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Known molecules with a planar-tetracoordinate carbon
atom[1] contain metal centers.[2] According to computations[3]

the prototype of such molecules without metal centers is the
diboracyclopropane 1u (Scheme 1). Derivatives of the lower
energy isomer 2u with planar-tetracoordinate boron atoms[4]

16.9 kcalmol�1.[4] For the dianion of B4Me4
[10] the distorted

tetrahedral form according to our computations lies only
4.9 kcalmol�1 above the folded two-electron aromtic com-
pound; its planarization requires 7.3 kcalmol�1. Thus, an
increasing number of boron atoms in four-membered two-
electron aromatic compounds facilitates the planarization as
well as the fluctuation of the skeletal bonds.
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are known experimentally, the classical form 1u* with a
tetrahedral carbon atom does not represent an energy
minimum. We report herein on the synthesis, NMR spectro-
scopic characterization, and facile isomerization of the
derivative 1a to 2a at low temperature (Scheme 2). To
compare the chemical shift of the planar-tetracoordinate
carbon atom of 1a with that of a similarly substituted carbon
atom without a planar environment, we describe in addition
4a, the first derivative of triborabicyclobutane. Density
functional computations[5] for the models 1b and 2b
(Scheme 3) as well as for the transition state TS1b/2b of the
isomerization 1b!2b support our argumentation.

The reaction of the triboracyclobutanide 3a[6] in [D8]THF
with methyl trifluoromethanesulfonate in an NMR tube at
�90 8C affords a mixture of the C-boryldiboracyclopropane
1a and of 2a (ca. 3:1).[7] At this temperature 1a does not
rearrange appreciably into 2a. In contrast, at �70 or �65 8C
this isomerization occurs with half lives of 61 and 7 min,
respectively. Compound 3a reacts with dichloro(trimethylsi-
lylmethyl)borane to give a product mixture, from which 4a
can be separated by crystallization (Scheme 2). Its constitu-
tion and that of 2a[8] are confirmed by X-ray structure
analyses[9] (Figure 1). Compound 4a contains a folded CB3

four-membered ring with relatively short C�B distances and a
short C�B diagonal to the pentacoordinate boron atom
bearing the trimethylsilylmethyl and the chloroboryl groups.

The constitution of 1a is derived from its NMR-spectro-
scopic data (Table 1), in particular from the comparison of the
chemical shift of its skeletal carbon atom with that computed
for 1b (Scheme 3). Figure 2 shows the relevant section of the

13C NMR spectrum of the above-mentioned mixture. Ten
sharp signals are observed (eight singlets and two doublets) in
the region between d= 140 and 132 ppm, which show that the
Duryl groups are not equivalent and are bound to a ring with
different sides. Three additional, broad singlets at d= 143.7,
133.2, and 126.4 ppm need to be assigned to boron-bound
carbon atoms, one of which is the skeletal carbon atom of the
diboracyclopropane ring, the other two the ipso-carbon atoms
of the Duryl groups.[10] Independent of the assignment of
these signals, the skeletal carbon atom of 1a is deshielded by
at least 53 ppm as compared to the quite similarly substituted,
distorted-tetrahedral carbon atom in 4a (d(13C)= 73.3 ppm).
GIAO-NMR computations gave a chemical shift of d=

143.6 ppm for the exactly planar-tetracoordinate carbon atom
of the model molecule 1b. This agrees very well with the
experimental value of d= 143.7 ppm for 1a, which shows that
the skeletal carbon atom of the diboracyclopropane ring of 1a

Scheme 1. Structures and energy differences computed at the B3LYP/
6-31G* level for classical diboracyclopropane 1u*, its lower energy
form with a planar-tetracoordinate carbon atom 1u, and for 2u with
two planar-tetracoordinate boron atoms.[3b,c] A solid line denotes a
2c2e bond, a dashed triangle a 3c2e s bond, a circle a 3c2e p bond:
1u and 2u are two-electron aromatic compounds.

Scheme 2. Synthesis of the C-boryldiboracyclopropane 1a by methyla-
tion of 3a, its isomerization to 2a, and the synthesis of 4a. R=SiMe3,
Dur=2,3,5,6-tetramethylphenyl, MeX=MeOSO2CF3.

