Tetrahedron 68 (2012) 878-882

Contents lists available at SciVerse ScienceDirect

Tetrahedron

Synthesis of (–)-benzolactam-V8 by application of asymmetric aziridination

Itsara Khantikaew, Masato Takahashi, Takuya Kumamoto, Noriyuki Suzuki, Tsutomu Ishikawa*

Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan

ARTICLE INFO

Article history: Received 8 October 2011 Received in revised form 11 November 2011 Accepted 12 November 2011 Available online 19 November 2011

1. Introduction

Keywords: (-)-Benzolactam-V8 Asymmetric synthesis Guanidinium ylide 3-Arylaziridine-2-carboxylate Ring-opening reaction

Teleocidins [ex. teleocidin B-1 (1)], olivoretins [ex. olivoretin A (2)], and lyngbyatoxins [ex. lyngbyatoxin B (3)] (summarized as teleocidins in this paper) have been isolated from microorganisms (Streptomyces and Streptoverticillium) and blue-green alga (Lyngbya species) as strong tumor promoters.^{1–10} They are structurally defined to be nine-membered cyclic dipeptides derived from (S)tryptophan and (S)-valine units and their terpene-substituted structures are minimized to (-)-indolactam-V (4) as a common core skeleton,¹¹ which had also been isolated from Actinomycetes,¹² albeit with lower activity.¹³ Chemical approaches to the biological activity of (-)-indolactam-V (4) have indicated that the 9S- and 12S-stereochemistries are essential for the tumor-promoting effects. In addition, although these nine-membered cyclic dipeptides are in equilibrium between twist and sofa conformations in solution,^{7,9,14–17} the designation of an eight-membered (–)-benzolactam-V8 (5) and a nine-membered (-)-benzolactam-V9 (6) carrying phenyl ring, in place of indole unit in the natural tumor promoters, as model cyclic peptides¹⁸ led to the results that the former eight-membered (-)-benzolactam-V8 (5) existed in only twist conformation and was more active than (-)-indolactam-V(**4**). Furthermore, it has been suggested that not only the 5S-configuration of (-)-benzolactam-V8¹⁹ (**5**) as well as the 9S-configuration of (-)-indolactam-V¹³ (**4**), but also hydrogen of the amide

ABSTRACT

(-)-Benzolactam-V8, an artificially-designed cyclic dipeptide with strong tumor-promoter activity, was synthesized from benzyl (S)-N-(2-formylphenyl)-N-methylvalinate by application of guanidinium ylide-participated asymmetric aziridination followed by the reductive ring-opening reaction of 3-arylaziridine-2-carboxylate formed.

© 2011 Elsevier Ltd. All rights reserved.

Tetrahedror

functionality in these lactams, play an important role for the biological activity²⁰ (Fig. 1).

We have recently developed guanidine chemistry,²¹ and have found the unique formation of 3-aryl- (or unsaturated) aziridine-2carboxylates, expandable to chiral version, by the reaction of guanidinium salt and aryl (or unsaturated) aldehyde in the presence of

teleocidin B-1 (1): $R^1 = H$, $R^2 = vinyl$, $R^3 = Me$, $R^4 = isopropyl$ olivoretin A (2): $R^1 = R^4 = Me$, $R^2 = vinyl$, $R^3 = isopropyl$ Me 13 Me 11 Me 11 Me 5 Me 5Me 5

Fig. 1. Structures of teleocidins and the related compounds [Numbering of benzolactams is for benzolactam-V8 (5)].

^{*} Corresponding author. Tel./fax: +81 43 226 2944; e-mail address: benti@ faculty.chiba-u.jp (T. Ishikawa).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.11.033

base.²²⁻²⁵ In this paper we will present a new synthetic approach to (–)-benzolactam-V8 (**5**) by application of the asymmetric aziridination followed by the reductive ring-opening reaction of 3-arylaziridine-2-carboxylate formed.

2. Results and discussion

In the synthesis of benzolactam-V8 (5) and its analogs, construction of two amino acid components tethered by phenyl ring is crucial and, previously, the *N*-aryl-substituted (*S*)-valine unit had majorly been prepared by the displacement reaction of oxygensubstituted (R)-isovalerate with an aniline derivative, ^{26–37} instead Ma and co-workers had adopted the amination of either phenyl ring³⁸ or 1,3-cyclohexadienone³⁹ with (S)-valine. On the other hand, some variations were reported for the construction of (S)phenylalanine unit except the use of phenylalanine itself $^{29-32}$ or its derivatives:^{28,32,33} (1) diastereoselective alkylation of aminomalonate with benzyl bromide dependent on the stereochemistry of valine unit introduced, $^{26-28}$ (2) diastereoselective aldol-type condensation between valine-substituted benzaldehyde and nitroacetate,38 (3) asymmetric alkylation of iminoacetate with benzyl alcohol in the presence of a chiral quinine-type phase transfer catalyst, 33 (4) use of the amine functionality of (R)-phenylglycinate acted as a chiral auxiliary after reductive cleav-age, ^{34,36,37,39} and (5) oxyamination of allylbenzene.³⁵

