The P—I¥ relationship in indentation
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In this paper we derive an analyticekxpression for the indentation load—depth
relation during loading in an indentation experiment, nantely: E, (1/VC VE,/H +

e Vml4 VHIE,)? (h + £)%. The advantage over previously used expressions is that no
additional empirical constants are necessary. A comparison between the new
expression and results from finite element calculations shows excellent agreement.

[. INTRODUCTION IIl. THEORY

It has been shown in various investigatibrighat the The starting point of our derivation is to write the total
loading curve obtained from depth-sensing indentatiorindentation depth as the sum of the contact déptand
experiments can be accurately described by the followinghe displacement of the surface at the perimeter of the
relationship: contacthg

P =Kk . (1) h=nh+h . (3)

Thus, the load is equal to a constant K times the squareThis is illustrated in Fig. 1.

of the indentation depth. This equation has been ob-  Forh; we use the following definition of hardnest

tained by experiments (Hainsworét al., 1996); finite p o

element calculation (Zeng and Rowcliffe, 19963nd H=—=

dimensional analysis (Cheng and Cheng, 1598e- A. 2452

cently, the relation (1) has been used as a basis for an ) )

indenter tip radius and load frame compliance calibratiofVN€re P is the load andA, is the contact area at that

(Sunet al., 1999)* oad, whlch is (_aquwal_ent to 2405 in case of a perfect
The value of the constant K depends on the indenter ti&e_rkowch (or Vickers) indenter. Hence, for a perfect Berk-

shape and on the material properties of the indented m&Vich indenter we have

: (4)

terial. Hainsworthet al. (1996) derived the following P
relation for K: h.= A |—— (5)
¢ 24.H -
E H\™ : : .
K=ZzE|®+/— + W+ /= ) (2) The case of a nonperfect indenter will be discussed
H E below.

In this equationE andH are Young’s modulus and the Forh, we can write (Oliver and Pharr, 1992):

hardness, respectively, of the indented matediand¥ P

are two empirical constants, for which the valuks= hy=e < , (6)

0.194 and¥ = 0.903 have been obtained by Hainsworth

et al. after analyzing indentation load—displacementin which e is a geometrical constant, which takes a value

curves measured on a broad range of different materialgf 0.72 for a conical indenter, and 0.75 for a paraboloid,
We show in this paper that the relation (1) can beand S is the unloading contact stiffness at loRd The

derived analytically, giving an explicit expression for K, following well-known expression relateS to Young’s

which is of the form of Eq. (2). modulus of the indented material (Oliver and Pharr,
1992)5
; 4
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in which E, is the reduced Young’s modulus, given by The symbols are explained in Fig. 2. The equation only
holds forh, > d. The function given in Eq. (11) has been

1 1-v2 1-v2 used successfully by Sust al. (1999} to describe real
E-E T E , (8) indenter tips.
r ! s Using Eqg. (11) in Eq. (4) instead of the perfect Berk-

ovich expression and repeating the analysis outlined

where E. and v, are Young's modulus and Poisson’s ;
s s 9 above finally leads to

ratio, respectively, of the indented specimen Enandv;
are those of the indenter.

inati i 1 E, H\™
Combination of Egs. (4), (6), and (7) yields P=E (\/6 \/; N e\/% \/;) (h+ )72

\/%\/P H (12)
hsze Z .

= (©)

Equation (12) provides an analytical expression which
Finally, we combine the expressions forandh,, Egs.  €an b(_e u_sed to predict the nanoindentatic_)n response of a
(5) and (9), by Substituting them into Eq (3) After Somemate.rlal |ftheE andH values of the mate!’lal are known
rearrangement, the result is the following relation be-2nd if the indenter tip geometry as described by Eq. (11)
tween indentation depth and displacement: is known. Moreover, eitheE or H can be determined if
one or the other is known.
1 E — H\2 Various implicit assumptions have been made in the
P=E ( \/: + e\/: \/:> h2 . derivation of Eq. (12). The most important is that the
245 VH 4 VE hardness is assumed to be a constant, independent of
(10)  indentation depth, despite the fact that indentation size
effects (ISE) are known to occur. These effects are often
Note that the prefactor dfi* in this expression has the related to strain hardening, which is thus not included
form given by Hainsworthet al. (Eq. 2), apart from here. However, as also pointed out by Hainsweitfal.,
Young’s modulus being replaced by the reduced moduif, during an experiment, the shape of the loading curve
lus. However, in our formula (10) we have an explicit alters as the load is changed, the model shows that this
expression for the constarsand¥ in Eq. (2). Taking  effect must be due to a variation in hardness, because
e = 0.72, we find thatb = 0.202 andV = 0.638, which  Young’s modulus might be expected to remain constant
is comparable to the values quoted above from Hainswith scale (at least for bulk materials rather than for
worth et al. The difference probably arises due to thecoated systems). Thus subtle changes in the curve shape
nonperfect indenter used by Hainswoehal. and the  can help identify whether ISE effects are occurring.
fact they useE and notE, in their relation.
In case of a nonperfect indenter, the expression
changes. In practice, an indenter is never perfect due to
some tip rounding; see Fig. 2. In that case, it is reason-
able to describe the indenter area function by

