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Meyer-Schuster-type Rearrangement for the Synthesis of              
α-Selanyl-α,β-Unsaturated Thioesters 
Lucas L. Baldassari,a Anderson C. Mantovani,a Micaela Jardim,a Boris Maryasin,b,c,* and Diogo S. 
Lüdtkea,*

A new approach to prepare α-selanyl-α,β-unsaturated thioesters 
from propargylthioalkynes and an electrophilic selenium species is 
reported. Pivotal is the intermediacy of a sulfur-stabilized vinyl 
cation, which is captured intramolecularly and ultimately enables 
37 examples of the target compounds to be prepared in good 
yields. Computational studies shed light on the nature of 
intermediates in this transformation.

α,β-Unsaturated thioesters are a class of significant molecules and 
their importance is highlighted by their use in several areas, such as 
polymer chemistry,1 enoyl-CoA carboxylase/reductases substrate in 
enzymatic catalysis,2 and as an intermediate for the synthesis of 
commercially important fragrances phenoxanol and 
hydroxycitronellal.3 Indeed, this functional group is a useful 
synthetic building block, being a common substrate for 1,4-
additions,4 asymmetric conjugate additions,5 α-
trifluoromethylations,6 Diels-Alder cycloadditions,7 hydrogenations,8 
intramolecular rearrangements,9 and decarbonylative reactions.10 

The vast majority of the methods available for their synthesis 
typically involves the use of acryloyl chlorides and thiols, a route 
that commonly presents issues related to the handling of unstable 
acryloyl chlorides and competing thiol 1,4-addition side reactions 
(Scheme 1A).11 Other methodologies are based on the use of 
carbonyl compounds12 or epoxides13 and thioacetylenes, catalyzed 
by Lewis acid. Conversion of carboxylic acids into thioesters,14 

ruthenium catalyzed rearrangement of propargyl sulfoxides,15 thiol 
1,4-addition to alkylidene Meldrum’s acid derivatives,16 Horner17 
and Wittig18 olefinations of thiophosphonates, aldol reaction 
promoted by TiCl4,19 thermal decomposition of α-sulfinyl-
thioesters,20 thiocarbonylation of acetylenes with thiols and carbon 
monoxide21 and thioesterification of aldehydes with disulfides 
catalyzed by N-heterocyclic carbenes22 have also been reported. 
Despite of the available methods, α,β-unsaturated thioesters are on 

several occasions not easy to synthesize, presenting regioselectivity 
problems and formation of difficult separation mixtures, leaving its 
general synthesis still a challenge to synthetic chemists.
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Scheme 1. Key precedents and this work 
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One elegant method for the synthesis of α,β-unsaturated 
compounds is the Meyer-Schuster rearrangement of propargyl 
acetylenes to the corresponding enones (Scheme 1B).23,24 
Recently, our research group has been studying the potential use of 
heteroatom-substituted alkynes atoms in the stabilization of vinyl 
cations and their reactivity towards a number of different 
reactions.25 In particular, we have reported the use of 
selenoalkynes for the synthesis of α-arylated selenol esters in a 
redox-neutral oxyarylation (Scheme 1C).26 In continuation of our 
studies, we hypothesized that the concept of vinyl cation 
stabilization could be extended to propargyl thioalkynes, which 
would be suitable substrates for electrophilic activation.27 