The direct amination of phenyl ring reported by Ma's group³⁸ attracted us as the ready preparation of *N*-aryl-substituted (*S*)-valine. On the other hand, for the preparation of (*S*)-phenylalanine unit our original asymmetric aziridination followed by regioselective ring-opening reaction of the formed aziridine was focused. The retrosynthesis is shown in Scheme 1, in which (2*S*)-3phenylaziridine-2-carboxylate **9** carrying (*S*)-valine unit at the *ortho* position of the phenyl pendant is designed as a key intermediate. In the aziridination,^{22–25} the following stereochemical evidences have generally been established: (1) *trans*-aziridines are diastereoselectively produced when electron-rich benzaldehydes are used, whereas *cis*-aziridines in the case of either benzaldehyde itself or benzaldehydes substituted with electron-withdrawing

group and (2) asymmetric induction at the 2 position of 3arylaziridine-2-carboxylates is controlled by the chiral center of guanidinium salt used; e.g., the predominant production of (2S,3R)*trans*-3-[(3,4-methylenedioxy)phenyl]aziridine-2-carboxylate in the reaction of (3,4-methylenedioxy)benzaldehyde (piperonal) and (4R,5R)-1,3-dimethyl-4,5-diphenylimidazolidinium salt. Thus, the key aziridine **9** should be obtained by asymmetric aziridination of the (*S*)-valine-substituted benzaldehyde **10** and the (*R*,*R*)-guanidinium bromide **11** and, then, be converted to the (*S*)-valinesubstituted (*S*)-phenylalaninate **8** by regioselectively reductive ring-opening reaction of the aziridine **9** formed as a precursor for the benzolactam skeleton **7** with a cyclic dipeptide structure.

The known benzyl (*S*)-*N*-(2-formylphenyl)-*N*-methylvalinate (**10**) was prepared from 2-iodobenzyl alcohol according to the reported procedure³⁸ with a slight modification of the amination step⁴⁰ (Scheme 2). The successive reactions of copper-catalyzed coupling reaction between 2-iodobenzyl alcohol and (*S*)-valine, lactonization, reductive N-methylation, alkaline hydrolysis followed by esterification with benzyl alcohol, and oxidation of the hydroxymethyl function in the *N*-phenyl substituent provided the benzaldehyde substrate **10** in overall 57% yield.

Scheme 2. Preparation of benzyl (*S*)-*N*-(2-formylphenyl)-*N*-methylvalinate (**10**) from 2-iodobenzyl alcohol.

At first, guanidinium ylide-participated aziridination under achiral conditions was preliminarily examined (see, Scheme 3). Treatment of the valine-substituted benzaldehyde **10** with the guanidinium bromide lacking phenyl pendants (see, **11**) in the presence of sodium hydride (NaH) in dimethylformamide (DMF) at $-20 \,^{\circ}$ C for 24 h, followed by stirring the resultant mixture with silica gel (SiO₂) in chloroform (CHCl₃) at room temperature (rt) for 24 h, afforded a crude product, showing two spots except that of the starting **10** on thin layer chromatography (TLC) ($R_{f=}$ 0.6 and 0.5

Scheme 3. Asymmetric aziridination of the valine-substituted benzaldehyde **10** and the (R,R)-guanidinium bromide **11** in the presence of NaH.

Scheme 1. Retrosynthesis of (-)-benzolactam-V8 (5).

in diethyl ether/*n*-hexane=1:3). In general, a larger coupling constant between C2–H (δ ca. 2.5 ppm) and C3–H (δ ca. 3.5 ppm) is observed in *cis*-3-arylaziridine-2-carboxylates (*J*=ca. 7 Hz) than in the *trans*-derivative (*J*=ca. 2 Hz) in their ¹H NMR spectra.²² Although each ¹H NMR spectrum of two products separated by preparative TLC showed relatively complicated signal patterns because of not homogeneous but a mixture composed of four possible aziridine isomers **9a–d** with a different composition ratio, we found that the ratio of each diastereoisomer could be reasonably determined by the careful analysis of characteristic signals due to the 3-arylaziridine-2-carboxylate skeleton in both the separates; e.g., for the less polar product, *cis*-**9a** (δ _{C2–H} 2.557: *J*_{2,3}=7.2 Hz): *cis*-**9b** (δ _{C2–H} 2.563: *J*_{2,3}=6.8 Hz): *trans*-**9c** (δ _{C2–H} 2.60: *J*_{2,3}=2.4 Hz)=ca. 6:2:9:3.

