Synthesis and structure of tetra- and triphenylbismuth arenesulfonates

V. V. Sharutin,^a* O. K. Sharutina,^a I. V. Egorova,^a A. N. Kharsika,^a O. A. Lodochnikova,^b A. T. Gubaidullin,^b and I. A. Litvinov^b

^aBlagoveshchensk State Pedagogical University,
104 ul. Lenina, 675000 Blagoveshchensk, Russian Federation. Fax: +7 (416 2) 42 4164. E-mail: ped@amur.ru
^bA. E. Arbuzov Institute of Organic and Physical Chemistry,
Kazan Scientific Center of the Russian Academy of Sciences,
8 ul. Akad. Arbuzova, 420088 Kazan, Russian Federation. Fax: +7 (843 2) 75 2253. E-mail: litvinov@iopc.kcn.ru

Tetraphenylbismuth arenesulfonates were synthesized by the reaction of pentaphenylantimony or -bismuth with triphenylbismuth bis(arenesulfonates). Triphenylbismuth bis(arenesulfonates) were synthesized by the reaction of triphenylbismuth with arenesulfonic acids in the presence of hydrogen peroxide. The crystal structures of the tetraphenylbismuth 2,5-dimethylbenzenesulfonate crystal hydrate (1), tetraphenylbismuth 3-carboxy-4-hydroxybenzenesulfonate (2). and triphenylbismuth bis(2,5-dimethylbenzenesulfonate) (3) were determined by X-ray diffraction analysis. The Bi atom in 1 has a tetrahedral coordination (bond angles vary from 106.6(6) to 111.9(10)°). The Bi coordination observed in 2 is intermediate between tetrahedral and trigonal-bipyramidal, and that in structure 3 is trigonal-bipyramidal, with the oxygen atoms in the axial positions. The Bi-O bond lengths are 2.19(2) and 2.27(2) Å. In the crystal of 2, the anions form an infinite hydrogen-bonded chain.

Key words: pentaphenylbismuth, pentaphenylantimony, tetraphenyl- and triphenylbismuth arenesulfonates, synthesis, X-ray diffraction analysis, molecular structure.

Pentavalent bismuth compounds Ph_4BiX can be prepared¹⁻³ by treatment of pentaphenylbismuth with halogens or acids (HX). We showed that tetraphenylbismuth arenesulfonates can be successfully synthesized by disproportionation of pentaphenylbismuth with triphenylbismuth bis(arenesulfonates).

Ph₅Bi + Ph₃Bi(OSO₂Ar)₂ ---- 2 Ph₄BiOSO₂Ar

$$(Ar = 2,5-Me_2C_6H_3, 4-MeC_6H_4)$$

Pentaphenylantimony reacts with triphenylbismuth bis(arenesulfonates) in a similar way.

$$Ph_5Sb + Ph_3Bi(OSO_2Ar)_2 \longrightarrow Ph_4SbOSO_2Ar + Ph_4BiOSO_2Ar$$

 $(Ar = 2.5 - Me_2C_6H_3, 4 - MeC_6H_4)$

Tetraphenylbismuth arenesulfonates can also be synthesized from pentaphenylbismuth and arenesulfonic acids.

 $Ph_5Bi + HOSO_2Ar \longrightarrow Ph_4BiOSO_2Ar + PhH$

$$(Ar = 2,5-Me_2C_6H_3, 4-MeC_6H_4, 3-(HOC(O)C_6H_3(OH)-4))$$

Triphenylbismuth bis(arenesulfonates) were prepared in up to 98% yields from triphenylbismuth and arenesulfonic acid in an ethereal solution in the presence of hydrogen peroxide.

$$\begin{array}{r} Ph_{3}Bi + 2 HOSO_{2}Ar + H_{2}O_{2} \longrightarrow \\ Ph_{3}Bi(OSO_{2}Ar)_{2} + 2 H_{2}O \end{array}$$

 $(Ar = 2,5-Me_2C_6H_3, 4-MeC_6H_4)$

The resulting Bi^{5+} compounds are colorless crystalline substances soluble in polar organic solvents and aromatic hydrocarbons.