Therefore, an ensuing sulfur-stabilized vinyl cation would result 
from the reaction of the alkyne with an appropriate soft selenium 
electrophile (e.g. PhSeX). This intermediate might then be 
intercepted by an intramolecular nucleophilic attack of oxygen, 
leading to the formation of an oxetene ring, which would then 
decompose, delivering the final α-selanyl-α,β-unsaturated 
thioesters in a Meyer-Schuster-type rearrangement (Scheme 1D). 
Besides the above-mentioned utility of α,β-unsaturated thioesters 
organic selenium compounds, including vinyl selenides, have found 
widespread application in several areas of science, including organic 
synthesis, material sciences, and pharmacology.28 Therefore, mild 
methods that are able to deliver functionalized alkenes bearing an 
organoselenium moiety are desirable.
Reducing our plan to practice, we started our studies by reacting 
the propargyl thioalkyne with an in situ generated selenium 
electrophile. The results are summarized in Table 1. The first 
attempt was performed in the absence of base, using 2 equiv. of 
PhSeI (generated in situ by the reaction of 1 equiv Ph2Se2 with 1 
equiv I2) as the electrophilic selenium source, and led to the 
formation of the desired α-selanyl-α,β-unsaturated thioester 1 in 
39% yield (entry 1). Subsequently, the influence of the use of base 
in the reaction was verified. Carrying out the experiment with 2 
equiv. of Cs2CO3 resulted in product 1 in 64% yield. Additional 
studies have revealed that NaH is also a suitable base for promoting 
the reaction (entry 3). A decrease in the amount of Cs2CO3 to 1.2 
equivalents resulted in a slight increase in the yield (entry 4, 70%). A 
solvent screening was performed and the best yield was obtained 
using dichloromethane (entries 4–8). Increasing the temperature to 
40 °C led to a drop in the yield to 44% (entry 9). Longer reaction 
times proved beneficial to the reaction and an increase in the yield 
was observed by keeping the reaction for 16 h (entry 10). Finally, 
we have found that changing the stoichiometry from 2 to 4 equiv. 
of PhSeI led to an increase in the yield of 1 (entries 10-12, 75 to 88% 
yield). It is worth pointing out that the excess of the selenium 
compound is recovered at the end of the reaction as Ph2Se2 and 
reused. Importantly, the PhSeI electrophile is conveniently 
generated in situ by the reaction of Ph2Se2 with I2, and after 30 
minutes, potassium persulfate is added to reduce any remaining 
molecular iodine and suppress the formation of iodinated side-
products. After establishing the optimal conditions for the α,β-
unsaturated thioester synthesis 1, we proceeded to examine the 
reaction scope in respect of the propargylic thioalkynes (Scheme 2). 
A number of thioacetylenes with different substitution patterns 
have been studied. Variations at the R3 attached to the sulfur atom 
have shown that linear alkyl chains of different sizes (1 = methyl; 2 = 
n-butyl and 3 = octyl), branched alkyl chain (4), benzyl (5) and 
aromatic groups bearing electron-donating (6–9) and electron-
withdrawing groups (10-14) groups have been well tolerated under 

the reaction conditions. It’s worth pointing out that compound 7, 
bearing a bulky iso-propyl group at the ortho position was obtained 
in 84% isolated yield.
Table 1. Optimization of the reaction conditionsa

solvent, t (h)
SMe

HO

Me
Me SePh

O

SMeMe

Me
PhSeI, base

1

# (PhSe)2 
(equiv)

I2 

(equiv)
Base (equiv) Solvent, t (h) Yield 

(%)b

1 1.0 1.0 - CH2Cl2, 3 39
2 1.0 1.0 Cs2CO3 (2.0) CH2Cl2, 3 64
3 1.0 1.0 NaH (2.0) CH2Cl2, 3 61
4 1.0 1.0 Cs2CO3 (1.2) CH2Cl2, 3 70
5 1.0 1.0 Cs2CO3 (1.2) THF, 3 NR
6 1.0 1.0 Cs2CO3 (1.2) DCE, 3 67
7 1.0 1.0 Cs2CO3 (1.2) PhCH3, 24 40
8 1.0 1.0 Cs2CO3 (1.2) CH2Cl2/THF, 3 29
9 1.0 1.0 Cs2CO3 (1.2) CH2Cl2, 3 44c

10 1.0 1.0 Cs2CO3 (1.2) CH2Cl2, 16 75d

11 1.5 1.5 Cs2CO3 (1.2) CH2Cl2, 16 80d

12 2.0 2.0 Cs2CO3 (1.2) CH2Cl2, 16 88e

aReaction was performed using 0.25 mmol of thioalkyne, at 25 oC. PhSeI was 
generated in situ by the reaction of (PhSe)2 with I2, and after 30 min, Na2S2O3 
was added to reduce the unreacted I2 bYields determined by 1H-NMR using 
mesitylene as internal standard. c reaction performed at 40 0C. d18% of 
unreacted starting material. eStarting material was fully consumed after 16 h.