Next, we attempted asymmetric aziridination using the (R,R)guanidinium bromide 11 under the same reaction conditions as achiral version (Scheme 3). Reaction was smoothly proceeded to provide a crude mixture of aziridine 9 (almost one spot on TLC: $R_f=0.6$ in diethyl ether/*n*-hexane=1:3) and the co-formed urea **12**. After removal of a chiral urea 12 (94% yield), which is re-useable as the precursor of guanidinium bromide **11**, by washing with nhexane, purification of the combined washings by SiO₂ column chromatography after evaporation afforded an expected aziridine product 9 in 86% yield. The ratio of cis-9a/cis-9b/trans-9c/trans-9d was estimated to be 15:1:4:2 based on the assignment under the achiral version. Among them, the C2-stereochemistry of cis-9a and *trans*-9c obtained as each major isomer could be reasonably assigned to be S-configuration based on asymmetric induction as discussed above.^{22–25} This means that these 2S-diastereoisomers are totally calculated to be 86% of the aziridine mixture 9 (72% excess).

Preferred formation of cis-isomers to trans-ones seems to be contrary to the expected preference of trans-isomers in the use of an electron-rich 2-aminobenzaldehyde derivative as an electrophile. However, the discrepancy may be explained by supposition that the steric bulkiness of the valine function located at the ortho position prohibits effective conjugation between amine group and aldehyde functionality through benzene ring, resulting in predominance by the electro-negative character of nitrogen atom due to inductive effect. In fact, this speculation could be supported by model study (Fig. 2). The geometry optimization of the valinesubstituted benzaldehyde 10 using PM3 method allowed us to deduce two conformations 10A and 10B as the most stable conformations. The heat of formation of them was calculated to be -84.56 kcal/mol and -85.48 kcal/mol, respectively, and, in the more stable latter conformation **10B**, dihedral angles between the substituents and the phenyl ring were estimated to be 101.3° (C2-C1-C=O), -81.4° (C6-C1-C=O), 62.4° (C3-C2-N-Ca), and -119.3° (C1-C2-N-C α), indicating difficult conjugation of the amine group with the aldehyde one through benzene ring.

Fig. 2. Optimized structures of the valine-substituted benzaldehyde $10\ {\rm using}\ {\rm PM3}\ {\rm method}.$

It is not necessarily easy to separate the aziridine mixture **9** to each four pure component. Thus, we decided to detour the difficult separation because four components could at least convergent to two ones by destruction of the C3 chiral center in the aziridine system in next reductive ring-opening reaction. Stirring the aziridine mixture **9** in methanol in the presence of palladium hydroxide on carbon as a catalyst at rt for 90 min under hydrogen atmosphere^{22,23,41} afforded a high polar product, which was expected to be phenylalaninate **8** incorporating (*S*)-valine as an additional α amino acid unit. The crude 8. without any purification, was further subjected to lactamization by the use of diphenyl phosphoryl azide (DPPA) as a condensation reagent according to the reported conditions³⁸ to give a benzolactam skeleton 7 as only an isolable product, after purification by SiO₂ column chromatography, in total 41% yield from the aziridine mixture 9. We speculated above that the C2-stereochemistry of major cis-9a and trans-9c in the starting aziridine mixture could be deduced to be S and that the ratio of these 2S-diastereoisomers was estimated to be 86%. Therefore, the benzolactam skeleton 7 isolated could be assigned as a desired (2S,5S)-isomer. Additional trials for the construction of 7 using alternative condensation reagents, such as 1-[bis(dimethylamino) methylene]-1*H*-1,2,3-triazolo(4,5-*b*)pyridinium 3-oxide hexafluorophosphate (HATU) and 2-chloro-1,3-dimethylimidazolinium chloride (DMC),⁴² in place of DPPA, resulted in not improving the conversion yields from 9 (42% with HATU; 37% with DMC).

Finally, reduction of the *tert*-butyl ester function of the benzolactam skeleton **7** with lithium borohydride in methanol at 70 °C for 3 h gave a desired alcohol in 73% yield, the data of which, including $[\alpha]_D$, was completely identical with those of (–)-benzolactam-V8 (**5**)²⁹ (Scheme 4).

Scheme 4. Preparation of (-)-benzolactam-V8 (5) from the aziridine mixture 9.

In conclusion, we succeeded in the synthesis of (-)-benzolactam-V8, an artificially-designed cyclic dipeptide with strong tumor-promoter activity, from benzyl (S)-N-(2-formylphenyl)-Nmethylvalinate through four steps by application of guanidinium ylide-participated asymmetric aziridination followed by reductive ring-opening reaction of the 3-arylaziridine-2-carboxylate formed as key steps.