tetraphenylbismuth The structures of the 2,5-dimethylbenzenesulfonate crystal hydrate $Ph_4Bi^+[O_3SC_6H_3Me_2-2,5]^- \cdot 0.5H_2O$ (1), tetraphenyl-3-carboxy-4-hydroxybenzenesulfonate bismuth $Ph_4Bi^+[O_3SC_6H_3(COOH)-3-(OH)-4]^-$ (2), and triphenylbismuth bis(2,5-dimethylbenzenesulfonate) $Ph_3Bi(OSO_2C_6H_3Me_2-2,5)_2$ (3) were established by X-ray diffraction analysis. The structure of 1 consists of tetraphenylbismuthonium cations, 2,5-dimethylbenzenesulfonate anions, and water molecules which are disordered over two positions in the crystal. The Bi atom in the cation of 1 (Fig. 1) has a tetrahedral coordination (the C(Ph)-Bi-C(Ph) angles vary from 106.6(9) to 111.9(10)°). No short contacts between the cation and the anion were detected. The geometries of the anion and the cation are normal in general (Table 1). Unfortu-

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2350-2354, December, 1999.

1066-5285/99/4812-2325 \$22.00 © 2000 Kluwer Academic/Plenum Publishers

Bond a	đ∕Å	Bond	d/À 1.482(7) 1.497(7) 1.459(7) 1.780(8)	
$\begin{array}{c cccc} Bi(1) - C(1) & 2.1 \\ Bi(1) - C(7) & 2.1 \\ Bi(1) - C(13) & 2.1 \\ Bi(1) - C(13) & 2.1 \\ Bi(1) - C(10) & 2.0 \\ \end{array}$	11(8) 15(8) 19(7)	$\frac{S(2)-O(1)}{S(2)-O(2)}$ S(2)-O(2) S(2)-O(3) S(2)-C(25)		
Angle 2.0	ω/deg	Angle	ω/deg	
$\frac{C(1) - Bi(1) - C(7)}{C(1) - Bi(1) - C(13)}$ $\frac{C(1) - Bi(1) - C(19)}{C(7) - Bi(1) - C(13)}$ $\frac{C(7) - Bi(1) - C(19)}{C(13) - Bi(1) - C(19)}$	112.3(3) 110.9(3) 107.9(3) 110.7(3) 106.2(3) 108.7(3)	$\begin{array}{c} \hline O(1)-S(2)-O\\ O(1)-S(2)-O\\ O(1)-S(2)-C\\ O(2)-S(2)-C\\ O(2)-S(2)-O\\ O(2)-S(2)-C\\ O(3)-S(2)-C\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 1. Principal bond lengths (d) and angles (ω) in the structure of 1

Table 2. Principal bond lengths (d) and angles (ω) in the structure of 2

Bond	d∕Å	Angle	ω/deg
Bi(1)C(1)	2.198(7)	$\overline{C(1)-Bi(1)-C(7)}$	120.6(3)
Bi(1) - C(7)	2.207(7)	C(1) - Bi(1) - C(13)	98.7(3)
Bi(1)-C(13)	2.222(9)	C(1) - Bi(1) - C(19)	115.1(3)
Bi(1)-C(19)	2.222(6)	C(7) - Bi(1) - C(13)	102.6(3)
S(2)-O(3)	1.439(6)	C(7) - Bi(1) - C(19)	112.0(2)
S(2)-O(4)	1.450(5)	C(13) - Bi(1) - C(19)	104.3(3)
S(2)-O(5)	1.465(6)	O(5) - Bi(1) - C(1)	76.3(4)
S(2)-C(25)	1.778(8)	O(5) - Bi(1) - C(7)	78.1(4)
O(6)-C(31)	1.32(1)	O(5) - Bi(1) - C(13)	174.4(4)
O(6)-H(61)	1.18(8)	O(5) - Bi(1) - C(19)	80.3(4)
O(7)-C(31)	1.23(1)	O(3) - S(2) - O(4)	113.3(3)
O(41) - C(28)	1.36(1)	O(3) - S(2) - O(5)	114.4(3)
O(41)-H(41)	0.72(6)	O(3) - S(2) - C(25)	106.7(4)
Bi(1)O(5)	2.830(7)	O(4)-S(2)-O(5)	110.2(3)
		O(4) - S(2) - C(25)	106.8(3)
		O(5) - S(2) - C(25)	104.7(3)
		C(31) - O(6) - H(61)	100.0(5)
		C(28) - O(41) - H(41)	108.0(6)

