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In this paper we derive an analyticalexpression for the indentation load–depth
relation during loading in an indentation experiment, namelyP 4 Er (1/√C √Er /H +
e √p/4 √H/Er)

−2 (h + j)2. The advantage over previously used expressions is that no
additional empirical constants are necessary. A comparison between the new
expression and results from finite element calculations shows excellent agreement.

I. INTRODUCTION

It has been shown in various investigations1–3 that the
loading curve obtained from depth-sensing indentation
experiments can be accurately described by the following
relationship:

P 4 Kh2 . (1)

Thus, the loadP is equal to a constant K times the square
of the indentation depthh. This equation has been ob-
tained by experiments (Hainsworthet al., 1996),1 finite
element calculation (Zeng and Rowcliffe, 1996),2 and
dimensional analysis (Cheng and Cheng, 1998).3 Re-
cently, the relation (1) has been used as a basis for an
indenter tip radius and load frame compliance calibration
(Sunet al., 1999).4

The value of the constant K depends on the indenter tip
shape and on the material properties of the indented ma-
terial. Hainsworthet al. (1996)1 derived the following
relation for K:

K = E SFÎE

H
+ CÎH

E
D−2

. (2)

In this equation,E andH are Young’s modulus and the
hardness, respectively, of the indented material,F andC
are two empirical constants, for which the valuesF 4
0.194 andC 4 0.903 have been obtained by Hainsworth
et al. after analyzing indentation load–displacement
curves measured on a broad range of different materials.

We show in this paper that the relation (1) can be
derived analytically, giving an explicit expression for K,
which is of the form of Eq. (2).

II. THEORY

The starting point of our derivation is to write the total
indentation depth as the sum of the contact depthhc and
the displacement of the surface at the perimeter of the
contacths:

h 4 hc + hs . (3)

This is illustrated in Fig. 1.
For hc we use the following definition of hardnessH:

H =
P

Ac
=

P

24.5hc
2 , (4)

where P is the load andAc is the contact area at that
load, which is equivalent to 24.5hc

2 in case of a perfect
Berkovich (or Vickers) indenter. Hence, for a perfect Berk-
ovich indenter we have

hc = Î P

24.5H
. (5)

The case of a nonperfect indenter will be discussed
below.

For hs we can write (Oliver and Pharr, 1992):5

hs = e
P

S
, (6)

in which e is a geometrical constant, which takes a value
of 0.72 for a conical indenter, and 0.75 for a paraboloid,
and S is the unloading contact stiffness at loadP. The
following well-known expression relatesS to Young’s
modulus of the indented material (Oliver and Pharr,
1992):5

S = Î4

p
Er=Ac , (7)
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in which Er is the reduced Young’s modulus, given by

1

Er
=

1 − ni
2

Ei
+

1 − ns
2

Es
, (8)

where Es and ns are Young’s modulus and Poisson’s
ratio, respectively, of the indented specimen andEi andni

are those of the indenter.
Combination of Eqs. (4), (6), and (7) yields

hs = eÎp

4

=P H

Er
. (9)

Finally, we combine the expressions forhc andhs, Eqs.
(5) and (9), by substituting them into Eq. (3). After some
rearrangement, the result is the following relation be-
tween indentation depth and displacement:

P = Er S 1

=24.5
ÎEr

H
+ eÎp

4 ÎH

Er
D−2

h2 .

(10)

Note that the prefactor ofh2 in this expression has the
form given by Hainsworthet al. (Eq. 2), apart from
Young’s modulus being replaced by the reduced modu-
lus. However, in our formula (10) we have an explicit
expression for the constantsF andC in Eq. (2). Taking
e 4 0.72, we find thatF 4 0.202 andC 4 0.638, which
is comparable to the values quoted above from Hains-
worth et al. The difference probably arises due to the
nonperfect indenter used by Hainsworthet al. and the
fact they useE and notEr in their relation.

In case of a nonperfect indenter, the expression
changes. In practice, an indenter is never perfect due to
some tip rounding; see Fig. 2. In that case, it is reason-
able to describe the indenter area function by

Ac = C ~hc + j!2 . (11)

The symbols are explained in Fig. 2. The equation only
holds forhc > d. The function given in Eq. (11) has been
used successfully by Sunet al. (1999)4 to describe real
indenter tips.

Using Eq. (11) in Eq. (4) instead of the perfect Berk-
ovich expression and repeating the analysis outlined
above finally leads to

P = Er S 1

=C
ÎEr

H
+ eÎp

4 ÎH

Er
D−2

~h + j!2 .