3. Experimental

3.1. General

All melting points were measured on a micro-melting point hot stage (Yanaco) and are uncorrected. IR spectra were recorded with ATR (attenuated total reflectance system) on a JASCO FT/IR-300E spectrophotometer. ¹H and ¹³C NMR spectra were recorded on JOEL JNM-ECP-400 (400 MHz for ¹H and 100 MHz for ¹³C) in CDCl₃.

Chemical shifts (δ) were reported as parts per million from tetramethylsilane (0.00 ppm) as an internal standard for ¹H and from the middle resonance of CDCl₃ (77.00 ppm) as an internal standard for ¹³C, respectively. MS spectra were measured on JEOL JMS-HX110A for FABMS and JEOL JMS-T100LP for ESIMS. Optical rotations were recorded on a JASCO P-1020 digital polarimeter. For SiO₂ column chromatography were used Kanto silica gel 60 (37564-85), spherical particle size 63–210 µm, or FL100D SiO₂ (Fuji Silysia Chemical Ltd). For TLC was used Merck DC-Fertigplatten Kieselgel 60 F_{254} (5715). Dehydrated DMF was purchased from Kanto Chemical Co. Inc.

3.2. Asymmetric aziridination of 10 and 11

A mixture of the benzaldehyde 10^{38} (0.1065 g, 0.37 mmol), the guanidinium bromide 11 (0.2125 g, 0.386 mmol) in DMF (0.7 mL) in the presence of NaH (60% oil suspension, 0.029 g, 0.721 mmol) was stirred at -20 °C for 24 h under argon atmosphere and, after addition of CHCl₃ (20 mL) and SiO₂ (0.47 g), the resultant mixture was stirred at rt for 24 h. The SiO₂ was filtered off and washed with CHCl₃ (20 mL). The filtrate was combined with the washing and concentrated under reduced pressure. The yellow residual oil was dissolved in Et₂O (80 mL), and the ethereal solution was washed with H₂O (2 mL×3) and brine (2 mL), dried (MgSO₄), and evaporated to give a yellow oil (0.329 g). Trituration of the yellow oil with *n*-hexane afforded the urea 12 (0.0821 g, 94%) as colorless solids and a crude aziridine mixture 9 (0.172 g, 99%) as a yellow oil from the soluble part after evaporation. Purification of the crude 9 by SiO₂ column chromatography (Et_2O/n -hexane=1:10) afforded an oily aziridine mixture (0.149 g, 86%), composed of cis-9a, cis-9b, trans-9c, and trans-9d in ratio of 15:1:4:2 based on the ¹H NMR spectrum; TLC: $R_f 0.7$ (very small spot), 0.6 (main spot) (EtOAc/n-hexane=1:5); IR ν_{max} cm⁻¹: 1723 (CO); ¹H NMR δ : 0.80 (4/22×3H, d, *J*=6.6 Hz, CHMe₂ in trans-**9c**), 0.87 (3/22×3H, d, J=6.6 Hz, CHMe₂ in cis-9b and trans-9d), 0.90 (1/ 22×3H, d, *J*=6.6 Hz, CHMe₂ in *cis*-**9b**), 0.94 (15/22×3H, d, *J*=6.4 Hz, $CHMe_2$ in *cis*-**9a**), 1.10 (15/22×9H, s, CMe₃ in *cis*-**9a**), 1.10 (4/22×3H, d, I=5.1 Hz, CHMe₂ in trans-**9c**), 1.19 (15/22×3H, d, I=6.8 Hz, CH×Me₂ in cis-9a), 