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Stereoselective Synthesis of a-Allenols by Rhodium-Catalyzed
Reaction of Alkynyl Oxiranes with Arylboronic Acids**
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Allenes constitute an important class of building blocks
possessing axial chirality as well as unique reactivities.[1] The
SN2’-type substitution of propargylic alcohol derivatives with
organometallic reagents is one of the most reliable proce-
dures for the stereoselective preparation of substituted
allenes.[2] We previously described the rhodium-catalyzed
substitution reaction of propargylic acetates with phenyl-
boronic acid, wherein the resulting alkenylrhodium(I) inter-
mediate underwent b-oxygen elimination to afford a trisub-
stituted allene.[3] In an extension of this work we set out to
examine the use of alkynyl oxiranes as acceptors for
arylboronic acids owing to the considerable interest in the
resulting a-allenols as building blocks for the construction of
oxygenated heterocycles of biological and pharmacological
relevance.[4] We report herein on the rhodium-catalyzed
reaction of alkynyl oxiranes with arylboronic acids which
yields a-allenols with excellent diastereoselectivity.

Alkynyl oxirane 1a (1.0 equiv) was treated with phenyl-
boronic acid (2a, 1.5 equiv) in the presence of [{RhCl(nbd)}2]
(5 mol% of Rh, nbd= norborna-2,5-diene)[5] and KOH
(0.6 equiv) in THF (0.1m) at room temperature. The reaction
was completed in 2 h, and an extractive workup followed by
chromatographic isolation afforded the a-allenol 3aa in 81%
yield with excellent diastereoselectivity (syn/anti= 99:1)[6]

[Eq. (1)].

The highly stereoselective formation of the syn-config-
ured a-allenol is noteworthy among other SN2’-type reactions
of alkynyl oxiranes with organometallic reagents.[7] Organo-
copper and organocuprate reagents preferentially afford anti-
configured a-allenols in most cases[8] with very few excep-
tions.[9] Palladium-catalyzed reactions with organostan-
nanes[10] and organoborons[11] also give the corresponding
anti-substitution product. On the other hand, syn-configured
a-allenols were selectively produced by the iron-catalyzed
reaction of alkynyl oxiranes with Grignard reagents.[12]

However, the iron-catalyzed reaction of 1a with PhMgBr
exhibited only moderate diastereoselectivity (syn/anti=
66:34).

The mechanism shown in Scheme 1 explains the stereo-
selective formation of 3aa. Initially, a phenylrhodium(I)
species is generated by transmetalation of hydroxorhodium(I)
with 2a.[13] Then, cis 1,2-addition of the phenylrhodium(I)
species to 1a takes place to afford the alkenylrhodium(I)
intermediate A. Noteworthy was that addition of the phenyl-
rhodium(I) species across the carbon–carbon triple bond of
the epoxy-substituted alkyne, which otherwise required
heating over 80 8C,[14] occurred at room temperature. We
assume that precoordination of the oxygen atom of the
oxirane ring to rhodium contributes to the high stereoselec-
tivity as well as high reactivity, similar to the case of the iron-

catalyzed reaction.[12] Subsequent b-oxygen
elimination occurs in a syn mode to open the
oxirane ring.[15] The resulting rhodium(I) alk-
oxide B reacts with 2a to release the product
3aa along with a rhodium(I) boronate.[16]

Other examples of the stereoselective syn-
thesis of a-allenols 3 from various combina-
tions of alkynyl oxiranes 1 and arylboronic
acids 2 are listed in Table 1. The catalytic

Scheme 1. Mechanism explaining the stereoselective formation of the
syn-configured a-allenol.
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process of 1a worked well with an array of sterically and
electronically diverse arylboronic acids 2b–2h, as well as
heteroarylboronic acid 2 i, to give syn-configured a-allenols
3ab–3ai with stereoselectivities higher than 96:4, except in
the case of the sterically hindered ortho-tolylboronic acid
(Table 1, entries 1–8).[17] It is worth pointing
out that the reaction conditions tolerate vari-
ous functional groups including a formyl group,
which is incompatible with Grignard reagents.
Substrate 1c, which has a tetrasubstituted
oxirane, also gave the tertiary alcohol 3ca
stereoselectively (Table 1, entry 11). The reac-
tion of substrate 1d having a terminal alkyne
moiety afforded the product 3da with a
decreased selectivity in only 19% yield

