An Efficient Approach to α-Aryl β-Amino Esters through 1,2-Aryl Migration of *p*-Toluenesulfonic Acid Mediated Diazo Decomposition

Nan Jiang, Jianbo Wang*

Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry, Peking University, Beijing 100871, China

Fax +86(10)62751708; E-mail: wangjb@pku.edu.cn

Received 5 October 2001

Abstract: A new method for the synthesis of α -aryl β -amino esters has been developed. The key step in this preparation is the chemoselective 1,2-aryl migration of diazo carbonyl compounds catalyzed by TsOH.

Key words: diazo compounds, 1,2-aryl migration, amino acids, hydrogenations, α -aryl β -amino esters

Considerable efforts have been directed to the synthesis of β-amino acids and their derivatives in recent years, because of their occurrence in biologically active natural products, such as alkaloids and antibiotics.¹ β-Amino acids also find application in the synthesis of β -lactams,² piperidines,³ indolizidines,⁴ and β -peptides.⁵ α -Aryl β amino acids have been found in some biologically important products. For example, (S)-3-Amino-2-phenylpropionic acid is the side chain of penicillin betacine, and its ethyl ester derivatives has neurological activity.⁶ The synthesis of α -aryl β -amino acids and their derivatives are particularly challenging and there are only few methods now available.⁷ In this communication, we report an efficient approach to the synthesis of this type of β -amino acid derivatives through p-toluenesulfonic acid (TsOH) catalyzed 1,2-aryl migration of a-diazo carbonyl compounds, as shown in Scheme 1.

Scheme 1

We have recently reported that the α -diazo carbonyl compounds **4a–f** can be prepared by nucleophilic addition of diazo ethylacetate (EDA) anion to the *N*-tosyl protected imine **1**.⁸ The EDA anion was generated through deprotonation by lithium diisopropylamide (LDA) or NaH. In the later investigation, we find that this nucleophilic addition can be promoted by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) under catalytic condition. The reaction condition is milder and the yields are moderate to good (Scheme 2).

In our previous investigation, the α -diazo carbonyl compounds are decomposed with Rh(II) or copper catalysts to give α -aryl- β -enamino esters (Scheme 3).⁸

$$\begin{array}{c} \text{HNTs O} \\ \text{Ar} \underbrace{+}_{\text{H}} \text{OEt} \\ \text{H} \underbrace{-}_{\text{N}_2} \text{OEt} \\ \text{4} \end{array} \xrightarrow{\text{TsOH (1 mol \%)}}_{\text{CH}_2 \text{Cl}_2, \ 0 \ ^\circ \text{C}} \begin{array}{c} \text{HNTs O} \\ \text{H} \underbrace{+}_{\text{H}} \text{OEt} \\ \text{Ar} \\ \text{OEt} \end{array} \xrightarrow{\text{HNTs O}}_{\text{OEt}} + \begin{array}{c} \text{H} \underbrace{+}_{\text{H}} \begin{array}{c} \text{H} \\ \text{H} \\ \text{OEt} \\ \text{OEt} \end{array} \xrightarrow{\text{HNTs O}}_{\text{OEt}} \\ \text{H} \\ \text{H} \\ \text{OEt} \end{array} \xrightarrow{\text{HNTs O}}_{\text{OEt}} + \begin{array}{c} \text{H} \\ \text{H} \\ \text{H} \\ \text{OEt} \end{array} \xrightarrow{\text{HNTs O}}_{\text{OEt}} \\ \text{H} \\ \text{H} \\ \text{H} \\ \text{OEt} \end{array} \xrightarrow{\text{HNTs O}}_{\text{OEt}} + \begin{array}{c} \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \text{OEt} \end{array} \xrightarrow{\text{HNTs O}}_{\text{OEt}} \\ \text{H} \\$$

Scheme 3

Table TsOH-Catalyzed Diazo Decomposition of 4a- f

Entry	Substrate	Product ratio (5 : 6) ^a	Yield (5) ^b
1	4 a	71:29	89
2	4b	62:38	90
3	4c	78:22	95
4	4d	>95:5	87
5	4e	75:25	85
6	4f	70:30	79

^a Product ratio was determined by ¹H NMR (400 MHz).

^b Yields after column chromatography.

