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Abstract—An inner core of the GPI anchor of sperm CDS52 antigens was synthesized by a highly convergent process using specially
modified inositol, glucosamine and phospholipid as key building blocks. This paper also presents a new and efficient procedure to
prepare 1,2,6-differentiated derivatives of inositol for GPI syntheses. © 2002 Elsevier Science Ltd. All rights reserved.

CD52 antigens, which are expressed on virtually all
human lymphocytes' and sperm cells,? belong to a very
unique class of glycoproteins that are anchored to
plasma membranes by glycosylphosphatidylinositols
(GPIs). CD52 antigens play a fundamental role in
the recognition process of the immune system and the
specific interactions between eggs and sperms.!»?

Despite the fact that GPI-anchoring is very common in
the eukaryotic world,? it is fairly difficult to obtain
homogeneous GPIs and GPI-anchored glycoproteins
from nature. Thus, chemical synthesis of GPIs has been
a major research focus in the past decade.*® However,
there is no report yet about the synthesis of CD52 GPIs,
though a glycopeptide fragment of CD52 antigens has
been recently synthesized by solid-phase method.!'? This
paper describes the first chemical synthesis of a short
GPI anchor (1) of sperm CD52.

As indicated by our retrosynthetic analysis (Fig. 1), the
convergent assembly of 1 would require three key
building blocks 2, 3, and 4, of which the specially
modified D-myo-inositol 3 was critical.

During the past decades, numerous methods have been
designed for the synthesis of optically pure derivatives
of inositol.!! However, most methods utilized only one
resolved enantiomer of a racemic intermediate, which
has severely affected the overall synthetic efficiency. To
solve this problem, we designed a new method (Scheme 1)
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for a key intermediate 5 in the synthesis of 3, which
made use of both enantiomers of a partially protected
derivative, 6, of inositol.

The preparation and resolution of 6 were achieved by a
reported method'® that could afford both enantiomers
in excellent yields and optical purity. The allylation of
(+)-6 by means of Bu,SnO and allyl bromide gave a
6-allyl product 7 in good yields (Scheme 1a) and only a
small amount (5%) of the 1-allyl isomer. This regio-
selectivity is proposed to result from steric effect, as the
I-position of the tin complex of 6 (Fig. 2) would be
more sterically hindered than the 6-position. An experi-
mental support for this rationale is that when a bulkier
reagent, such as p-methoxybenzyl chloride (MBnCl),
was utilized for the reaction, only 6-alkylation was
observed. Then, the free hydroxyl group in 7 was pro-
tected by an MBn group to give 8. When 8 was treated
by HCI in MeOH/CH,Cl, for a short period (10 min),
the more strained trans ketal was selectively cleaved
to offer 9 (60%). This reaction should be monitored
closely, as the remaining ketal in 9 could also be removed
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Figure 1. Retrosynthetic analysis.
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Scheme 1. Reagents and conditions: (a) (i) Bu,SnO, toluene, reflux, 2.5h; (ii) AllBr, DMF, rt, 16 h; (b) MBnCl, NaH, DMF, rt, 3h; (c) AcCl,
MeOH-CH,Cl,, rt, 10 min; (d) BnBr, NaH, DMF, rt, 3 h; (¢) AcCl, MeOH-CH,Cl,, rt, 2 h; (f) (i) Bu,SnO, toluene, reflux, 2.5 h; (ii) BnBr, DMF, rt,

15h; (g) (i) Bu,SnO, toluene, reflux, 2.5h; (i) MBnCl, DMF, rt, 16 h.

Figure 2. The tin complex involved in the selective allylation of (+)-6.

on prolonged exposure to acid. Thereafter, 9 was
benzylated to produce 10. The ketal in 10 was finally
deblocked by HCI/MeOH (2h), and the resulting diol
11 was regioselectively benzylated in the presence of
Bu,SnO to afford the key derivative 5. Only the
3-benzylation was observed in this reaction. Thus, 5 was
effectively prepared on a multigram scale from (+)-6 in
six separate steps and a 32% overall yield.

To further improve the overall yield of 5 from inositol,
we studied the feasibility to make use of the remaining
enantiomer of 6. In fact, as inositol itself is symmetric
and the temporary chiral property of 6 was created by
derivatization, if we introduce new protecting groups to
(—)-6 (in replacement of the exiting ones) by a sequence
reverse to that of Scheme la, it is possible to derive the
same synthetic target from both enantiomers.

Therefore, we designed another synthetic procedure for
5 starting from (—)-6 (Scheme 1b). The reactions used
herein were similar to those used in the former procedure.
First, (—)-6 was benzylated to produce 12. Then, its
trans ketal was selectively cleaved under an acidic con-
dition described above to give a diol 13 (68%). Regio-
selective allylation of 13 was achieved again under the
influence of Bu,SnO to afford 14 (71%). Then, benzy-
lation of 14, removal of the ketal in the resulting 15 and
selective methoxybenzylation of 16 in the presence of
Bu,SnO finally offered 5 in an excellent yield (84%).
Thus, 5 was prepared from (—)-6 in 6 separate steps and
a 42% overall yield.