(12)

Equation (12) provides an analytical expression which
can be used to predict the nanoindentation response of a
material if theE andH values of the material are known
and if the indenter tip geometry as described by Eq. (11)
is known. Moreover, eitherE or H can be determined if
one or the other is known.

Various implicit assumptions have been made in the
derivation of Eq. (12). The most important is that the
hardness is assumed to be a constant, independent of
indentation depth, despite the fact that indentation size
effects (ISE) are known to occur. These effects are often
related to strain hardening, which is thus not included
here. However, as also pointed out by Hainsworthet al.,
if, during an experiment, the shape of the loading curve
alters as the load is changed, the model shows that this
effect must be due to a variation in hardness, because
Young’s modulus might be expected to remain constant
with scale (at least for bulk materials rather than for
coated systems). Thus subtle changes in the curve shape
can help identify whether ISE effects are occurring.

FIG. 1. Total indentation depthh being the sum of the contact depth
hc andhs.

FIG. 2. Schematic diagram showing the geometry of a rounded in-
denter tip.
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Also, the model is partly based on the unloading-
stiffness model given by Oliver and Pharr (1992);5 thus
all the assumptions made there, including for example
frictionless contact, are also present implicitly in
our model.

Note that Eq. (12) is valid only forhc > d. In practice,
a good indenter has a tip radius of about 100 nm, which
corresponds to ad of less than 6 nm whenC in Eq. (11)
equals 24.5. Almost always, indentations will be deeper
in practice, so the conditionhc > d is not restrictive in
practical situations.

III. FINITE ELEMENT CALCULATION

To verify the model, we carried out finite element
calculations. Here the indenter was modeled as a cone
with a rounded tip. The half-included angle of the cone
was 70.3°, whereas the tip radius was 100 nm. The pa-
rameters in Eq. (11) corresponding to this shape areC 4
24.51 andj 4 6.22 nm. The indenter was assumed to be
rigid, and the contact was assumed to be frictionless. The
indented material was an elastic–perfectly plastic mate-
rial with Young’s modulusE 4 150 GPa, Poisson’s ratio
n 4 0.3, and yield stressY 4 2.5 GPa. The calculations
were carried out with the FEM package MARC. A plot of
the mesh used is shown in Fig. 3. The size of the full
mesh was 17.5 × 17.5mm. We used 8761 axi-
symmetric quadrilateral linear elements. the size of the
elements in the contact area was 1.1 nm. The contact was
modeled with the direct constraint method as described
in Ref. 6.

A calculation was made up to an indentation depth of
187 nm. From the curves obtained, we computed the
hardness asH 4 8.0 GPa. This value was found to be
constant within 0.2 GPa variation over the whole inden-
tation depth. Figure 4 shows the computed indentation
load–displacement curve, along with the relation given in

Eq. (12) with the appropriate values substituted for all
quantities. Clearly, there is good agreement between the
computational results and the model, even though the
computations showed a slight pile-up, and this effect is
not included in our model (see Fig. 1).

As mentioned before, the model can be used to esti-
mate eitherE or H of the indented material if one or the
other is known. If we assume thatE is known and equal
to 150 GPa, then a fit to the computed data gives 8.2
GPa. This is close to the value of 8.0 GPa as found
directly from the computation.

For comparison, Fig. 5 shows the FEM results together
with the model proposed by Hainsworthet al., Eq. (2).
Clearly the comparison is not as good as that for the
present model. An estimate ofH with E fixed to 150 GPa
gaveH 4 9.5 GPa, which is a less accurate estimate of
the true value of 8.0 GPa than the value found with the
present model. We have to bear in mind, however, that
the empirical factorsF andC found by Hainsworthet al.
are valid only for the specific indenter they used, as
mentioned already before.

FIG. 4. Indentation load–displacement behavior as computed from
FEM and that predicted by the model given by Eq. (12) with the
appropriate values substituted for all quantities.

FIG. 3. (a) Full view and (b) detail of the finite element mesh used in
the computation. The symmetry axis is on the left side; part of the
indenter is visible at the top of the figures.

FIG. 5. Indentation load–displacement behavior as computed from
FEM and that predicted by the model proposed by Hainsworthet al.
given by Eq. (2). The appropriate values were substituted for all quan-
tities.
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IV. CONCLUSIONS

In conclusion, we have derived an analytical expres-
sion for the load–depth relation during loading in an
indentation experiment, namely Eq. (12). The advantage
over similar relations derived previously is that our equa-
tion contains no additional empirical constants. A com-
parison between the new expression and results from a
finite element calculation has shown excellent agreement
for a nonhardening elastic–perfectly plastic material. One
interesting issue for future investigations will be the in-
fluence of strain-hardening on theP–h2 relation in in-
dentation.
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