nately, due to the low quality of the crystals, the H atoms of the hydrate water molecule were not identified in the structure of 1; therefore, the pattern of hydrogen bonds was not determined. The structure of 2 (Fig. 2) consists of the tetraphenylbismuthonium cation and the 3-carboxy-4-hydroxyphenylsulfonate anion forming a contact ion pair. As indicated by analysis of the geometric parameters of the cation (Table 2), the coordination polyhedron of Bi in this compound is intermediate between a tetrahedron and a trigonal bipyramid and is similar to that in the structure of tetraphenylbismuth tosylate (4) described previously.² The O(5) atom of the sulfonate group is located opposite to the C(13)-C(18)phenyl substituent (the O(5)-Bi-C(13) angle is $174.4(2)^{\circ}$) at a distance of 2.830(6) Å from the Bi atom. Thus, the C(13)-C(18) phenyl group occupies a pseudoaxial position, while the C(1)-C(6), C(7)-C(12), and C(19)-C(24) phenyl groups occupy pseudoequatorial

positions. The angles between the pseudoaxial Bi-C(13) bond and pseudoequatorial bonds are $98-104^\circ$, whereas the bond angles between the pseudoequatorial Bi-C bonds vary in the $112-120^\circ$ range. The deviation of the Bi atom from the C(1)C(7)C(19) plane amounts to 0.4523(3) Å, which differs from the values of 0.78 and 0.41(2) Å found in the crystals of tetraphenylbismuth perchlorate having a classical tetrahedral coordination⁴ and compound 4,² respectively. The Bi-O(5) distance (2.830(6) Å) in the structure of 2 differs somewhat from the corresponding distance in the molecule of tetraphenylbismuth tosylate (2.77(3) Å)² and markedly exceeds the Bi-O distances in bismuth organic com-

Fig. 1. Geometry of the ionic complex 1 in the crystal.

Fig. 2. Geometry of the ionic complex 2 in the crystal.

Fig. 3. System of hydrogen bonds in the crystal of 2.

pounds (2.16 Å).⁶ In the crystal of 2, an intramolecular hydrogen bond, O(41)-H...O(7), was detected (O(41)...O(7) 2.573(8), O(41)-H 0.72(7), and H...O(7) 1.93(7) Å, the O(41)-H...O(7) angle is 149(8)°). An intermolecular hydrogen bond, O(6)-H...O(4'), was also found in this crystal (x - 1/2, 1/2 - y, x - 1/2) (O(6)...O(4') 2.564(8), O(6)-H 1.19(9) Å, and H...O(4') 1.53(8) Å, the O(6)-H...O(4') angle is 141(7)°); these