We now find that the α -diazo carbonyl compounds, which are in general quite stable at room temperature, can be efficiently decomposed at 0 °C with catalytic TsOH (~ 1 mol%).⁹ As in the reaction with Rh(II) or copper catalysts, the 1,2-aryl products are predominate in all cases (Table). However, in Rh(II) or Cu(I) catalyzed reaction, *trans* α aryl- β -enamino esters are predominately *cis* products. The *cis* isomer is more stable than the *trans* isomer because of the intramolecular hydrogen bonding. We have observed

Synlett 2002, No. 1, 28 12 2001. Article Identifier: 1437-2096,E;2002,0,01,0149,0151,ftx,en;Y20601ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

that *trans* products could isomerize to their *cis* isomer in silica gel column. Therefore it is likely that the predominant formation of the *cis* products under TsOH catalysis condition is due to the acid-catalyzed isomerization during the reaction.⁹ To test this point, the diazo decomposition of **4a** was carried out with 10% TsOH at room temperature. As expected, the ratio of the *cis* to *trans* increased from 71:29 to 95:5.

β-Enamino esters are reported to be easily reduced to the corresponding β-amino esters with NaBH(OAc)₃.¹⁰ However, the α-aryl-β-enamino esters obtained in our investigation did not react with NaBH(OAc)₃ under identical condition. On the other hand, the *cis* and *trans* mixture of α-aryl-β-enamino esters **5a–f** and **6a–f** can be easily converted to α-aryl β-amino esters by hydrogenation with 1 atm H₂ and 10% Pd/C as the catalyst (Scheme 4).^{11,12}

For the acid catalyzed 1,2-aryl migration, we can propose a possible reaction mechanism. The diazo compound was first protonated at the negatively polarized carbon to which the diazo group is attached, following the extrusion of N₂ to give a highly reactive α -carbonyl cation. The neighboring phenyl group migrates through a bridged phenylium ion (Scheme 5).

In summary, we have developed an efficient route to the synthesis of α -aryl- β -amino esters. Efforts toward the synthesis of enantiomerically pure α -aryl- β -amino esters by asymmetric hydrogenation is currently under the way and the results will be report in due course.

Acknowledgement

The project is generously supported by Natural Science Foundation of China (Grant No. 29972002)

References

- For reviews, see: (a) Cole, D. C. *Tetrahedron* 1994, 50, 9517. (b) Juaristi, E.; Quintana, D.; Escalante, J. *Aldrichimica Acta* 1994, 27, 3. (c) *Enantioselective Synthesis of b-Amino Acids*; Juaristi, E., Ed.; Wiley-VCH: New York, 1997. (d) Juaristi, E.; Lopez-Ruiz, H. *Current Medical Chemistry* 1999, 6, 983.
- (2) For example, see: Kim, S.; Lee, P. H.; Lee, T. A. J. Chem. Soc., Chem. Commun. **1988**, 1242.
- (3) For example, see: Jefford, C. W.; Wang, J. B. *Tetrahedron Lett.* **1993**, *34*, 2911.
- (4) For example, see: Jefford, C. W.; Wang, J. B. *Tetrahedron Lett.* **1993**, *34*, 3119.
- (5) For a review on β-peptides, see: Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
- (6) Leonard, F.; Wajngurt, A.; Klein, M.; Smith, C. M. J. Org. Chem. 1961, 26, 4062.
- (7) Arvanitis, E.; Ernst, H.; Ludwig, A. L.; Robinson, A. J.; Wyatt, P. B. J. Chem. Soc. Perkin Trans. 1 1998, 521.
- (8) Jiang, N.; Qu, Z.; Wang, J. Org. Lett. **2001**, *3*, 2989.
- (9) General procedure for the TsOH catalyzed diazo decomposition: To a solution of TsOH (1 mg) in anhydrous CH₂Cl₂ (20 mL) at 0 °C under N₂, was added dropwise a solution of diazo compound in anhydrous CH₂Cl₂ (5 mL). The reaction was complete within 30 min as indicated by TLC check. Solvent was removed by evaporation, and the residue was purified by flash column chromatography to give *cis* and *trans* α-aryl-β-enamino esters as a mixture.
- (10) Cimarelli, C.; Palmieri, G. J. Org. Chem. 1996, 61, 5557.
- (11) General procedure for the hydrogenation of α -aryl- β enamino esters: To a solution of α -aryl- β -enamino esters (50 mg, *cis* and *trans* mixture) in absolute MeOH (25 mL) was added 10% Pd/C catalyst (10 mg). The reaction mixture was stirred for 10 h under 1 atm hydrogen atmosphere. Then catalyst was removed by filtration and solvent was evaporated to give a residue, which was purified by flash column chromatography.