A.=C(h.+8&? . (11)

\

FIG. 1. Total indentation depth being the sum of the contact depth FIG. 2. Schematic diagram showing the geometry of a rounded in-
h. andh. denter tip.
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Also, the model is partly based on the unloading-Eq. (12) with the appropriate values substituted for all
stiffness model given by Oliver and Pharr (1992jjus  quantities. Clearly, there is good agreement between the
all the assumptions made there, including for exampleomputational results and the model, even though the
frictionless contact, are also present implicitly in computations showed a slight pile-up, and this effect is
our model. not included in our model (see Fig. 1).

Note that Eq. (12) is valid only fon. > d. In practice, As mentioned before, the model can be used to esti-
a good indenter has a tip radius of about 100 nm, whichmate eitheiE or H of the indented material if one or the
corresponds to d of less than 6 nm whe@ in Eqg. (11) other is known. If we assume thgtis known and equal
equals 24.5. Almost always, indentations will be deepeto 150 GPa, then a fit to the computed data gives 8.2
in practice, so the conditioh, > d is not restrictive in GPa. This is close to the value of 8.0 GPa as found
practical situations. directly from the computation.

For comparison, Fig. 5 shows the FEM results together
with the model proposed by Hainsworéht al., Eq. (2).
[ll. FINITE ELEMENT CALCULATION Clearly the comparison is not as good as that for the

To verify the model, we carried out finite element Présent model. An estimate Bifwith E fixed to 150 GPa
calculations. Here the indenter was modeled as a cor@@veH = 9.5 GPa, which is a less accurate estimate of

with a rounded tip. The half-included angle of the Conethe true value of 8.0 GPa than th(_e vaI_ue found with the
resent model. We have to bear in mind, however, that

was 70.3°, whereas the tip radius was 100 nm. The pa0 " '
rameters in Eq. (11) corresponding to this shapeCare the empirical factor® and¥ found by Hainswortlet al.

2451 andt = 6.22 nm. The indenter was assumed to be?® valid only for the specific indenter they used, as
rigid, and the contact was assumed to be frictionless. ThE'entioned already before.

indented material was an elastic—perfectly plastic mate-
rial with Young’s modulu€ = 150 GPa, Poisson’s ratio

v = 0.3, and yield stres¥ = 2.5 GPa. The calculations 6000

were carried out with the FEM package MARC. A plot of 5000+ | — R/F% I
the mesh used is shown in Fig. 3. The size of the full - - Model
mesh was 17.5 x 17.;um. We used 8761 axi- = 4000

symmetric quadrilateral linear elements. the size of the "3 3000+

elements in the contact area was 1.1 nm. The contact wasy
modeled with the direct constraint method as described 2000
in Ref. 6.

A calculation was made up to an indentation depth of 1000
187 nm. From the curves obtained, we computed the 0 't | 1
hardness asl = 8.0 GPa. This value was found to be 0 40 80 120
constant within 0.2 GPa variation over the whole inden- h (nm)
tation depth. Figure 4 shows the computed indentatioff!G. 4. Indentation load—displacement behavior as computed from

load—displacement curve, along with the relation given ifFEM and that predicted by the model given by Eq. (12) with the
appropriate values substituted for all quantities.
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FIG. 5. Indentation load—displacement behavior as computed from
FIG. 3. (a) Full view and (b) detail of the finite element mesh used inFEM and that predicted by the model proposed by Hainswettal.

the computation. The symmetry axis is on the left side; part of thegiven by Eq. (2). The appropriate values were substituted for all quan-
indenter is visible at the top of the figures. tities.
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