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Nakadomarin A 1 (Fig. 1) was first isolated from the Okinawan
marine sponge Amphimedon sp. by Kobayashi in 1997.1 The struc-
ture of 1 was elucidated spectroscopically and consists of an
unprecedented hexacyclic ring system (8/5/5/5/15/6). Kobayashi
has proposed an interesting biogenetic transformation for the con-
version of ircinal A 2, the precursor to manzamine A 3,2 to naka-
domarin A 1, underscoring the striking structural similarities
among this compound class.3

Nakadomarin A 1 demonstrates a range of promising biological
activities including cytotoxic activity against murine lymphoma
L1210 cells (IC50 1.3 lg/mL), inhibitory activity against cyclin
dependent kinase 4 (IC50 9.9 lg/mL), anti-microbial activity
against a fungus (Trichophyton mentagrophytes, MIC 23 lg/mL),
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Figure 1. Nakadomarin A 1, ircin
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and a Gram-positive bacterium (Cornebacterium xerosis, MIC
11 lg/mL). However, its limited availability from natural sources
(1.8 � 10�3% of sponge wet weight) has prevented a complete
study of its biological activity. The structural complexity of naka-
domarin A coupled with its intriguing and as yet not fully explored
biological activity led to considerable effort directed toward the
synthesis of 1, culminating in a series of elegant total syntheses.4

We describe herein a conceptually novel approach to the synthesis
of manzamine core based on a Pummerer-initiated tandem reac-
tion cascade.5

We envisioned that the ABCDE pentacyclic core 4 of nakadom-
arin A 1 could be obtained by global reduction of bislactam sulfide
5, which we envisioned as the product of a Pummerer-initiated
OH
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al A 2, and manzamine A 3.
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Scheme 1. Retrosynthetic analysis for the synthesis of the pentacyclic core 4 of nakadomarin A.
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tandem reaction cascade of 7 via the intermediacy of thionium ion
6 (Scheme 1). We note that the elegant studies of Martin,2b Mu-
kai,4g and Zhai6 suggest that the C-14 stereocenter would lead to
the desired diastereoselectivity in the cascade cyclization reaction
via approach of the thionium ion 6 from the a-face of the pyrroline
D-ring to give 5. We anticipated that the requisite cyclization sub-
strate 7 could be prepared via coupling of 8 and 9.

To examine the feasibility of the key cascade sequence, we
examined the reaction in the simpler model system 16,7 lacking
the C-14 stereocenter, as outlined in Scheme 2. Metalation of
10,8 based on the work of Das, and the reaction of the derived an-
ion with ethylene oxide delivered alcohol 11, which on Mitsunobu
reaction with phthalimide afforded 12. Deprotection of 12 with
OtBu
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Scheme 2. Synthesis of the tetracyclic core 17.
hydrazine and reductive alkylation with p-bromobenzaldehyde
gave secondary amine 14, which was coupled with acid chloride
152b to give the cascade cyclization substrate 16. Exposure of 16
to dimethyl(methylthio)sulfonium tetrafluoroborate (DMTSF)9 led
to the exclusive formation of the desired tetracycle 17, the struc-
ture of which was unambiguously confirmed via X-ray crystallo-
graphic analysis of the hydrochloride salt of the derived tertiary
amine 18, as shown in Scheme 2.10

The extension of these results to a substrate containing the C-14
stereocenter is outlined in Scheme 3. Reaction of the known acid
192b with the p-methoxybenzyl amine 20 (obtained from 13 by
reductive alkylation) gave amide 21. While the reaction of 21 with
DMTSF resulted in extensive decomposition of the starting
material without the formation of the desired product, we were
delighted to find that exposure of the corresponding benzoate 22
to DMTSF led to the formation of the desired cyclization product
23 in 50% yield, which was fully characterized as the corresponding
Cbz analog 24.11 The stereoselective formation of 23 is consistent
with the addition of the thionium ion from the a-face of the
pyrroline ring, as noted in related systems by Zhai6 and Martin.2b

Further support for this stereochemical assignment, albeit indirect,
was obtained by cyclization of 24 to the cyclic urethane 25, which
revealed no NOE between the two methines (C-6 and C-14 using
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Scheme 3. Synthesis of tetracyclic model system 23.
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the numbering of the nakadomarin ring system) of the pyrrolidine
ring of 25.12

We have developed an alternative strategy to the elegant work
of Zhai6 on the use of the glutamate-derived stereochemistry to
control the establishment of the key stereochemical relationships
of the core structure of nakadomarin A. In both Zhai’s work and
the current study, a single stereocenter leads to the establishment
of all of the key stereochemical relationships of the nakadomarin
tetracyclic core. Further studies on the application of this strategy
to the synthesis of biologically relevant systems are underway in
our laboratories and our results will be reported in due course.
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