1.19 (1/22×9H, s, CMe₃ in cis-9b), 1.22 (2/22×3H, d, J=6.6 Hz, CHMe₂ in trans-9d), 1.35 (2/22×9H, s, CMe₃ in trans-9d), 1.40 (4/ 22×9H, s, CMe₃ in trans-9c), 2.2–2.4 (1H, m, CHCHMe₂), 2.56 (16/ 22×1H, d, J=7.0 Hz, C2–H in cis-9a and cis-9b), 2.60 (2/22×1H, d, J=2.7 Hz, C2-H in trans-9d), 2.65 (4/22×1H, d, J=2.2 Hz, C2-H in trans-9c), 2.77 (15/22×3H, s, NMe in cis-9a), 2.82 (4/22×3H, s, NMe in trans-9c), 2.85 (2/22×3H, s, NMe in trans-9d), 2.90 (1/22×3H, s, NMe in cis-9b), 3.15 (1/22×1H, d, J=7.0 Hz, C3-H in cis-9b), 3.30 (15/ 22×1H, d, J=10.6 Hz, NCHCH(C) in cis-9a), 3.40 (2/22×1H, d, J=10.6 Hz, NCHCH(C) in trans-9d), 3.43 (4/22×1H, d, J=7.0 Hz, NCHCH(C) in trans-9c), 3.44 (15/22×1H, d, J=7.0 Hz, C3-H in cis-9a), 3.49, 3.64 (each 1/22×1H, d, *J*=14.2 Hz, NCH₂Ph in *cis*-**9b**), 3.57 (1/ 22×1H, d, *J*=10.1 Hz, NCHCH(C) in *cis*-**9b**), 3.65 (4/22×1H, d, *J*=1.6 Hz, C3–H in trans-9c), 3.69, 3.82 (each 15/22×1H, d, J=14.3 Hz, NCH₂Ph in cis-9a), 3.69 (2/22×1H, d, J=2.6 Hz, C3-H in trans-9d), 4.07, 4.23 (each 2/22×1H, d, J=14.2 Hz, NCH₂Ph in trans-9d), 4.16, 4.25 (each 4/ 22×1H, d, J=14.2 Hz, NCH₂Ph in trans-9c), 4.91, 4.97 (each 15/22×1H, d, J=12.2 Hz, OCH₂Ph in *cis*-9a), 4.94 (each 2/22×2H, s, OCH₂Ph in trans-9d), 5.05, 5.10 (each 4/22×1H, d, J=12.1 Hz, OCH₂Ph in trans-**9c**), 5.11, 5.22 (each 1/22×1H, d, *J*=12.2 Hz, OCH₂Ph in *cis*-**9b**), 7.1–7.6 (14H, m, ArH); ¹³C NMR δ: 18.9, 19.2 (*cis*-**9a**), 19.3, 19.5, 19.6, 19.75 (*cis*-9a), 19.80, 20.0, 27.7 (cis-9a), 27.9, 27.98, 27.99, 28.09 (cis-9a), 28.14, 28.5, 28.9, 34.6 (*cis*-**9a**), 35.3, 35.7, 36.3, 44.1, 44.7, 45.3 (*cis*-**9a**), 45.80, 45.83, 46.2, 47.65, 47.70 (cis-9a), 54.6, 54. 7, 63.1, 63.3 (cis-9a), 65.4, 65.5 (cis-9a), 65.7, 66.0, 71.4, 72.0 (cis-9a), 72.29, 72.31, 81.0, 81.2 (cis-9a), 81. 5, 81.6, 120.4, 121.6, 121.9 (cis-9a), 122.0, 122.05, 122.06, 123.5 (cis-9a), 123.85, 123.93, 125.8, 126.1, 126.6, 126.7, 126.88, 126.91 (cis-9a), 127.6 (cis-9a), 127.66 (cis-9a), 127.67, 127.69, 127.74, 127.86, 127.92, 127.95, 127.97 (cis-9a), 128.1, 128.18, 128.20, 128.23 (cis-9a), $\begin{array}{l} 128.26 \ (\textit{cis-9a}), 128.29, 128.34, 128.35, 128.42, 128.43, 128.57, 128.58, \\ 128.64 \ (\textit{cis-9a}), 129.4 \ (\textit{cis-9a}), 129.78, 129.84 \ (\textit{cis-9a}), 132.7, 135. 6 \\ (\textit{cis-9a}), 135. 7, 135. 8, 138.1 \ (\textit{cis-9a}), 138.3, 139.5, 139.6, 150.8, 151.5 \\ (\textit{cis-9a}), 151.79, 151.80, 166.8 \ (\textit{cis-9a}), 167.5, 167.7, 168.0, 171.3 \ (\textit{cis-9a}), 171.5, 171.7, 172.5; HRFABMS $m/z: 529.3079$ (calcd for $C_{33}H_{41}N_2O_4$: 529.3066); $[\alpha]_D^{26} - 6.1 \ (c \ 0.55, CHCl_3). \end{array}$

