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Abstract: The palladium-catalyzed asymmetric alco-
holysis of vinyl ethers of P-chirogenic compounds
has been achieved. The kinetic resolution of aryl
tert-butyl(2-vinyloxyaryl)phosphinates was catalyzed
by palladium/chiral diamine complexes with high
selectivities (krel : 12–196).
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Introducing chirality at a phosphorus atom is of par-
ticular importance because chirogenic phosphorus
centers are common partial structures of a variety of
functional molecules, including chiral ligands for
asymmetric catalysis[1] and bioactive compounds such
as herbicides,[2a] pesticides,[2b] neurotoxins,[2c] anti-
tumor agents[2d] and modified oligonucleotides.[2e] In
spite of the significance of the P-chirogenic com-
pounds, only limited numbers of methodologies to ap-
proach them have been developed. The most classical
method is fractional crystallization of diastereomeric
salts.[3] Later, enzymatic resolution by hydrolysis[4a] or
esterification,[4b] stereoselective synthesis[5a–d] and cat-
alytic asymmetric synthesis including desymmetriza-
tion with Li-sparteine catalysts,[5e] organocatalysts,[5f]

Rh-catalyzed [2+2+ 2]cyclization,[5g] and cross-cou-
pling of R2PH with ArI[5h,i] have been developed. Re-
cently, an interesting method based on the Appel re-
action was reported.[5j] This process realized a dynam-
ic kinetic resolution,[6] but the observed selectivities
were moderate (max. 80% ee) and a stoichiometric
chiral reagent is required.

Catalytic hydrolysis and alcoholysis are environ-
mentally benign, practical tools for asymmetric syn-
thesis.[7] However, in the field of homogeneous cataly-
sis, little progress has been made compared to bioca-

talysis. We have developed the first example of an
asymmetric alcoholysis of vinyl ethers catalyzed by
Pd-chiral diamine (1a) complexes.[7d] The kinetic reso-
lution of axially chiral compounds has been achieved.
In our recent study, the phosphoryl (PO) group was
found to be an efficient directing group and mono-
phosphoryl, monovinyl derivatives of axially chiral
diols underwent kinetic resolution in high selectivi-
ty.[7g]

In the present study, we have extended this strategy
to P-chiral compounds which have been considered as
difficult targets in the asymmetric synthesis. We di-
rected our attention to phosphinate derivatives having
an o-vinyloxyphenyl group as a P-chirogenic sub-
strate.[8] This class of compounds has been used as
chelate ligands,[8d] parts of crown ethers,[8e,g,i] precur-
sors of phosphachromones[8g] and biocides.[8c]

The substrates 2 were synthesized from tert-butyl-
phosphonic dichloride by diphenyl ester formation,
isomerization of one ester group to form the phosphi-
nate by ortho-mono-lithiation,[8a,b,f,i] and then vinyla-
tion[9] (Scheme 1). A P-chirogenic compound 2a (R=
H) was chosen for the test of the reaction.

Asymmetric alcoholysis of 2a was examined with a
Pd catalyst system employing ligands 1a and 1b,
which have a cyclohexanediamine backbone. How-ACHTUNGTRENNUNGever, only moderate selectivities (krel =11 and 10)
were observed (Table 1, entries 1 and 2). The tetra-
phenylphenyl substituent[7d,g,10] was not effective in
this case. When the diamine backbone was changed
to diphenylACHTUNGTRENNUNGethanediamine (1c), a higher selectivity
(krel =19) and catalytic activity were achieved
(entry 3). On introducing a bulky substituent at the
meta-position of the N-phenyl group (1d), the krel

value reached 51 (entry 4). Optically active 3a (80%
ee) in 48% yield and unreacted 2a (99% ee) in 45%
yield were obtained.

The substrate generality was examined with various
P-chirogenic substrates (2b–j). These were synthe-
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sized by the same route as described in Scheme 1.
When meta-substituted phenyl esters underwent phos-
phinate formation reaction by ortho-mono-lithiation,
only one of the two possible isomers was obtained.
The m-tolyl ester afforded p-methyl-o-hydroxyphenyl-
phosphinate (3c), on the other hand m-halophenyl
esters furnished o-halo-o-hydroxyphenylphosphinate
(3g–j), respectively. The kinetic resolution with
Pd ACHTUNGTRENNUNG(OAc)2 + 1d as catalyst generally exhibited high se-
lectivities (krel = 12–196) (Table 2). Among the
methyl-substituted phosphinates (2b–d), the p-methyl
substrate (2c) showed a selectivity value of krel =52

(entry 2), which is similar to that of the unsubstituted
one (2a). However, the m-methyl and m-dimethyl
substrates (2b and d) gave lower krel values (12 and
19, entries 1 and 3). The p-chloro-, p-fluoro-, and m-
fluorophosphinate esters (2e, 2f and 2g) also afforded
high selectivities (krel =37, 56, and 31; entries 4, 5 and
6). Dihalo-substituted substrates, particularly m,p-di-
chloro and m-chloro-p-fluoro esters (2i and 2j) pre-
sented selectivities of over 100 (krel = 110, and 196; en-
tries 8 and 9). For instance, unreacted 2i was obtained
with 99.8% ee in 45% yield. A 1-g scale reaction
using 2a proceeded without any difficulty and essen-

Table 1. Kinetic resolution of a P-chirogenic compound 2a by Pd-catalyzed alcoholysis of vinyl ethers.

