

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 1515-1519

Total synthesis and evaluation of [¹⁸F]MHMZ

Matthias M. Herth,^{a,*,†} Fabian Debus,^{b,†} Markus Piel,^a Mikael Palner,^c Gitte M. Knudsen,^c Hartmut Lüddens^b and Frank Rösch^a

^aInstitute of Nuclear Chemistry, University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany ^bDepartment of Psychiatry, Clinical Research Group, Untere Zahlbacher Straße 8, 55131 Mainz, Germany ^cCenter for Integrated Molecular Brain Imaging, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark

> Received 5 November 2007; revised 27 November 2007; accepted 20 December 2007 Available online 25 December 2007

Abstract—Radiochemical labeling of MDL 105725 using the secondary labeling precursor 2-[¹⁸F]fluoroethyltosylate ([¹⁸F]FETos) was carried out in yields of ~90% synthesizing [¹⁸F]MHMZ in a specific activity of ~50 MBq/nmol with a starting activity of ~3 GBq. Overall radiochemical yield including [¹⁸F]FETos synthon synthesis, [¹⁸F]fluoroalkylation and preparing the injectable [¹⁸F]MHMZ solution was 42% within a synthesis time of ~100 min. The novel compound showed excellent specific binding to the 5-HT_{2A} receptor ($K_i = 9.0$ nM) in vitro and promising in vivo characteristics. © 2007 Elsevier Ltd. All rights reserved.

Serotonergic 5-HT_{2A} receptors are of central interest in the pathophysiology of schizophrenia and other diseases, including Alzheimer's disease and personality disorders.¹ The serotonergic system is also implicated in sleep, aging, and pain.² In vivo studies of 5-HT_{2A} receptor occupancy would provide a significant advance in the understanding of the mentioned disorders and conditions. Positron emission tomography (PET) is an appropriate tool to measure in vivo directly, non-invasively, and repetitively the binding potential of radio tracers for neuroreceptors.

A number of neurotransmitter analogs labeled with β^+ emitter containing radioligands were synthesized as radiopharmaceuticals for the imaging of the 5-HT_{2A} receptor. To date, in vivo studies have been performed with several 5-HT_{2A} selective antagonists such as [¹¹C]MDL 100907,³ [¹⁸F]altanserin,⁴ and [¹¹C]SR 46349B⁵.

Within those ligands, $[^{18}F]$ altanserin and $[^{11}C]MDL$ 100907 represent the radioligands of choice for in vivo 5-HT_{2A} PET imaging because of their high affinity and selectivity for the 5-HT_{2A} receptor {altanserin: $K_i = 0.13 \text{ nM}^4$; (*R*)-MDL 100907: $K_i = 0.57 \text{ nM}^6$ }. Affinities are more than 100-fold higher for other receptors such as 5-HT_{2C}, α_1 , D₁, and D₂. Nevertheless, it was proposed that the selectivity of [¹¹C]MDL 100907 for 5-HT_{2A} receptor is slightly higher than the selectivity for this receptor of [¹⁸F]altanserin.⁸ Both tracers show in in vitro and in in vivo experiments, high affinity, selectivity, and a good ratio of specific to non-specific binding for 5-HT_{2A} receptors.^{3,7} The advantage of [¹⁸F]altanserin over [¹¹C]MDL 100907 is the possibility to perform equilibrium scans lasting several hours and to transport the tracer to other facilities based on the 110 min half-life of [¹⁸F]fluorine. A drawback of [¹⁸F]altanserin is its rapid and extensive metabolism. Four metabolites are formed in humans that cross the blood–brain-barrier,⁷ whereas metabolites of [¹¹C]MDL 100907 do not enter the brain to any larger extent.⁹

The aim of this study was to develop an ¹⁸F-analog of MDL 100907 (1) combining advantages of both ligands, the better selectivity of MDL 100907 and the superior isotopic properties of [¹⁸F]fluorine. For this purpose we decided to replace one of the *O*-methyl groups by an *O*-2-[¹⁸F]fluoroethyl moiety resulting in [¹⁸F]MHMZ ([¹⁸F]FE1-MDL 100907) ((3-[¹⁸F]fluoro-ethoxy-2-methoxy-phenyl)-1-[2-(4-fluoro-phenyl)ethyl-4-piperidine-methanol, **2**) (Fig. 1).

The methoxy group in the 3-position seemed to be more suitable for labeling because previous [¹¹C]MDL 100907

Keywords: [¹⁸F]MHMZ; MDL 100907; [¹⁸F]Altanserin; 5-HT_{2A}; Antagonist; Positron emission tomography; Autoradiography.