3.3. Reductive ring-opening reaction of an aziridine mixture 9 followed by lactamization

3.3.1. With DPPA. A mixture of the aziridine mixture 9 (0.0761 g, 0.144 mmol), and 20% Pd(OH)₂/C (0.0153 g) in MeOH (0.3 mL) was stirred at rt for 1.5 h at atmospheric pressure under hydrogen and the catalyst was filtered off through Celite pad. Evaporation of the filtrate gave a crude ring-opened 8 (0.0663 g) as solids, which was dissolved in DMF (15 mL). After addition of Et₃N (0.04 mL, 0.287 mmol) and DPPA (0.04 mL, 0.176 mmol) at 0 °C under argon atmosphere the resultant solution was stirred at the same temperature for 5 min and then at rt for 24 h, and evaporated under reduced pressure. The residue was partitioned with EtOAc (80 mL) and H₂O (4 mL). The aqueous solution was extracted with EtOAc (20 mL×2). The combined EtOAc solution was washed with $H_2O(2 \text{ mL} \times 2)$ and brine (2 mL×2) and dried (Na₂SO₄), and evaporated. After removal of an insoluble solid by trituration with Et₂O, the oily residue was evaporated and purified by SiO₂ column chromatography (EtOAc/nhexane=1:5) afforded lactam 7 (0.0196 g, 41%) as a yellow oil; TLC: R_f 0.4 (EtOAc/*n*-hexane=1:2); IR ν_{max} cm⁻¹: 3380 (NH), 1730, 1665 (CO); ¹H NMR δ : 0.95, 1.08 (each 3H, d, *J*=6.8 Hz, CHMe₂), 1.50 (9H, s, CMe₃), 2.42 (1H, octet, J=7.0 Hz, CHCHMe₂), 2.78 (3H, s, NMe), 3.00 (1H, dd, *J*=16.3, 8.8 Hz, ArCH₂CH), 3.37 (1H, d, *J*=7.7 Hz, NCHCH), 3.54 (1H, dd, J=16.1, 3.8 Hz, ArCH₂CH), 4.92 (1H, br s, NHCH(CH)CH₂), 6.23 (1H, d, J=4.0 Hz, NH, exchangeable), 6.97 (1H, t, J=7.4 Hz, ArH), 7.07 (1H, d, *J*=7.7 Hz, ArH), 7.12 (1H, d, *J*=7.9 Hz, ArH), 7.22 (1H, t, *J*=7.3 Hz, ArH); ¹³C NMR δ: 19.5, 20.2, 28.0, 28.6, 36.8, 39.3, 54.8, 73.3, 82.8, 121.6, 123.3, 128.1, 131.6, 131.9, 151.9, 170.9, 171.8; HRFABMS m/z: 333.2174 (calcd for $C_{19}H_{29}N_2O_3$: 333.2178); $[\alpha]_D^{27} - 150$ (c 0.348, CHCl₃).

3.3.2. With HATU. After ring-opening reaction using **9** (0.0762 g, 0.144 mmol) and 20% Pd(OH)₂/C (0.0153 g) and MeOH (0.3 mL) as described above, the crude **8** (0.0637 g) was dissolved in DMF (26 mL). After the resultant solution was stirred with DIPEA (0.06 mL, 0.344 mmol) at 0 °C for 10 min under argon atmosphere HATU (0.0786 g, 0.207 mmol) was added at 0 °C and the whole was stirred at the same temperature for 20 min and then at rt for 24 h, and evaporated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and the resultant solution was washed with 10% citric acid (2 ml×2), satd NaHCO₃ aq (2 ml×2), and brine (2 ml×2), and dried (Na₂SO₄), and evaporated. Purification of the residue by SiO₂ column chromatography (EtOAc/*n*-hexane=1:5) afforded lactam **7** (0.0200 g, 42%).

3.3.3. With DMC. After ring-opening reaction using **9** (0.0358 g, 0.068 mmol) and 20% Pd(OH)₂/C (0.0072 g) and MeOH (0.3 mL) as described above, the crude **8** (0.0382 g) was dissolved in DMF (12 mL). After the resultant solution was stirred with DIPEA (0.03 mL, 0.173 mmol) at 0 °C for 10 min under argon atmosphere a 1 M solution of DMC in DMF (0.09 mL, 0.09 mmol) was added at 0 °C and the whole was stirred at the same temperature for 10 min and then at rt for 24 h, and evaporated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and the resultant solution was washed with 10% citric acid (2 ml×2), satd NaHCO₃ aq (2 ml×2), and brine (2 ml×2), dried (Na₂SO₄), and evaporated. Purification of the residue by SiO₂ column chromatography (EtOAc/ *n*-hexane=1:5) afforded lactam **7** (0.0084 g, 37%).

3.4. (-)-Benzolactam-V8 (5)