Figure 1. Structure of 4a in the crystal. Selected bond lengths [pm]
and angles [8]: C1-B1 150.2(3), B1-B2 173.9(3), B2-B3 173.3(3), B3-C1
149.4(3), C1-B2 174.5(3), B2-B4 169.4(3); B1-C1-B3 105.7(2), C1-B1-B2
64.7(1), C1-B3-B2 65.0(1), B1-B2-B3 87.0(1), C2-B2-B4 134.2(2), C1-B2-
B4 102.2(1), B1-C1-B2-B3 �124.7(2).

Scheme 3. Computed[5] energy diferences between 1b, 2b, and the
transition state TS1b/2b.
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is planar-tetracoordinate. DFT computations[5] for the models
1b, 2b, and the transition state TS1b/2b of the isomerization
1b!2b reveal that 2b is 11.6 kcalmol�1 lower in energy than
1b[11] and that the barrier of the isomerization
(20.6 kcalmol�1) is low.[12] The facile isomerization to 2a thus
provides additional support for the structure of 1a.
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Table 1: Selected physical and spectroscopic properties of 1a, 2a, and
4a.

1a : yield estimated by NMR spectroscopy 75%; 1H NMR (500 MHz,
[D8]THF, �90 8C): d=6.88, 6.87 (each s, each 1H, p-H), 3.40 (s, 4H,
DME), 3.24 (s, 6H, DME), 2.28, 2.18, 2.15, 2.12, 1.97, 1.84, 1.24, 1.00
(each s, each 3H, o- and m-Me), 1.21, 0.73 (each d, each 1H, B-CH2Si),
1.10 (s, 3H, B-Me), 0.23, 0.03 ppm (each s, each 9H, SiMe3); 13C NMR
(125 MHz, [D8]THF, �90 8C): d=143.7 (br. s, 1C, CB3), 139.7, 139.6,
138.2, 137.6, 134.5, 134.4, 134.2, 134.0, 133.3, 132.5 (each s, each 1C, o-
and m-C), 133.4, 132.5 (each d, each 1C, p-C), 133.2, 126.4 (each br. s,
each 1C, i-C), 72.4, 58.8 (each 2C, DME), 22.0, 21.8, 21.3, 12.1, 20.9,
20.1, 19.6, 19.4 (each q, each 1C, o- andm-Me), 16.6 (br.q, 1C, MeB), 9.1
(br. t, 1C, BCH2Si), 1.1, 1.0 ppm (each q, each 3C, SiMe3)

2a : colorless crystals; m.p. 109 8C (decomp); yield 78%; 1H NMR
(500 MHz, [D8]THF,�90 8C): d=6.90 (s, 2H, p-H), 2.24, 2.23, 2.16 (each
s, in total 24H, o- and m-CH3), 0.88 (br. s, 2H, BCH2), 0.76 (br. s, 3H,
BCH3), �0.04, �0.5 ppm (each s, each 9H, Me3Si); 13C NMR (125 MHz,
[D8]THF, �90 8C): d=137.2, 137.1, 134.8, 134.7 (each s, each 2C, o- and
m-C), 134.2 (br. s, 2C, i-C), 133.0 (br. s, 1C, CB2), 132.3 (d, 2C, p-C), 22.6,
20.1, 20.0 (in total 8C, o- and m-CH3), 19.8 (br. t, 1C, BCH2), 13.4 (br.q,
1C, BCH3), 0.9, 0.4 ppm (each q, each 3C, Me3Si); 11B NMR (96 MHz,
[D10]Et2O, 27 8C): d=80 (1B), 40 ppm (2B)

4a : colorless crystals; m.p. 118 8C; yield ca. 50%; 1H NMR (500 MHz,
CD2Cl2, �40 8C): d=7.10 (s, 2H, p-H), 2.52, 2.46, 2.20(each s, in total
24H, o- andm-Me), 0.23, 0.03, (each s, each 2H, H2CSi, localized by C/H
correlation), 0.08,�0.04,�0.57 ppm (each s, each 9H, Me3Si); 13C NMR
(125 MHz, CD2Cl2, �40 8C): d=142.2, 140.5, 133.7, 133.6 (each s, each
2C, o- and m-C), 135.0 (d, 2C, p-C), 132.1 (br. s, 2C, i-C), 73.3 (br. s, 1C,
CB3), 21.4, 21.1, 20.3, 20.2 (each q, in total 8C, o- and m-Me), 18.1, 12.8
(each br. t, each 1C, CH2Si), 2.1, 1.1, 0.2 ppm (each q, each 3C, Me3Si);
11B NMR (96 MHz, CDCl3, �20 8C): d=58 (br. s, 3B), 5.8 ppm (1B).
Above �20 8C 4a is converted partly to an isomer with d(11B) =
�1.0 ppm, crystallization of the mixture leads to the re-formation of 4a