While 5 contains a free 2-hydroxyl to which various
functional or protecting groups can be attached, its 1-
and 6-positions are respectively protected by MBn and
All that can be selectively removed by CAN/H,O and
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Scheme 2. Reagents and conditions: (a) C;sH3;;COOH, DCC, DMAP,
CH,Cl,, rt, overnight; (b) PdCl,, NaOAc, AcOH, THF, rt, 18 h.
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Scheme 3. Reagents and conditions: (a) Ac;O-AcOH (1:1), H,SOy4
(cat), 0°C, 15min; (b) BnNH,, Et,O, rt, 2h; (c) DAST, CH,Cl,, 0°C,
30 min; (d) NaOMe, MeOH, rt, 2h; (e) BnBr, NaH, DMF, rt, 3h.

PdCl,/HOAc without affecting benzyl groups at other
positions. Therefore, once 5 was obtained, it was quite
straightforward to transform 5 to 3. 2-Acylation of §
using DCC as a condensation reagent and then selective
deallylation of the product 17 afforded 3 in an excellent
yield (Scheme 2).

The glycosyl donor 2, having its amino group protected
as an azido group, was then prepared from D-glucal by
a procedure shown in Scheme 3. D-Glucal was readily
transformed to 18 by a reported method.!? Selective
breaking of the 5-membered ring in 18 by a mixture of
acetic acid and acetic anhydride (1:1) containing a trace
amount of concentrated sulfuric acid gave the diacetate
19 (o/f=3.5:1), which was selectively deprotected by
benzylamine to yield a hemiacetal 20. Treatment of 20
with DAST afforded the glycosyl fluoride 21 (o/f = 1:6).
Finally, 2 was obtained by replacing the 6-acetyl group
in 21 for a benzyl group in two steps using conventional
protocols.

The phospholipid block 4 was prepared according to
Scheme 4. First, D-mannitol was converted to 23 by a
reported procedure.!® Then, phosphorylation of 23 by
24 afforded 4. It has a defined R-configuration. Com-
pound 4 was proved during chromatography to be
unstable on a silica gel column. Thus, crude 4 was
directly used for the next step.

The glycosylaction of 3 by 2 was achieved in anhydrous
Et,O using dichlorohafnocene and silver perchlorate as
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Scheme 4. Reagents and conditions: (a) (NCCH,CH,O)P(NPr), (24),
diisopropylaminium tetrazolide, CH,Cl,-MeCN, rt, 2 h.
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Scheme 5. Reagents and conditions: (a) Cp,HfCl,, AgOTf, MS 4A,
Et,0, —15°C to rt, overnight; (b) CAN, H;O-MeCN (1:9), rt, 2h; (c)
4, tetrazole, MS 3A, CH,Cl,-MeCN, rt, 6 h; O, light.

a promoter (Scheme 5), and a mixture of the expected
product 25 and its B-anomer (4:3) was obtained in 70%
yield. The anomers were easily separable on a silica gel
column. Meanwhile, it was interesting to notice that the
same reaction carried out in CH,Cl, gave a mixture in
favor of the B-isomer (a/f=4:5). After removal of the
MBn in 25 by oxidation with CAN, 26 was obtained in
a good yield (80%). Finally, phosphorylation of 26 by 4
in the presence of tetrazole proceeded very smoothly to
give a product (67% yield after column chroma-
tography) that was projected to be a phosphite. How-
ever, the 3'P NMR (3 8.71, 7.35) and MS spectra clearly
indicated that the product was a diastereoisomeric
mixture of the expected final product 1'% that might
result from the oxidation of the phosphite by oxygen on
the column, which was previously observed by Frier'? as
well.

In conclusion, this paper described a highly convergent
synthesis of a GPI anchor (1) of sperm CDS52. Since the
4-position of its glucosamine residue, which is protected
by an allyl group, can be selectively exposed, it will be
possible to further modify the glycan for the prepara-
tion of intact CD52 GPI anchors. In the meantime, this
paper also presented a new and effective method to
prepare an enantiomerically pure derivative (5) of
D-myo-inositol with its 1,2,6-positions well differ-
entiated. Because the inositol residue in many GPI
anchors has its 2-position modified by various lipid
chains, 5 can be widely useful to the synthesis of other
GPI anchors. The synthesis of 5 is highlighted by
making use of both enantiomers of an intermediate.
Enantiomers of inositol derivatives were previously
employed by Chen!'® and Fraser-Reid® in their works,
but these studies, like ours, used both enantiomers of a
certain intermediate in different ways and for different
purposes.
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