A mixture of lactam 7 (0.0107 g, 0.0322 mmol) and LiBH₄ (0.0021 g, 0.0964 mmol) in dry MeOH (0.6 mL) was heated at 70 °C for 3 h and, after quenched with H₂O (1 mL) at rt, was extracted with EtOAc (15 mL \times 2). The organic solution was washed with H₂O $(1 \text{ mL} \times 2)$ and brine $(1 \text{ mL} \times 2)$, dried (MgSO₄), and evaporated. Purification of the residual vellow solids by SiO₂ column chromatography (EtOAc/n-hexane=2:1) afforded (-)-benzolactam-V8 (5) (0.0062 g, 73%) as colorless prisms, mp 113–114 °C (lit. no data); TLC: $R_f 0.2$ (EtOAc/*n*-hexane=1:1); IR ν_{max} cm⁻¹: 3349 (NH), 3300 (br, OH), 1629 (CO); ¹H NMR δ : 0.89, 1.07 (each 3H, d, *J*=6.6 Hz, CHMe₂), 2.40-2.49 (1H, m, CHCHMe₂), 2.81 (3H, s, NMe), 2.82 (1H, dd, *J*=16.9, 2.3 Hz, ArCH₂CH), 3.10 (1H, dd, *J*=16.9, 8.1 Hz, ArCH₂CH), 3.47 (1H, d, J=8.6 Hz, NCH(C)CH), 3.54 (1H, dd, J=10.7, 8.7 Hz, CHCH₂OH), 3.73 (1H, dd, *I*=10.7, 4.0 Hz, CHCH₂OH), 4.06 (1H, br s, CH₂CH(N)CH₂), 6.48 (1 h, br s, NH), 6.88 (1H, dt, J=7.2, 1.2 Hz, ArH), 7.02 (1H, dd, J=8.0, 1.0 Hz, ArH), 7.04 (1H, dd, J=8.0, 1.0 Hz, ArH), 7.19 (1H, dt, J=7.7, 1.4 Hz, ArH); ¹³C NMR δ : 19.9, 20.3, 28.4, 35.6, 37.3, 54.1, 65.8, 70.9, 120.2, 121.8, 127.7, 131.4, 131.7, 151.8, 174.2; HRESIMS *m*/*z*: 285.16023 (calcd for C₁₅H₂₂N₂NaO₂: 285.15790); $[\alpha]_{D}^{22}$ -276 (c 0.36, CHCl₃) {lit.²⁹ $[\alpha]_{D}^{20}$ -271 (c 0.08, CHCl₃)}.

Acknowledgements

One of authors (I.K.) greatly thanks Rajamangala University of Technology Thanyaburi, Thailand, for scholarship.

Supplementary data

NMR charts of an aziridine mixture **9**, a benzolactam skeleton **7**, and (–)-benzolactam-V8 (**5**). Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tet.2011.11.033.

References and notes

- 1. Takashima, M.; Sakai, H. Bull. Agric. Chem. Soc. Jpn. 1960, 24, 647-651.
- 2. Takashima, M.; Sakai, H. Bull. Agric. Chem. Soc. Jpn. 1960, 24, 652-655.
- 3. Nakata, H.; Harada, H.; Hirata, Y. Tetrahedron Lett. 1966, 2515-2522.
- 4. Cardellina, J. H., II; Marner, F.-J.; Moore, R. E. Science 1979, 204, 193-195.
- 5. Fujiki, H.; Mori, M.; Nakayasu, M.; Terada, M.; Sugimura, T.; Moore, R. E. Proc. Natl. Acad. Sci. U.S.A. **1981**, 78, 3872–3876.
- Sakai, S.-I.; Aimi, N.; Yamaguchi, K.; Hitotsuyanagi, Y.; Watanabe, C.; Yokose, K.; Koyama, Y.; Shudo, K.; Itai, A. *Chem. Pharm. Bull.* **1984**, *32*, 354–357.
- Hitotsuyanagi, Y.; Yamaguchi, K.; Ogata, K.; Aimi, N.; Sakai, S.-I.; Koyama, Y.; Endo, Y.; Shudo, K.; Itai, A.; Iitaka, Y. Chem. Pharm. Bull. 1984, 32, 3774–3778.