^{*} Corresponding author. Tel.: +49 6131 39 25849; e-mail: herthm@uni-mainz.de

[†] These authors equally contributed to this work.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.12.054

Figure 1. Structures of [¹¹C]MDL 100907 (1), [¹⁸F]MHMZ (2), and MDL 105725 (3).

studies showed that metabolism predominantly resulted in the formation of its 3-OH analog MDL 105725 ((3-hydroxy-2-methoxy-phenyl)-1-[2-(4-fluorophenyl)ethyl-4piperidine-methanol, 3). ¹⁸F-Labeling in the 2-position would therefore lead to extensive formation of the labeled 3-OH-analog (2-[¹⁸F]fluoro-ethoxy-3-methoxyphenyl)-1-[2-(4-fluoro-phenyl)ethyl-4-piperidine-methanol that may be expected to cross the blood–brainbarrier or to be metabolized within the brain and thus interfere with the interpretation of the labeled tracer uptake.^{10,11}

A useful synthetic route to MDL 100907 and its racemic precursor MDL 105725 has been published by Huang et al.³ The route depended upon a key transformation of an ester to a ketone via an amide intermediate (Fig. 2) and was carried out essentially as published³ with minor modifications.

Finally, MHMZ was synthesized via a fluoroalkylation of the precursor MDL 105725 in dry DMF by addition of sodium hydride and 1-bromo-2-fluoroethane (Fig. 3) in a yield of 40%. A chiral derivatization of the final product MHMZ was not performed.

The purity of MHMZ was examined to be higher than 98% as indicated by HPLC analysis (ET 250/8/4

Nucleosil[®] 5 C₁₈; MeCN/H₂O 40:60, $R_f = 8.68$ min). These results justified further analyses like determination of the affinity and the route for radioactive syntheses, receptor autoradiography, and metabolism studies.

A radioligand competition binding assay was carried out with GF-62 cells, a clonal cell line expressing high amounts (5–7 pmol/mg) of the 5-HT_{2A} receptor, in test tubes containing [³H]MDL (0.2 nM) and seven different concentrations of test compounds (1 μ M–1 pM) in a total of 1mL assay buffer. Ketanserin (1 μ M) was used to determine non-specific binding. The 5-HT_{2A} binding affinities of the racemic MHMZ and the reference compounds altanserin and MDL 100907 are shown in Table 1.

MHMZ showed a 4.5 times lower affinity as compared to the parent compound MDL 100907 but still was in the nanomolar range. The assay was performed n = 4 times.

 $[^{18}F]$ Fluoroalkylation of the precursor MDL 105725 was carried out using $[^{18}F]$ FETos, which was produced in an automated module.¹² Optimization of the reaction conditions gave radiochemical yields of about 90% at a reaction temperature of 100 °C in a reaction time of

Figure 2. (a) PBr₃, toluene; (b) K_2CO_3 , DMF; (c) Me(MeO)NH HCl, EtMgBr, THF; (d) *n*-BuLi, THF, TBDPS-guajacol; (e) NaBH₄, MeOH; (f) K_2CO_3 , MeOH, H₂O.

Figure 3. Synthesis of MHMZ.

Table 1. Receptor binding data of MDL 100907 derivatives and altanserin

Compound	K_{i} (nM)
MHMZ Altanserin	9.00 ± 0.10 0.74 ± 0.88
MDL 100907	2.10 ± 0.13

10 min using 7 mmol precursor and 7 mmol 5 N NaOH as a base in dry DMF as a solvent.

The optimization procedure of the radiochemical yield of [¹⁸F]MHMZ is exemplified for the parameter temperature in Figure 4. The final formulation of the injectable solution including a semipreparative HPLC (ET 250/8/4 Nucleosil[®] 5 C₁₈; MeCN/H₂O 40:60, $R_f = 8.68$ min) took no longer than 100 min and provided [¹⁸F]MHMZ (**2**) with a purity >96% as indicated by analytical HPLC analyses. The specific activity was determined to be ~50 MBq/nmol with a starting amount of radioactivity of 3 GBq of [¹⁸F]fluorine.

Autoradiographic images of the 5-HT_{2A} receptor obtained with [¹⁸F]MHMZ showed excellent visualization results in rat brain sections (Fig. 5). Images were in complete agreement with the distribution obtained with [³H]MDL 100907¹³ (also Fig. 6B and C). Highest binding was detected in lamina V of the frontal cortex, the caudate-putamen, the motor trigeminal nucleus, the facial nucleus, and the pontine nuclei. Minor binding was detected in the olfactory system, the mesencephalon, and the hippocampus.

Figure 4. [¹⁸F]Fluoroalkylation of 7 mmol MDL 105725 at different reaction temperatures using DMF and 7 mmol 5 N NaOH.