(Table 1, entry 12). Substrates 1e–
1g with five-, seven-, and eight-
membered-ring structures gave the
respective products 3ea–3ga ste-
reoselectively in high yield
(Table 1, entries 13–15). In addi-
tion, the acyclic substrate 1h also
reacted with high yield and selec-
tivity (Table 1, entry 16). When
enantiomerically enriched 1a[18]

and 1 i[19] were used, the enantio-
meric purity of the product 3aa and
3 ia were exactly identical to those
of the starting oxiranes (Table 1,
entries 9 and 17).[20]

Next, we explored nucleophiles
other than arylboronic acids, and
found that MeMgCl reacted analo-
gously.[21] For example, treatment of
substrate 1 j (1.0 equiv) with
MeMgCl (3.0 equiv) in the presence
of [{RhCl(nbd)}2] (5 mol% of Rh)
for 12 h at room temperature
afforded the desired methylated a-
allenol 3aa’ [Eq. (2); TMEDA=

N,N,N’,N’-tetramethylethylenedia-
mine]. However, the syn selectivity
was lower than that observed with
arylboronic acids.

In summary, we have developed
a rhodium-catalyzed reaction that
permits the construction of syn-
configured a-allenols from alkynyl
oxiranes and arylboronic acids.
Occurring with a high level of
diastereoselectivity under mild con-
ditions, the reaction will become a
good supplement to the well-stud-
ied copper-catalyzed reactions.

Experimental Section
Typical procedure: An oven-dried, Ar-
purged flask was charged with [{RhCl-

(nbd)}2] (4.3 mg, 9.3 mmol), 2a (68.0 mg, 0.56 mmol), KOH (13.0 mg,
0.23 mmol), THF (1.8 mL), and a solution of 1a (50.0 mg, 0.37 mmol)
in THF (1.8 mL). The reaction mixture was stirred at room temper-
ature for 2 h and quenched with water (10 mL). The aqueous layer
was extracted with ethyl acetate (3 E 10 mL). The combined extracts
were washed with brine and dried over MgSO4. The solvent was

Table 1: Rhodium-catalyzed syn-selective synthesis of a-allenols from alkynyl oxiranes using arylboronic
acids.[a]

Entry Substrate 1 ArB(OH)2 2 Major product 3 Yield [%][b] syn/anti[c]

1 1a R=Me, R’=H 2b Ar=4-FC6H4 3ab 76 98:2
2 1a 2c Ar=4-BrC6H4 3ac 86 99:1
3 1a 2d Ar=4-MeC6H4 3ad 77 98:2
4 1a 2e Ar=3-MeOC6H4 3ae 80 99:1
5 1a 2 f Ar=3-ClC6H4 3af 74 99:1
6 1a 2g Ar=3-CHOC6H4 3ag 72 96:4
7 1a 2h Ar=2-MeC6H4 3ah 83 83:17
8 1a 2 i Ar=2-thienyl 3ai 75 97:3
9 (R,R)-1a (82% ee) 2a Ar=Ph (R,Sa)-3aa (82% ee) 84 99:1
10 1b R=C5H11, R’=H 2a Ar=Ph 3ba 74 97:3
11 1c R=C5H11, R’=Me 2a Ar=Ph 3ca 65 99:1
12 1d R=H, R’=H 2a Ar=Ph 3da 19 83:17

13 2a Ar=Ph 82 97:3

14 2a Ar=Ph 83 99:1

15 2a Ar=Ph 83 99:1

16 2a Ar=Ph 85 99:1

17 2a Ph 61 94:6

(S,S)-1 i (80% ee) (S,Ra)-3 ia (80% ee)

[a] All reactions were carried out using 1 (0.4 mmol), 2 (0.6 mmol), KOH (0.2–0.3 mmol), [{RhCl(nbd)}2]
(0.01 mmol, 5 mol% of Rh) in THF (4.0 mL) at RT for 3–16 h. [b] Yield of isolated product. [c] Relative
stereochemistry assigned by comparison with an authentic anti isomer prepared by the literature
procedure,[8g, 9,11] and the ratios were determined by HPLC analysis of the isolated mixture of the a-
allenols or the corresponding acetates.
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removed under reduced pressure and the residue was purified by
preparative thin-layer chromatography (hexane/ethyl acetate 5:1) to
give 3aa (63.6 mg, 81%, syn/anti= 99:1) as a pale yellow oil.
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