a series of reactions described in ref 13 (Scheme 1).

The sodium salt of **3** was alkylated with ethyl 7-bromoheptanoate under phase-transfer catalysis (88% yield). After deprotection with HF–Pyridine complex, Dess– Martin oxidation of the alcohol led to the aldehyde **4** (84% yield). Wittig reaction with the sodium salt of dimethyl (2-oxoheptyl)phosphonate afforded the intermediate enone (55% yield) which was reduced to the allylic alcohol **5**. Saponification of **5** produced the acid **7** in 94% yield. Catalytic hydrogenation of **5** with PtO₂ in AcOEt followed by saponification with 1 N LiOH gave the acid **6**. Using the methodology decribed above, compounds **8** and **9** were obtained similar yields starting from (*S*)-pyroglutamic acid [(*S*)-**2**].

Scheme 1. Reagents and conditions: (a) (i) NaH, DMF, $50 \,^{\circ}$ C; (ii) BrCH₂(CH₂)₅COOEt, *n*Bu₄NI, $50 \,^{\circ}$ C, 88%; (b) HF-Py, CH₂Cl₂, 68%; (c) Dess-Martin periodinane, CH₂Cl₂, 84%; (d) (i) NaH, DMA, $0 \,^{\circ}$ C; (ii) (MeO)₂P(O)CH₂COC₅H₁₁, rt, 55%; (e) NaBH₄, EtOH, $-20 \,^{\circ}$ C, 92%; (f) PtO₂; AcOEt, H₂, 87%; (g) LiOH, H₂O, THF, MeOH, 94%.

The optimization of the β -chain started with aldehyde (*R*)-4 (Scheme 2) which was reacted the appropriate β -ketophosphonate using NaH as base in THF (yields from 16 to 72%). The resultant enones were then reduced to intermediate allylic alcohols using NaBH₄ in EtOH at -20 °C (yields from 65 to 85%). Ester saponification afforded compounds 10a-f (yields from 38 to 96%). In the case of compounds 10e and 10f, the reduction was run using the Luche reaction (NaBH₄ and CeCl₃·7·H₂O in EtOH-H₂O at 0 °C) in order to prevent the over-reduction of the double bond. Tertiary alcohol 12 was synthesized by reaction of enone 11 with one equivalent of freshly prepared methylcerium reagent in THF (33%), followed by saponification of the intermediate ester (66%).

Scheme 2. Reagents and conditions: (a) (i) NaH DME 0 °C; (ii) (MeO)₂-P(O)CH₂COR, rt; (b) NaBH₄, EtOH, -20 °C; (c) LiOH, H₂O, THF, MeOH; (d) 1 equiv MeLi, 2 equiv CeCl₃, THF, -78 °C, 33%; (e) LiOH, H₂O, THF, MeOH, 66%.

The synthesis of analogues with optimized acid-bearing chains started with the previously synthesized amide (R)-3 (Scheme 3). N-Alkylation of the amide (R)-3 followed by alcohol deprotection and Dess-Martin oxidation afforded aldehyde 13 in good yield. Wittig reaction with sodium dimethyl (2-oxo-3-phenylpropyl)phosphonate gave the intermediate enone that was immediately reduced to the allylic alcohol 14 using NaBH₄ in EtOH at -20 °C. Chlorine displacement using various alkylsulfides produced compounds 15a-d in good yields. Compounds 15a and its homologue 15b were saponified using 1 N LiOH to afford 16a and 16b in good yields (respectively, 83 and 89%). Sulfide 15c was reacted with bromoacetonitrile in the presence of *n*Bu₄NF to afford the intermediate nitrile (94% yield), which was then heated at 120 °C for 3 h with *n*Bu₃SnN₃ to give the tetrazole 16c (88% yield). Similarly 15d was transformed into the tetrazole **16d** in good yield (Scheme 4).

The introduction of a terminal tetrazole started with the *N*-alkylation of amide 12(R)-3 with NaH and 5-bromoheptanenitrile under phase-transfer catalysis followed by deprotection of the alcohol (84% yield) and Dess-Martin oxidation (84%) affording the aldehyde 17. A Wittig reaction of 17 with the sodium salt of dimethyl (2-oxo-3-phenylpropyl)phosphonate produced the intermediate enone (84% yield), which was reduced with NaBH₄ in EtOH at -20 °C to provide the nitrile 18.