Figure 5. Images of an autoradiography of $[^{18}F]MHMZ$ binding at 14 µm thick rat brain sections; (A and B) total binding at a concentration of 5 nM with (A) lateral 0.9 mm and (B) lateral 2.4 mm from bregma. Major binding was detected in lamina V (V) of the frontal cortex, in the caudate-putamen (**CPu**), and three regions of the brain stem, the motor trigeminal nucleus (**MoT**), facial nucleus (**fn**), and the pontine nuclei (**pn**). Non-specific binding was determined in the presence of 10 µM ketanserin which led to total inhibition of $[^{18}F]MHMZ$ binding (cf. C' Fig. 6). Specific activity was 1.38 MBq/ nmol (at the end of the incubation period).

Competition autoradiography assays (data not shown) with 5 nM [¹⁸F]MHMZ and 10 μ M of fallypride, WAY 100635, and prazosin showed that [¹⁸F]MHMZ is highly specific for 5-HT_{2A} receptors. Displacement could only be detected with fallypride. Here, co-incubation led to a displacement of 30% ($n = 4, \pm 6\%$ SEM) of total binding in the frontal cortex as well as in the caudate-putamen, which does not imply that [¹⁸F]MHMZ recognizes D2/D3 receptors but might rather be explained by the known cross affinity of fallypride to 5-HT₂ receptors.¹⁴

Binding parameters of [¹⁸F]MHMZ of different regions of the rat brain obtained with autoradiography assays at sagittal sections are displayed in Table 2. Binding in the cerebellum was at the level of non-specific binding so levels of binding in different brain regions are also given relative to that.

A comparison of the binding of $[^{18}F]$ altanserin and $[^{18}F]$ MHMZ (Fig. 6) displays that $[^{18}F]$ MHMZ is in

Figure 6. Autoradiographic images of the total binding and non-specific binding, respectively, of (A/A') [¹⁸F]altanserin, (B/B') [³H]MDL 100907 and (C/C') 5 nM [¹⁸F]MHMZ at 14 µm rat brain sections. Non-specific binding was determined in the presence of 10 µM ketanserin. Specific activity of [¹⁸F]MHMZ and [¹⁸F]altanserin was ~160 kBq/nmol (at the end of the incubation period). Washing was done 2×10 min for (A/A') in ice-cold reaction buffer, 2×2 min at room temperature with (B/B') and 3×2 min at room temperature (4 min with buffer containing 0.01% Triton X-100). Reaction buffer was 50 mM Tris buffer, pH 7.4, containing 120 mM NaCl₂ and 5 mM KCl.

Table 2. Binding parameters obtained with $[^{18}F]MHMZ$ from binding experiments at 14 µm sagittal sections of the rat brain ($x = \text{means} \pm \text{SEM}$)

	п	pmol/mm ³	Region/cerebellum
Frontal cortex			
Laminae I–IV	4	23.30 ± 1.69	26.9 ± 0.9
Lamina V	4	51.60 ± 5.24	59.5 ± 2.8
Laminae VIa + VIb	4	27.27 ± 2.76	31.4 ± 1.3
Caudate-putamen	4	16.80 ± 2.33	19.2 ± 1.4

no way inferior to $[^{18}$ F]altanserin in terms of specificity for 5-HT_{2A} receptors. Figure 6 also shows the complete agreement of the binding of $[^{3}$ H]MDL 100907 and $[^{18}$ F]MHMZ.¹⁵

The metabolite analyses of rat plasma (Fig. 7) showed that $[^{18}F]MHMZ$ underwent fast metabolism. Plasma samples were taken at 5, 10, 30, and 60 min and analyzed by radio-TLC. One polar metabolite was found in rat plasma which is not likely to cross the blood-brain-barrier because of its hydrophilicity. The percentage of unmetabolized fractions was 43%, 32%, 16%, and 7% at 5, 10, 30, and 60 min, respectively.

In conclusion, precursors and reference compounds of [¹⁸F]MHMZ were synthesized in high yields. The new ¹⁸F-labeled compound could be obtained as an injectable solution in overall radiochemical yields of about 42% within a synthesis time of about 100 min in a purity of >96% and high specific activities. This is very similar to the radiosynthesis of [¹⁸F]altanserin, which takes 75–100 min and results in a radiochemical yield between 30% and 50%.⁴

Figure 7. (A) Plasma clearances of $[^{18}F]MHMZ$ at 5, 10, 30, and 60 min (n = 3 per time point; means \pm SD shown). (B) Radioactivity in TLC plate of plasma samples at 5 min pi is shown. Spots for $[^{18}F]MHMZ$ (T) ($R_f = 0.76$) and its metabolite (M) ($R_f = 0.16$) were clearly visible.

First autoradiographic studies showed excellent in vitro binding with high specificity of [18 F]MHMZ for 5-HT_{2A} receptors and very low non-specific binding.

[¹⁸F]MHMZ undergoes fast metabolism resulting in one very polar active metabolite.