Table 3. Principal bond lengths (d) and angles (ω) in the structure of 3

Bond			Bond	d/Å		
Bi(1) - C(1)	2.22(3)		S(1)-O(2)	1.4	1.43(2)	
Bi(1) - C(7)	2.18(3)		S(1)O(3)	1.5	1.53(2)	
Bi(1) - C(13)	2.16(3)		S(1)C(19)	1.7	1.77(3)	
Bi(1)O(3)	2.19(2)		S(2)O(4)	1.38(2)		
Bi(1)-O(6)	(6) 2.27(2)		S(2)-O(5)	1.46(2)		
S(1) - O(1) 1.4		2)	S(2)O(6) 1		.50(2)	
			S(2)C(27)	1.8	3(3)	
Angle	(w/deg	Angle		ω/deg	
C(1) - Bi(1) - C(1)	7) 1	8.0(1)	$\overline{O(1)-S(1)-C}$	C(19)	108.0(1)	
C(1) - Bi(1) - C(1)	13) 13	30.0(1)	O(2) - S(1) - C)(3)	110.0(1)	
C(7) - Bi(1) - C(13) 11	2.0(1)	O(2)-S(1)-C	(19)	106.0(1)	
O(3)-Bi(1)-O((6) 17	6.6(7)	O(3) - S(1) - C	C(19)	104.0(1)	
O(3) - Bi(1) - C(0)	1) 8	32.5(9)	O(4) - S(2) - C)(5)	117.0(2)	
O(3)-Bi(1)-C(7) 9	95.0(1)	O(4) - S(2) - C)(6)	110.0(1)	
O(3) - Bi(1) - C(3)	(13) 5	1.0(1)	O(4)-S(2)-C	2(27)	112.0(1)	
O(6) - Bi(1) - C(6) - Bi(1) - Bi(1) - C(6) - Bi(1) - Bi	(1) 9	94.6(9)	O(5)-S(2)-C)(6)	106.0(1)	
O(6)-Bi(1)-C(7) 8	35.0(1)	O(5)-S(2)-C	(27)	108.0(1)	
O(6)-Bi(1)-C((13) 9	2.0(1)	O(6)-S(2)-C	C(27)	103.0(1)	
O(1) - S(1) - O(2)	2) 12	20.0(1)	Bi(1)-O(3)-	S(1)	141.0(1)	
O(1)-S(1)-O(2	3) 10)8.0(1)	Bi(1)-O(6)-	S(2)	128.0(1)	

bonds unite the anions into an infinite one-dimensional chain along the diagonal of the xz plane (Fig. 3).

The X-ray diffraction analysis of compound 3 showed that the Bi atom in this molecule has a trigonalbipyramidal coordination; the three benzene rings occupy equatorial positions, while the 2,5-dimethylbenzenesulfonate substituents are in the axial positions (Fig. 4). The Bi atom deviates from the plane through the three atoms attached to it, C(1)C(7)C(13), by 0.028(2) Å; the O(3)—Bi—O(6) angle is 176.6(7)°. The Bi—O(3) and Bi—O(6) bonds are covalent (the bond lengths are 2.19(2) and 2.27(2) Å, respectively), which is also confirmed by the magnitudes of the O(1)—S(1)—O(2) (120(1)°) and O(4)—S(2)—O(5) (117(2)°) bond angles, which are typical of covalently bound sulfonate groups.⁵ The Bi—C bond lengths (on the average, 2.19 Å, Table 3) correspond to those in other compounds with similar structures such

triphenylbismuth bis(benzenesulfonate).⁶ Thus, we determined the spatial structures of compounds 1-3, which are built as a tetraphenylbismuthonium salt, an intermediate structure with coordination of the Bi atom by the O atom of the sulfonate group, and a typical derivative of the five-coordinate Bi atom with a trigonal-bipyramidal configuration.

as μ -oxobis(diphenylbismuth diperchlorate)⁴ and

Experimental

The IR spectra were recorded on a Hitachi 215 spectrometer (a Vaseline oil mull).

Tetraphenylbismuth 2,5-dimethylbenzenesulfonate crystal hydrate (1). A mixture of pentaphenylbismuth (1.00 g, 1.68 mmol) and triphenylbismuth bis(2,5-dimethylbenzenesulfonate) (1.36 g, 1.68 mmol) in 30 mL of toluene was kept for 12 h at 20 °C. Slow evaporation of the solvent gave large crystals of compound 1, yield 2.22 g (92%), decomp. point 177 °C. Found (%): C, 52.87; H, 4.12. $C_{32}H_{31}BiO_4S$. Calculated (%): C, 53.33; H, 4.31. IR, v/cm⁻¹: 1260, 1155 (S=O); 1005 (S-O).

Tetraphenylbismuth 4-toluenesulfonate was prepared in a similar way (yield 70%).

Sharutin et al.