Entry Ligand t [h] Conversion [%][a] ee of 2[b] [%] (Yield [%])[c] ee of 3[b] [%] (Yield [%])[c] krel
[d]

1 1a 8 19.6 20 (81)[e] 80 (16)[f] 11.0
2 1b 8 13.4 12 (85)[e] 80 (11)[f] 10.1
3 1c 4 45.1 67 (53)[e] 81 (36)[f] 19.2
4 1d 4 55.3 99.3 (45) 80 (48) 50.8

[a] Calculated with equation: conversion =eesub/(eesub+eepro).
[b] Determined by HPLC analysis.
[c] Isolated yield.
[d] Calculated with equation: krel = lnACHTUNGTRENNUNG[1�conv ACHTUNGTRENNUNG(1+eepro)]/ln ACHTUNGTRENNUNG[1�conv ACHTUNGTRENNUNG(1�eepro)] .
[e] (S)-2a was obtained.
[f] (R)-3a was obtained.

Scheme 1.
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tially the same selectivity was observed (krel =50,
entry 10).

A single recrystallization of 3a (80% ee) afforded
enantiopure (>99% ee) crystals. The absolute struc-
ture of 3a obtained with (S,S)-1d/Pd catalyst was
found to have the (S)-configuration by X-ray crystal-
lographic analysis, in which the absolute structure was
unambiguously determined based on the Flack pa-
rameter (0.03) refined for the reported configuration
(Figure 1).

A transformation of optically active 2a (>99% ee)
was carried out (Scheme 2). Hydrogenation of (R)-2a
gave an ethyl ether and ortho-lithiation to make a
P�C bond afforded a phosphine oxide. In both cases,
the enantiomeric excesses of the products were main-
tained (>99% ee). The absolute configuration of the
phosphine oxide was again confirmed by the X-ray
crystallographic analysis.

In conclusion, we have accomplished a kinetic reso-
lution of P-chirogenic vinyl ethers (2a–j) with high se-
lectivities (krel up to 196) by an alcoholysis reaction
with PdACHTUNGTRENNUNG(OAc)2/1d as a catalyst. These chiral com-
pounds (2 and 3) provide potential building blocks for
novel chiral ligands and bioactive compounds. Ex-
tended studies utilizing this strategy are now under
way.

Table 2. Kinetic resolution of P-chirogenic compounds 2 via Pd ACHTUNGTRENNUNG(OAc)2/1d-catalyzed alcoholysis.

Entry Substrate t [h] Conversion [%][a] ee of 2[b] [%] (Yield [%])[c] ee of 3[b] [%] (Yield [%])[c] krel
[d]

1 2b 1 44.4 60 (46) 75 (42) 12.4
2 2c 5 53.4 97 (41) 85 (50) 52.3
3 2d 5 30.3 37 (62) 86 (30) 18.5
4 2e 4 53.1 94 (43) 83 (43) 37.4
5 2f 4 50.8 92 (47) 89 (46) 56.2
6 2g 4 48.9 81 (43) 85 (48) 30.6
7 2h 4 30.2 41 (65) 94 (29) 49.0
8 2i 4 52.9 99.8 (45) 89 (51) 110
9 2j 5 41.5 70 (56) 98 (41) 196
10[e] 2a 4 49.6 88 (52) 89 (48) 50.4

[a] Calculated with equation: conversion =eesub/(eesub+eepro).
[b] Determined by HPLC analysis.
[c] Isolated yield.
[d] Calculated with equation: krel = lnACHTUNGTRENNUNG[1�conv ACHTUNGTRENNUNG(1+eepro)]/ln ACHTUNGTRENNUNG[1�conv ACHTUNGTRENNUNG(1-eepro)] .
[e] A 3.67 mmol (1.16 g) scale reaction.

Figure 1. ORTEP drawing for (S)-3a (product of Table 1,
entry 4, recrystallization from hexane/diethyl ether).
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Experimental Section

Typical Procedure for the Kinetic Resolution of 2a

A mixture of PdACHTUNGTRENNUNG(OAc)2 (40.5 mg, 0.180 mmol) and 1d
(205.9 mg, 0.264 mmol) in CH2Cl2 (3.5 mL) was stirred at
room temperature under air. After 1 h, the mixture was con-
centrated under reduced pressure and dried under vacuum.
To this residue was added a CH2Cl2 (anhydrous, 2.1 mL) so-
lution of 2a (1.1607 g, 3.67 mmol) and methanol (anhydrous,
1.4 mL, 35 mmol), and the mixture was stirred at 20 8C
under ambient atmosphere for 4 h. Silica-gel column chro-
matography was carried out to give (S)-3a (yield: 508.1 mg,
47.7% yield, 89.2% ee) and (R)-2a (yield: 598.9 mg, 51.6%
yield, 87.8% ee).

CCDC 724711 [(S)-3a] and CCDC 724712 {(S)-2-[tert-
butyl(2-ethoxyphenyl)phosphinoyl]phenol} contain the sup-
plementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystal-
lographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.

Supporting Information

Additional experimental procedures and spectral data are
available as Supporting Information.
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