Except from the slightly decreased affinity the reported in vitro data seem to be comparable with those of [³H]MDL 100907. Our data suggest that the aim of developing a novel ¹⁸F-analog of MDL 100907 (1) combining the better selectivity of MDL 100907 as compared to altanserin and the superior isotopic properties for the clinical routine of [¹⁸F]fluorine as compared to [¹¹C]carbon could be achieved.

All together, new auspicious results concerning the synthesis and of the in vitro studies of [¹⁸F]MHMZ justify further experiments like ex vivo brain regional distribution and in vivo small animal PET studies to verify the potential of this new 5-HT_{2A} imaging ligand.

Acknowledgments

The authors thank S. Höhnemann and P. Riss for the syntheses of [¹⁸F]FETos. We also like to thank the VCI (Verband der chemischen Industrie e.V.) for the donation of solvents. Financial support by Friedrich–Naumann–Stiftung, the European Network of Excellence (EMIL), and the Deutsche Forschungs-gemeinschaft (DFG) is gratefully acknowledged.

References and notes

- Scientific articles: Kristiansen, H.; Elfing, B.; Plenge, P.; Pinborg, L. H.; Gillings, N.; Knudsen, G. M. Synapse 2005, 58, 249.
- Lemaire, C.; Cantineau, R.; Guillaune, M.; Plenevaux, A.; Christiaens, L. J. Nucl. Med. 1991, 32, 2266.
- Huang, Y.; Mahmood, K.; Mathis, C. A. J. Labelled Compd. Radiopharm. 1999, 42, 949.
- 4. Hamacher, K.; Coenen, H. H. Appl. Radiat. Isot. 2006, 64, 989.
- Alexoff, D. L.; Shea, C.; Fowler, J. S.; King, P.; Gatley, S. J.; Schleyer, D. J.; Wolf, A. P. *Nucl. Med. Biol.* 1995, 22, 892.

- Heinrich, T.; Boetcher, H.; Pruecher, H.; Gottschlich, R.; Ackermann, K.-A.; van Amsterdam, C. Chem. Med. Chem. 2006, 1, 245.
- Tan, P.-Z.; Baldwin, R. M.; Fu, T.; Charney, D. S.; Inis, R. B. J. Labelled Compd. Radiopharm. 1998, 42, 457.
- Meltzer, C. C.; Smith, G.; DeKosky, S. T.; Pollock, B. G.; Mathis, A. M.; Moore, R. Y.; Kupfer, D. J.; Reynolds, C. F. *Neuropsychopharmacology* 1998, 18, 407.
- 9. Scot, D.; Heath, T. G. J. Pharm. Biomed. Anal. 1998, 17, 17.
- 10. Ullrich, T.; Ice, K. C. Bioorg. Med. Chem. 2000, 8, 2427.
- 11. Lundkvist, C.; Halldin, C.; Ginovart, N.; Swahn, C.-G.; Carr, A. A.; Brunner, F.; Farde, L. *Life Sci.* **1996**, *58*, 187.
- 12. Bauman, A.; Piel, M.; Schirrmacher, R.; Rösch, F. *Tetrahedron Lett.* 2003, 44, 9165.
- Lopez-Gimenez, J. F.; Mengod, D.; Palacios, J. M.; Vilario, M. T. Naunyn-Schmiedeberg's Arch. Pharmacol. 1997, 356, 446.
- Stark, D.; Piel, M.; Hübner, H.; Gmeiner, P.; Gründer, G.; Rösch, F. *Biorg. Med. Chem.* 2007, 15, 6819.
- 15. Autoradiography experiments were carried out at room temperature in reaction buffer (50 mM Tris/HCl buffer, pH 7.4, containing 120 mM NaCl₂, and 5 mM KCl) with ³H]MDL 100907 and [¹⁸F]MHMZ and on ice with ¹⁸F]altanserin. Sections with [¹⁸F]MHMZ were washed 2×2 min in reaction buffer containing 0,01% Triton X-100 and 1×2 min in reaction buffer, shortly dipped into deionized water, and quickly dried in a stream of cold air. Sections with [¹⁸F]altanserin were washed in pure ice-cold reaction buffer 2×10 min, sections with [³H]MDL 100907 were washed in pure buffer $2 \times 2 \min$. Sections were exposed to Fuji phosphor screen for 3 h when ¹⁸F was used and for 5 days when ³H was used. Screens were read out with a Fuji FLA-7000 scanner. For ¹⁸F quantification was done after calibration by a standard curve which was obtained by a dilution series of the radiotracer. Calibration was repeated for each fresh radiotracer synthesis. Calibration for sections with ³H was done with Amersham microscale standards. Calibration, quantification and data evaluation was done with Multi Gauge, Fujifilm image analysis software.