Tetraphenylbismuth 3-carboxy-4-hydroxybenzenesulfonate (2). 5-Sulfosalicylic acid (0.37 g, 1.68 mmol) was added to a solution of pentaphenylbismuth (1.00 g, 1.68 mmol) in 20 mL of toluene, and the mixture was kept for 1 h at 20 °C. The solvent was evaporated, and the solid residue was washed with light petroleum and dried to give 0.65 g (60%) of compound 2, decomp. point 199 °C. Found (%): C, 50.01; H, 3.65. C₃₁H₂₅BiO₆S. Calculated (%): C, 50.68; H, 3.41. IR, v/cm⁻¹: 1675 (C=O); 1258, 1140 (S=O); 1025 (S-O).

Tetraphenylbismuth 4-toluenesulfonate (86%) and tetraphenylbismuth 2.5-dimethylbenzenesulfonate (79%) were prepared in a similar way.

Triphenylbismuth bis(2,5-dimethylbenzenesulfonate) (3). 2,5-Dimethylbenzenesulfonic acid (1.01 g, 4.55 mmol) and a 27.5% aqueous solution of hydrogen peroxide (0.28 mL, 2.27 mmol) were added at 20 °C to a solution of triphenylbismuth (1.00 g, 2.27 mmol) in 50 mL of ether. After 12 h. the crystals that formed were filtered off, washed with ether, and dried to give 1.36 g (74%) of compound 3, m.p. 163 °C. Found (%): C, 50.10; H, 4.14. $C_{34}H_{33}BiO_6S_2$. Calculated (%): C, 50.37; H, 4.07. IR, v/cm⁻¹: 1290, 1155 (S=O); 925 (S-O).

Reaction of pentaphenylantimony with triphenylbismuth bis(2,5-dimethylbenzenesulfonate). A mixture of pentaphenylantimony (1.00 g, 1.97 mmol), triphenylbismuth bis(2,5dimethylbenzenesulfonate) (1.60 g, 1.97 mmol), and 10 mL of toluene was heated for 1 h at 90 °C. Cooling the reaction mixture to 0 °C gave crystals, which were filtered off and dried to give 0.96 g (70%) of tetraphenylbismuth 2,5-dimethylbenzenesulfonate. Cooling the reaction mixture to -18 °C afforded 1.15 g (95%) of tetraphenylantimony 2,5-dimethylbenzenesulfonate crystals, whose melting point and IR spectrum did not differ from the corresponding characteristics of the tetraphenylantimony 2,5-dimethylbenzenesulfonate prepared from pentaphenylantimony and 2,5-dimethylbenzenesulfonic acid.⁷ Removal of the solvent and recrystallization of the residue from ethanol gave 0.25 g (29%) of triphenylbismuth, m.p. 76 °C.

The reaction of pentaphenylantimony with triphenylbismuth bis(4-toluenesulfonate) was carried out in a similar manner.

The single crystal X-ray diffraction study of compounds 1-3 was carried out on a Enraf-Nonius CAD-4 four-circle automated diffractometer with K-geometry (20 °C, Mo-K α -radiation, λ (Mo-K α) = 0.71073 Å, graphite monochromator).

The crystals of Ph₄Bi⁺[O₃SC₆H₃Me₂-2,5]⁻ 0.5H₂O (1) are monoclinic, a = 14.183(5) Å, b = 22.144(10) Å, c = 18.463(11) Å, $\beta = 100.29(4)^{\circ}$, V = 5705(5) Å³, Z = 8, $d_{calc} = 1.66$ g cm⁻³, space group C2/c.

The crystals of $C_{24}H_{20}Bi_1+C_7H_5O_6S_1-(2)$ are monoclinic, a = 11.177(1) Å, b = 21.762(3) Å, c = 12.2415(8) Å, $\beta = 110.143(7)^\circ$, V = 2795.3(5) Å³, Z = 4, $d_{calc} = 1.75$ g cm⁻³, space group $P2_1/n$.