Scheme 3. Reagents and conditions: (a) (i) NaH, DMF, $50 \,^{\circ}$ C; (ii) Br(CH₂)₄Cl, Bu₄NI, $50 \,^{\circ}$ C, 87%; (b) HF-Py, CH₂Cl₂, 90%; (c) Dess–Martin periodinane, CH₂Cl₂, 95%; (d) (i) NaH, DME, $0 \,^{\circ}$ C; (ii) (MeOH)₂-P(LO)CH₂COCH₂Ph, rt, 62%; (e) NaBH₄, EtOH, $-20 \,^{\circ}$ C, 90%; (f) RSH, MeONa, DMF, Bu₄NI, $50 \,^{\circ}$ C; (g); LiOH, H₂O–THF–MeOH, rt; (h) BrCH₂CN, *n*Bu₄NF, THF, rt 94%; (i) *n*Bu₃SnN₃, neat, $120 \,^{\circ}$ C, 3 h.

Scheme 4. Reagents and conditions (a) (i) NaH, DMF, $50 \degree C$; (ii) BrCH₂(CH₂)₅CN, *n*Bu₄NI, $50 \degree C$, 84% (b) HF-Py, CH₂Cl₂, 87%; (c) Dess–Martin periodinane, CH₂Cl₂, 88% (d) (i) NaH, DME, $0 \degree C$; (ii) (MeO)₂-P(O)CH₂COCH₂Ph, rt, 75\%; (e) NaBH₄, EtOH, $-20 \degree C$; (f) Bu₃SnN₃ neat 120 °C, 3 h, 80%.

Finally the tetrazole moiety was introduced by reaction of **18** with 3 equiv of nBu_3SnN_3 neat at 120 °C for 3 h (80% from enone). Reverse-phase HPLC allowed the separation of both diasterioisomers eluting sequentially in a ratio (**19a/19b**) (1:2) in the favor of the putative 15(*R*)-alcohol **19b**.

Biological Results and Discussion

Receptor binding assays were performed using cell membranes from HEK293ebna cells recombinantly expressing the corresponding human prostanoid cDNA's.⁸ EP4 agonist potency and efficacy were evaluated utilizing a stable clone of pSV40-EP4 transfected into HEK293 cells that expresses approximately 50 fmol/mg EP4 receptor. Whole cell cAMP assays were performed essentially as described in Slipetz et al.¹⁴ with the following modifications. Assays were performed with cells in suspension in a total of 0.2 mL HBSS containing 2 mM IBMX (phosphodiesterase type IV inhibitor). IBMX and PGE_2 or the test compound were added to the incubation mixture in DMSO to a final vehicle concentration of 1.8% (v/v) (kept constant in all samples). The reaction was initiated by the addition of 1×10^5 cells per incubation, samples were incubated at 37 °C for 10 min, and the reaction was terminated by immersing the samples in boiling water for 3 min. Measurement of cAMP was performed by a [125I]cAMP scintillation proximity assay. For in vivo and in vitro metabolism methods, see methods described by Nicoll-Griffith et al.¹⁵

Analogues of PGE_2 wherein the hydroxy cyclopentanone ring has been replaced by a lactam were found to exhibit potent and selective agonism at the EP₄ receptor.¹⁶ Thus one can conclude that the C-11 hydroxy group present in PGE₂ is not necessary for either binding or agonism at this receptor. Indeed, one could conclude that lack of a corresponding hydroxy group in these lactam analogues might be responsible for a measure of the selectivity observed for the EP₄ receptor over the other prostaglandin receptors. The natural stereochemistry at C-12 and putatively also at C-15 was found to be important for activity at the receptor. The carboxyl group can be replaced by an acid equivalent such as a tetrazole with comparable or enhanced activity. The optimized compound (19a) displays a high degree of selectivity and potency and in vivo half-life much superior to PGE_2 . This compound and related analogues are now being studied in a number of biological assays to determine whether an EP_4 selective agonist can serve as a useful therapeutic for treatment of osteoporosis.

References and Notes

1. Coleman, R. A.; Smith, W. L.; Narumiya, S. Pharmacol. Rev. 1994, 46, 205.

2. Narumiya, S.; Sugimoto, Y.; Ushikubi, F. Physiol. Rev. 1999, 79, 1193.

3. Pilbeam, C. C.; Harrison, J. R.; Raisz, L. G. In *Principles of Bone Biology*; Bilekizian, J. P., Raisz, J. P., Rodan, G. A., Eds, Academic: San Diego, 1996; p. 715.