In addition, variations at the R1 and R2 groups were also examined. 
When R1 and R2 = ethyl, the corresponding thioester 15 was 
obtained in 73% yield. Cyclic moieties have also been well tolerated 
and the corresponding products bearing 5-, 6- and 7-membered 
rings (16-19) have been obtained in good yields. Unfortunately, 
when unsubstituted propargyl thioacetylene was used, product 20 
was not observed, despite full consumption of the starting 
thioalkyne. In order to study the selectivity of the reaction, 
compounds bearing different R1 and R2 substituents have been 
evaluated. In these cases, albeit products 21, 22 and 23 have been 
isolated in good yields, unfortunately 1:1 E/Z mixtures of have been 
obtained. Importantly, the reaction is amenable to scale-up and 
when the reaction was performed on a 3 mmol scale only a small 
decrease in the isolated yield for product 3 was observed (82% on 
0.25 mmol to 74% on a 3 mmol scale).
Aiming to study the versatility in the synthesis of α,β-unsaturated 
thioesters, we then turned our attention to the scope of the 
reaction with respect to the substitution pattern on selenium 
(Scheme 3). When R4 group is n-butyl, the corresponding products 
24-27 were isolated in good yields, for different substitution at the 
remaining positions of the molecule. An electrophilic Se species 
bearing a benzyl group was also tested, delivering product 28 in 
74% yield. Diverse arylseleno derivatives are competent activators 
and both electron-donating and electron-withdrawing groups are 
suitable substituents (29-38). For example, products bearing p-Cl 
(29 and 30), m-CF3 (31), o-Me (32-33), p-Me (34), 2-naphthyl (35), 1-
naphthyl (36) and p-Ph (37) were successfully obtained. Finally, the 
reaction is also amenable to the use of a sulfur electrophile and 
product 38 was isolated in 80% yield, highlighting the versatility of 
the method for the synthesis of α,β-unsaturated thioesters with 
different chalcogen atoms at the alpha position.
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In order to get additional information on the reaction pathway, 
quantum chemical calculations have been performed (Figure 1). The 
first step AB is the SN2 type attack of phenylselenyl iodide on the 
alkyne with the formation of a ketenethionium intermediate B. The 

next stage is the cyclisation of B to generate the oxetene 
intermediate C. The oxetene ring-opens via cleavage of the C-O 
bond forming the intermediate D. This step, CD, is highly 
exergonic (G(CD) = -27.4 kcal mol-1) and thus it compensates the 
endergonic formation of intermediate B (G(AB) = +15.2 kcal 
mol-1 at the first stage of the reaction pathway. Finally, D is 
deprotonated by the base, yielding the final product. The whole 
process is both thermodynamically (G(AD) = -17.2 kcal mol-1) 
and kinetically favorable (the highest transition state TSB-C is only 
17.8 kcal mol-1 less stable energetically compared to the sum of the 
reactants A). Therefore, the computed mechanism suggests that 
the reaction can readily proceed at room temperature, in 
accordance with the experimental evidence.
Finally, as an application, we have performed a derivatization of the 
thioester products by a Fukuyama coupling reaction29 with Et2Zn, 
smoothly delivering the corresponding ketone in moderate yield 
(Scheme 4).

Me

Me

SePh
SBn

O

5

Pd(PPh3)2Cl2 (10 mol%)

Et2Zn, PhMe, r.t.
Me

Me

SePh
Et

O

39, 57% yield

Scheme 4. Derivatization of the product
In summary, we have presented a new methodology for the 
synthesis of a broad range of α-selanyl-α,β-unsaturated thioesters 
by a Meyer-Schuster-type rearrangement of propargylic thioalkynes 
and selenium electrophilic species. The reaction proceeds through 
the initial activation of the thioalkyne with a soft selenium 
electrophile, leading to a sulfur-stabilized vinyl cation, which 
undergoes an intramolecular attack, forming an oxetene 
intermediate, which in turn, decomposes to the final product. 
Support for the mechanism was obtained from quantum chemical 
calculations underlining the kinetic and thermodynamic favored 
nature of the process. 
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Figure 1. Computed relative free energy profile 
(DLPNO-CCSD(T)/def2-TZVP//B3LYP-D3/def2-SVP, G298,DCM, kcal 
mol-1) for the conversion of the reactants A (taken as a reference 
0.0 kcal mol-1) to the final intermediate D.
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