The crystals of $C_{34}H_{33}O_6S_2Bi_1$ (3) are monoclinic, a = 10.046(4) Å, b = 24.150(8) Å, c = 13.820(7) Å, $\beta = 96.48(9)^\circ$, V = 3331.2(5) Å³, Z = 4, $d_{calc} = 1.62$ g cm⁻³, space group $P2_1/c$.

The absorption corrections were applied empirically (u(Mo) = 62.61 (1), 64.00 (2), and 54.36 cm⁻¹ (3), seven reflections with $\chi \ge 80^\circ$ were scanned with rotation over the ψ vector with a step of 10°). The intensities of 10249 (1), 7211 (2), and 4852 (3) reflections were measured; for 4735 (1), 3210 (2), and 1220 (3) observed reflections, $l \ge 3\sigma$. The structures of 1 and 2 were studied using $\omega/2\theta$ scanning for $\theta \leq 29.96^{\circ}$; for the structure of 3, ω -scanning for $\theta \leq 23.36^{\circ}$ was employed. The structures of 1 and 2 were solved by the direct method using the SIR program⁶; that of 3 was solved by the heavyatom method. The refinement was first performed in the isotropic approximation; then all the nonhydrogen atoms in the structures of 1 and 2 and the Bi, S, and O atoms in the structure of 3 were refined in the anisotropic approximation. A disordered water molecule was found in the structure of 1; its O atom was refined with an occupancy of 1/2. The C atoms in the structure of 3 were refined isotropically (due to the small number of measured reflections). The H atoms in structures 1 and 2 were revealed from the electron density difference series; those in structure 3 were placed in calculated positions. The contributions of the H atoms to the structural amplitudes in structures 1 and 3 were taken into account in the final stage of refinement with fixed positional and isotropic thermal parameters. The H atoms in structure 2 were refined isotropically. The final discrepancy factors were R = 0.065 and $R_w = 0.074$ over 4322 independent reflections with $F^2 \ge 3\sigma$ (1); R = 0.033and $R_w = 0.036$ over 3011 independent reflections with $F^2 \ge 3\sigma$ (2); and R = 0.057, $R_w = 0.054$ over 1212 independent reflections with $F^2 \ge 3\sigma$ (3). The principal geometric parameters are listed in Tables 1-3. All the calculations were performed using the MolEN program package⁸ on a DEC Alpha Station 200 computer. The intermolecular contacts in structures 1-3 were analyzed and the molecular models were drawn using the WINPL98 program package.⁹ The atomic coordinates are deposited in the Cambridge Structural Data Bank and are available from the authors.

The X-ray diffraction study was carried out at the Division of X-Ray Structural Studies of the public Spectral and Analytical Center of the Russian Foundation for Basic Research (Project No. 96-03-40006).

References

- 1. G. Wittig and K. Clauß, Ann., 1952, 578, 136.
- D. H. R. Barton, B. Charpiot, E. T. H. Dau, W. B. Motherwell, C. Pascard, and C. Pichon, *Helv. Chim. Acta*, 1984, 67, 586.
- K. A. Kocheshkov, A. P. Skoldinov, and N. N. Zemlyanskii, Metody elementoorganicheskoi khimii. Sur'ma, vismut [Methods of Heteroorganic Chemistry. Antimony, Bismuth], Nauka, Moscow, 1976, 389 pp. (in Russian).
- F. C. March and G. Ferguson, J. Chem. Soc., Dalton Trans., 1975, 1291.
 R. L. Williams, D. I. Ando, D. Bloor, and M. B.
- R. L. Williams, D. I. Ando, D. Bloor, and M. B. Hursthouse, Acta Crystallogr., 1979, 35B, 2072.
- 6. R. Ruther, F. Huber, and H. Preut. Z. Anorg. Allg. Chem., 1986, 539, 110.
- 7. A. Altomare, G. Cascarano, C. Giacovazzo, and D. Virerbo, Acta Crystallogr., 1991, 47A, 744.
- H. Straver and A. J. Schierbeek, MolEN. Structure Determination System, Nonius B. V., 1994, 1, 2.
- 9. A. L. Spek, Acta Crystallogr., 1990, 46A, 34.

Received April 2, 1999; in revised form July 12, 1999