4. (a) Rodan, G. A. *J. Cell. Biochem.* (Suppl. 15), 160. (b) Ueno, K.; Haba, T.; Woodbury, D.; Price, P.; Anderson, R.; Jee, W. S. S. *Bone* **1985**, *6*, 79. (c) Jee, W. S. S.; Ke, H. Z.; Li, X. J. *Bone Mineral* **1991**, *15*, 33. (d) Norrdin, R. W.; Jee, W. S. S.; High, W. B. Prostaglandins Leukot. Essent. Fatty Acids **1990**, *41*, 139.

5. Miyaura, C.; Inada, M.; Suzawa, T.; Sugimoto, Y.; Ushikubi, F.; Ichikawa, A.; Narumiya, S.; Suda, T. *J. Biol. Chem.* **2000**, *275*, 19819.

6. Machwate, M.; Harada, S.; Leu, T.; Seedor, G.; Labelle, M.; Gallant, M.; Hutchins, S.; Lachance, N.; Sawyer, N.; Slipetz, D.; Metters, K. M.; Rodan, S. B.; Young, R.; Rodan, G. A. *Mol. Pharmacol.* **2001**, *60*, 36.

7. Yoshida, K.; Oida, H.; Kobayashi, T.; Maruyama, T.; Tanaka, M.; Katayama, T.; Yamaguchi, K.; Segi, E.; Tsuboyama, T.; Matsushita, M.; Ito, K.; Ito, Y.; Sugimoto, Y.; Ushikubi, F.; Ohuchida, S.; Kondo, K.; Nakamura, T.; Narumiya, S. Recently published reports of in vivo studies on an analogue of PGE₂ which has selective agonist activity at the EP₄ receptor have shown significant bone formation in rats which further supports this hypothesis. See: *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99*, 4580.

8. Abramovitz, M.; Adam, M.; Boie, Y.; Carriere, M.-C.; Denis, D.; Godbout, C.; Lamontagne, S.; Rochette, C.; Sawyer, N.; Tremblay, N.; Belley, M.; Gallant, M.; Dufresne, C.; Gareau, Y.; Ruel, R.; Juteau, H.; Labelle, M.; Ouimet, N.; Metters, K. M. *Biochem. Biophys. Acta* **2000**, *1483*, 285.

9. Smith, R. L.; Lee, T.; Gould, N. P.; Cragoe, E. J., Jr.; Oien, H. G.; Kuehl, F. A., Jr. J. Med. Chem. 1977, 20, 1292.

10. Maruyama, T.; Asada, M.; Shiraishi, T.; Yoshida, H.; Maryama, T.; Ohuchida, S.; Nakai, H.; Kondo, K.; Toda, M. *Bioorg. Med. Chem.* **2002**, *10*, 1743.

11. Hamberg, M.; Samuelsson, B. J. Biol. Chem. 1971, 246, 6713.

12. Hansen, H. S. Prostaglandins 1976, 12, 647.

13. Yoda, H.; Oguchi, T.; Takabe, K. Tetrahedron: Asymmetry **1996**, 7, 2113.

14. Slipetz, D.; Buchanan, S.; Mackereth, C.; Brewer, N.; Pellow, V.; Hao, C.; Adam, M.; Abramovitz, M.; Metters, K. M. *Biochem. Pharmacol.* **2001**, *62*, 997.

15. Nicoll-Griffith, D. A.; Falgueyret, J.-P.; Silva, J. M.; Morin, P. E.; Trimble, L.; Chan, C.-C.; Clas, S.; Leger, S.; Wang, Z.; Yergey, J. A.; Riendeau, D. *Drug Metab. Disp.* **1999**, *27*, 403.

16. Several patent applications on closely related structures claimed as EP_4 receptor agonists for treatment of osteoporosis have recently been published. See: (a) Cameron, K. O.; Lefker, B. A. WO 0242268 A2. (b) Cameron, K. O.; Ke, H.; Lefker, B. A.; Thompson, D. D. WO 0146140 A1. (c) Maruyama, T.; Kobayashi, K.; Maruyama, T. WO 0224647 A1.