3a: ¹H NMR (200 MHz, CDCl₃): δ 1.13 (t, 3 H), 2.36 (s, 3 H), 3.19–352 (m, 2 H), 3.79–3.86 (q, 1 H), 4.04–4.17 (m, 2 H), 5.13 (t, 1 H), 7.13 (m, 7 H), 7.72 (d, 2 H); ¹³C NMR (50 MHz, CDCl₃): δ 13.88, 21.42, 45.62, 51.72, 61.27, 126.91,

Scheme 4

Scheme 5

Synlett 2002, No. 1, 149-151 ISSN 0936-5214 © Thieme Stuttgart · New York

127.82, 127.84, 128.88, 129.68, 135.63, 136.86, 143.40, 172.34; MS *m*/*z* (relative intensity): 347 (M⁺, 17%), 118 (100%).

3b: ¹H NMR (200 MHz, CDCl₃) δ 1.18 (t, 3H), 2.42 (s, 3 H), 3.16–3.50 (m, 2H), 3.77–3.81 (m, 1 H), 3.79 (s, 3H), 4.04– 4.17 (m, 2 H), 5.07 (t, 1 H), 6.83 (d, 2 H), 7.06 (d, 2 H), 7.29 (d, 2 H), 7.72 (d, 2 H); ¹³C NMR (50 MHz, CDCl₃): δ 13.90, 21.41, 45.67, 50.82, 55.14, 61.18, 114.25, 126.91, 127.60, 128.90, 129.65, 136.90, 143.36, 159.14, 172.56; MS *m/z* (relative intensity): 377 (M⁺, 10%), 194 (100%).

 $\begin{array}{l} \textbf{3c:} \ ^{1}\text{H NMR} \ (200 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 1.19 \ (t, 3 \ \text{H}), 2.39 \ (s, 3 \ \text{H}), \\ \textbf{3.21-3.55} \ (m, 2 \ \text{H}), \textbf{3.84-3.91} (q, 1 \ \text{H}), \textbf{4.04-4.20} \ (m, 2 \ \text{H}), \\ \textbf{5.07} \ (t, 1 \ \text{H}), \textbf{7.20-7.57} \ (m, 1 \ \text{H}), \textbf{7.71} \ (d, 2 \ \text{H}); \ ^{13}\text{C NMR} \\ \textbf{(50 \ \text{MHz}, \text{CDCl}_3):} \ \delta \ 13.96, \ 21.45, \ 45.65, \ 51.40, \ 61.39, \end{array}$

126.95, 127.45, 127.60, 128.30, 129.71, 134.60, 136.89, 140.26, 140.82, 143.45, 172.36. *m/z* (relative intensity): 423 (M⁺, 11%), 240 (100%).

3d: ¹H NMR (200 MHz, CDCl₃) δ 1.17 (t, 3 H), 2.42 (s, 3 H), 3.15–3.50 (m, 2 H), 3.78–3.85 (q, 1 H), 4.04–4.18 (m, 2 H), 5.20 (t, 1 H), 6.92–7.30 (m, 6 H), 7.70 (d, 2 H); ¹³C NMR (50 MHz, CDCl₃): δ 13.87, 21.41, 45.57, 50.92, 61.37, 115.55, 115.98, 126.89, 129.44, 129.60, 129.69, 136.79, 143.47,

172.19. *m/z* (relative intensity): 365 (M⁺, 24%), 182 (100%). **3e**: ¹H NMR (200 MHz, CDCl₃) δ 1.18 (t, 3 H), 2.42 (s, 3 H), 3.20–3.55 (m, 2 H), 3.87–3.94 (q, 1 H), 4.04–4.17 (m, 2 H), 5.13 (t, 1 H), 7.29 (m, 2 H), 7.31–7.56 (m, 4 H), 7.70 (m, 2 H); ¹³C NMR (50 MHz, CDCl₃): δ 13.84, 21.42, 45.44, 51.55, 61.61, 124.74, 124.81, 126.91, 129.42, 131.44, 136.68, 136.78, 143.62, 171.70. *m/z* (relative intensity): 415 (M⁺, 8%) 184 (100%). **3f**: ¹H NMR (200 MHz, CDCl₃) δ 1.22 (t, 3 H), 1.97 (m, 2 H), 2.39 (s, 3 H), 2.83 (t, 2 H), 3.89 (d, 2 H), 4.02–4.20 (m, 4 H), 5.15 (t, 1 H), 7.23 (d, 2 H), 7.68 (d, 2 H); ¹³C NMR (50 MHz, CDCl₃): δ 14.32, 21.40, 23.74, 31.15, 39.35, 59.84, 72.16, 76.36, 76.99, 77.63, 98.03, 127.10, 129.11, 137.59, 142.79, 167.55, 173.76. *m/z* (relative intensity): 339 (M⁺, 14%), 184 (100%).

(12) For the α -aryl- β -enamino esters **5f** and **6f**, the hydrogenation gave a product with the furanyl moiety being partially hydrogenated. The structure of the **3f** (Figure) is as follows.

Figure