- Irie, K.; Hagiwara, N.; Koshimizu, K.; Hayashi, H.; Murao, S.; Tokuda, H.; Ito, Y. Agric. Biol. Chem. 1985, 49, 221–223.
- Endo, Y.; Shudo, K.; Itai, A.; Hasegawa, M.; Sakai, S.-I. Tetrahedron 1986, 42, 5905–5924.
- Aimi, N.; Odaka, H.; Sakai, S.-I.; Fujiki, H.; Suganuma, M.; Moore, R. E.; Patterson, G. M. L. J. Nat. Prod. 1990, 53, 1593–1596.
- 11. Endo, Y.; Shudo, K.; Okamoto, T. *Chem. Pharm. Bull.* **1982**, 30, 3457–3460.
- Irie, K.; Hirota, M.; Hagiwara, N.; Koshimizu, K.; Hayashi, H.; Murao, S.; Tokuda, H.: Ito, Y. Agric. Biol. Chem. 1984, 48, 1269–1274.
- Fujiki, H.; Suganuma, M.; Nakayasu, M.; Tahira, T.; Endo, Y.; Shudo, K.; Sugimura, T. Gann 1984, 75, 866–870.
- 14. Masuda, T.; Nakatsuka, S.-I.; Goto, T. Agric. Biol. Chem. 1989, 53, 2257-2960.
- 15. Kozikowski, A. P.; Shum, P. W.; Basu, A.; Lazo, J. S. J. Med. Chem. **1991**, 34, 2420–2430.
- Kawai, T.; Ichinose, T.; Takeda, M.; Tomioka, N.; Endo, Y.; Yamaguchi, K.; Shudo, K.; Itai, A. J. Org. Chem. **1992**, *57*, 6150–6155.
- Irie, K.; Isaka, T.; Iwata, Y.; Yanai, Y.; Nakamura, Y.; Koizumi, F.; Ohigashi, H.; Wender, P. A.; Satomi, Y.; Nishino, H. J. Am. Chem. Soc. **1996**, *118*, 10733–10743.
- Ohno, M.; Endo, Y.; Hirano, M.; Itai, A.; Shudo, K. Tetrahedron Lett. 1993, 34, 8119–8122.
- 19. Endo, Y.; Ohno, M.; Hirano, M.; Takeda, M.; Itai, A.; Shudo, K. *Bioorg. Med. Chem.* Lett. **1994**, *4*, 491–494.
- Nakagawa, Y.; Irie, K.; Nakamura, Y.; Ohigashi, H. Bioorg. Med. Chem. Lett. 2001, 11, 723–728.
- 21. Ishikawa, T. Chem. Pharm. Bull. 2010, 58, 1555-1564.
- 22. Hada, K.; Watanabe, T.; Isobe, T.; Ishikawa, T. J. Am. Chem. Soc. 2001, 123, 7705–7706.
- 23. Disadee, W.; Ishikawa, T. J. Org. Chem. 2005, 70, 9399-9406.
- 24. Haga, T.; Ishikawa, T. Tetrahedron 2005, 61, 2857–2869.
- Disadee, W.; Ishikawa, T.; Kawahata, M.; Yamaguchi, K. J. Org. Chem. 2006, 71, 6600–6603.
- Endo, Y.; Yamaguchi, M.; Hirano, M.; Shudo, K. Chem. Pharm. Bull. 1996, 44, 1138–1140.
- 27. Endo, Y.; Ohno, M.; Takehana, S.; Driedger, P. E.; Stabel, S.; Shudo, K. *Chem. Pharm. Bull.* **1997**, 45, 424–426.
- Endo, Y.; Takehana, S.; Ohno, M.; Driedger, P. E.; Stabel, S.; Mizutani, M. Y.; Tomioka, N.; Itai, A.; Shudo, K. J. Med. Chem. 1998, 41, 1476–1496.
- Kozikowski, A. P.; Wang, S.; Ma, D.; Yao, J.; Ahmad, S.; Glazer, R. I.; Bogi, K.; Acs, P.; Modarres, S.; Lewin, N. E.; Blumberg, P. M. J. Med. Chem. 1997, 40, 1316–1326.
- 30. Ma, D.; Tang, W. Tetrahedron Lett. **1998**, 39, 7369–7372.
- 31. Ma, D. Chin. J. Chem. **1998**, 16, 292–302.
- Ma, D.; Tang, W.; Kozikowski, A. P.; Lewin, N. E.; Blumberg, P. M. J. Org. Chem. 1999, 64, 6366–6373.
- Ma, D.; Zhang, T.; Wang, G.; Kozikowski, A. P.; Lewin, N. E.; Blumberg, P. M. Bioorg. Med. Chem. Lett. 2001, 11, 99–101.
- 34. Sakamuri, S.; Kozikowski, A. P. Chem. Commun. 2001, 475–476
- 35. Sakamuri, S. *Tetrahedron Lett.* **2001**, *42*, 4317–4319.
- Nakagawa, Y.; Irie, K.; Yanagita, R. C.; Ohigashi, H.; Tsuda, K.-I. J. Am. Chem. Soc. 2005, 127, 5746–5747.
- Nakagawa, Y.; Irie, K.; Yanagita, R. C.; Ohigashi, H.; Tsuda, K.-I.; Kashiwagi, K.; Saito, N. J. Med. Chem. 2006, 49, 2681–2688.
- Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459–12467.
- 39. Ma, D.; Tang, G.; Kozikowski, A. P. Org. Lett. 2002, 4, 2377-2380.
- 40. Kurokawa, M.; Nakanishi, W.; Ishikawa, T. Heterocycles 2007, 71, 847-854.
- Manaka, T.; Nagayama, S.-I.; Desadee, W.; Yajima, N.; Kumamoto, T.; Watanabe, T.; Ishikawa, T.; Kawahata, M.; Yamaguchi, K. *Helv. Chim. Acta* 2007, 90, 128–142.
- 42. Isobe, T.; Ishikawa, T. J. Org. Chem. 1999, 64, 6984-6988.