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Abstract—Modification of the major insecticide fipronil (1) by replacing three pyrazole substituents (hydrogen for both cyano and
amino and trifluoromethyldiazirinyl for trifluoromethylsulfinyl) gives a candidate photoaffinity probe (3) of high potency (IC50 2–28
nM) in blocking the chloride channel of Drosophila and human b3 GABA receptors. # 2001 Elsevier Science Ltd. All rights
reserved.

g-Aminobutyric acid (GABA) receptors are ligand-
gated chloride ion channels and the target for important
drugs such as benzodiazepines and toxicants including
insecticides.1,2 The GABA-recognition and benzodiaze-
pine binding sites have been labeled and characterized
with appropriate photoaffinity probes.3,4 The most
important chloride channel blockers are the botanical
toxicant picrotoxinin and three major insecticides, two
of which are polychlorocycloalkanes (i.e., a-endosulfan
and lindane) and the third is an arylpyrazole (fipronil)
(1) (Fig. 1).5�7 The localization of the ‘insecticide bind-
ing site’ (also known as the picrotoxinin or non-
competitive blocker site) has only been determined
indirectly for lack of a suitable high-affinity photo-
reactive ligand.5

We report here that 1-[2,6-dichloro-4-(trifluoromethyl)-
phenyl]-4-[(trifluoromethyl)diazirinyl]-1H-pyrazole (3)
(Fig. 1) has interesting properties as a candidate photo-
affinity probe. This compound was based on 1 and
selected for study for two reasons. First, moderate to
high receptor potency is retained on deleting the cyano
and amino substituents of 1, as in compound 2 (Fig. 1),8

and on replacing –S(O)CF3 at the 4-position with –
S(O2)CF3, –SCF3 or –CF3.

9�11 Second, the (tri-
fluoromethyl)diazirinyl moiety, with many structural
features in common with this series of substituents, is a
favorable carbene generating group for photolabeling
reagents.12

Introduction of the photoreactive substituent
(Scheme 1)13,14 involved conversion of the bromopyr-
azole (4),15 via the trifluoromethylketone (5),16 oxime
tosylate (6),17 and diaziridine (7)18 to the (tri-
fluoromethyl)diazirine (3)19 in an overall yield of 18%.
Compounds were isolated by chromatography on a
silica gel column with hexane–ethyl acetate and char-
acterized by 1H and 13C NMR20 and HRMS and UV
for the end product 3.21

The mammalian GABAA receptor consists of hetero-
oligomeric assemblies of several different subunits (a1-
a6, b1-b4, g1-g3, and others), which can be studied in
various recombinant combinations.1,2,22�24 There are
several lines of evidence that the insecticide binding site
is in the lumen of the chloride channel pore at the sec-
ond transmembrane segment and a b subunit may play
an important role. The Drosophila GABA receptor has
two a and one b subunits (one of which has been cloned
and expressed).25�27 A single point mutation in Droso-
phila greatly reduces the binding affinity for the major
GABAergic insecticides, suggesting that this A302S
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Figure 1. Structures of fipronil (1), a potent analogue lacking the amino
and cyano substituents (2) and the candidate photoaffinity probe (3).
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modification is at or near the insecticide binding
site.25,26,28 This region of the Drosophila GABA recep-
tor has a close sequence homology to that of the human
b3 subunit.22,24,25 The mammalian b3 homooligomeric
receptor displays binding activity of radiolabeled
blocker(s) appropriate for the insecticide binding site
when expressed in either insect Sf9 cells23,24 or human
embryonic kidney cells.29,30 The human recombinant b3
receptor from Sf9 cells is more sensitive to insecticide
action than a receptor with any other single subunit or
combination of subunits examined.23 Not only the
insecticide sensitivity but also the specificity are con-
served, so it is proposed that the insecticide and/or
picrotoxinin binding site of the human b3 homo-
oligomer can be used as a model for the Drosophila
receptor and vice versa.24 A single photoaffinity probe
for both the Drosophila and human GABA receptors
would allow a more direct test of this hypothesis. It
would also help define the precise location of the insec-
ticide binding site in insect and mammalian GABA
receptors and potentially the basis for selective toxicity.

The insecticide binding site can be readily examined
with 40-ethynyl-4-[2,3-3H2]propylbicycloorthobenzoate
([3H]EBOB), which has similar affinity at Drosophila
head and human b3 homooligomeric receptors.23,24,28,31

The potencies of 1 and 3 in displacing specific
[3H]EBOB binding were therefore compared with Dro-
sophila and human b3 receptors32 with the fortuitous
finding that high potency is retained for 3 on both
receptors (Fig. 2). The molar concentrations for 50%

inhibition (IC50 values) by 1 and 3 with both receptors
fall in the 1–28 nM range. The structural changes on
modifying 1 to give 3 apparently have little effect on fit
at the receptor, with a potency loss of only 1.5- to 16-
fold, that is candidate photoaffinity probe 3 is a suitable
mimic of 1 at the binding site in the GABA receptors of
both insects and mammals. The final step in converting
the candidate photoaffinity probe into a practical photo-
affinity radioligand will require the incorporation of one
or two tritium atoms, either at the phenyl substituent or
the position of newly introduced protons on converting
1 to 3.
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