Figure 2. Section (145 to 125.5 ppm) of the 13C NMR spectrum of a
3:1 mixture of 1a and 2a. The insert shows an expansion of the region
between d=133.2 and 136.6 ppm. The signals of 2a are marked by an
asterisk (*); their intensities increase as the temperature is raised,
those of the other signals decrease: after 30 min at �65 8C only the
signals of 2a are observed.
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Long-Range Electronic Coupling

Long-Range Electronic Coupling in Various
Oxidation States of a C4-Linked
Tris(b-diketonato)ruthenium Dimer**

Yoshimasa Hoshino,* Seiichiro Higuchi, Jan Fiedler,
Cheng-Yong Su, Axel Knˆdler, Brigitte Schwederski,
Biprajit Sarkar, Heiko Hartmann, and Wolfgang Kaim*

Despite an increasingly varied experimental data basis[1] and
sophisticated theoretical approaches[2] there is still only a
rudimentary understanding of which factors govern the extent

of interaction between metal centers in formally symmetrical
mixed-valent compounds. Such compounds can be considered
as intermediates in ™degenerate∫ inner-sphere metal-to-metal
electron transfer. The interplay between metal configurations,
the metal±ligand interface, and the properties of the ligand
bridge has to be considered. Although the mere metal±metal
distance has often been used as a guideline[3] in the absence of
other, less accessible parameters, it is clear from several
experiments[1] that the electronic properties of the ligands
mediating the metal±metal interaction may be more relevant
than the metal±metal separation. However, the correlation
between metal configurations and the bridge type also
requires consideration, especially when using alternatives to
the often studied d5/d6 combination,[1,3] familiar from proto-
types, such as the Creutz±Taube ion[3a] [(H3N)5Ru-
(m-pz)Ru(NH3)5]5+ (pz=pyrazine) or partially oxidized bi-
ferrocenyl species.[4]

Herein we describe the extraordinarily varied results for
two different mixed-valent configurations that are accessible
by single-electron transfer from the structurally characterized
diruthenium(iii) complex 1.[5] The distinguishing feature of
the ligand bridge is an unsaturated, cumulene-like, C4 spacer
which, in contrast to other C4-bridged dinuclear systems,[6]

interacts with the metals through conventional Werner-type
coordination, namely through b-diketonato chelate ligation.[5]

The complex 1 could be characterized crystallographical-
ly,[7] it has an almost linear C4 chain with localized single-
bond/triple-bond alternation (Figure 1). At 13.1359(6) ä the
metal±metal separation is much longer than in directly C4-
connected diruthenium complexes (ca. 8.0 ä),[6] and the
chelate rings are virtually perpendicular (90.98).

The crystallographically determined orthogonality agrees
with the EPR spectroscopic observation at 4 K of a half-field
signal at g= 4.83 in addition to the main broad resonance at
about 2.00, which indicate a triplet state. Stepwise one-
electron reduction of the metal centers in 1 occurs at closely
spaced potentials,[5] yielding a relatively[1,3] small value of the
comproportionation constant Kc= 101.9 [5] of the RuIII;II

2 inter-
mediate 1�. No intervalence charge-transfer (IVCT) transi-
tion could be observed in the visible and near-infrared regions
(e< 100m�1 cm�1), and the IR vibrational spectroelectro-
chemical study at �40 8C[8] clearly revealed the reversible
emergence of distinctly split alkyne stretching bands (Fig-
ure 2a and b). The latter indicates dissymmetry and thus
localized valences on the vibrational time scale of about
10�12 s, that is, Class II behavior according to the Robin and
Day classification.[9] The EPR spectra taken at 4 K in CH2Cl2
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16.6 and 9.1 ppm are not singlets, and thus clearly not assignable
to the skeletal carbon atom.

[11] For the classical 1b* with a distorted tetrahedral coordinate ring
carbon atom computations at this level give two imaginary
frequencies and an energy 8.9 kcalmol�1 higher than for 1b. The
chemical shift of the ring carbon atom computed at the level
used for 1b was d= 103.6 ppm.

[12] The barrier of the isomerization of 1u to 2u was computed to be
22.0 kcalmol�1.[3c]
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