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ABSTRACT: An efficient [4 + 3] cycloaddition reaction
of D−A cyclopropanes with dienes has been successfully
developed. The reaction proceeds well with various
dienolsilyl ethers in the presence of Lewis acid, delivering
a variety of cycloheptenes and [n,5,0]carbobicycles with
excellent stereoselectivity. The asymmetric version of this
reaction is also realized using a newly designed chiral Cy-
TOX ligand, providing a new approach to access optically
active cycloheptenes and [n,5,0]carbobicycles. Mechanisic
study reveals that the reaction involves a stepwise pathway,
which undergoes an unusual ring opening of five-
membered [3 + 2] intermediate and sequential intra-
molecular cyclization to afford the thermodynamically
stable [4 + 3] annulation product.

Cycloheptenes and [n,5,0]carbobicycles are widely present
as key structures in a large number of natural products

and biologically active molecules such as salvicnol, palustrol,
and dolastanes.1 Accordingly, the establishment of efficient and
reliable methodologies for the highly enantioselective con-
struction of this structural motif from simple materials is highly
desirable.2 Herein, we envision that a [4 + 3] annulation
protocol of donor−acceptor (D−A) cyclopropanes with
dienolsilyl ethers may serve as a new approach for the
aforementioned subunits. However, reactions of D−A cyclo-
propanes with common dienolsilyl ethers usually result in ring-
opening products or [3 + 2] cycloaddition products, which
suggests this transformation to be challenging.3−7 In our
continuing effort on studies of D−A cyclopropanes in organic
synthesis, we developed a novel and efficient [4 + 3] reaction of
cyclopropane 1,1-dicarboxylates with both acyclic and cyclic
dienolsilyl ethers, which provided a new and concise approach
to the synthesis of cycloheptenes and [n,5,0]carbobicycles.
Importantly, the catalytic asymmetric version of this trans-
formation is also realized with high enantioselectivity by
employing a newly designed chiral trisoxazoline (Cy-TOX).8,9

Herein, we report the preliminary results.
Initially, the reaction of dienolsilyl ether 1a with both

dimethyl and diethyl cyclopropane 1,1-dicarboxylate (2b, 2c)
were tried by employing 10 mol % of bisoxazoline (BOX) L-
rac/Cu(ClO4)2·6H2O. There are two possible cycloadducts, [4
+ 3] cycloadduct 3 and [3 + 2] cycloadduct 4. However, no
product was observed due to the decomposition of the
cyclopropanes and side reactions (Table 1, entries 1−2). In

the initial exploration, the ester group10 was found to
significantly influence the reaction. When the isopropyl ester
was used, 38% yield of the desired product was achieved with a
60/40 ratio of 3/4 (entry 3). To our delight, the [4 + 3]
cycloadduct could be highly selectively obtained albeit in
moderate yield when using benzyl ester (entry 4). Further
study showed that 87% yield of 3 was obtained when di-2-
adamantyl (2-Ad) cyclopropane 1,1-dicarboxylate 2a was
employed (entry 6). Further screening11 of Lewis acids and
solvents led to the optimal reaction condition under which the
[4 + 3] product rac-3a was furnished exclusively in 95% yield in
dicloromethane in the presence of 10 mol % L-rac/Cu(SbF6)2
(Table 1, entry 7).
The substrate scope of this process was examined next. A

variety of electron-rich phenyl cyclopropanes 2 reacted
smoothly with conjugated enol silyl ethers 1 to afford the [4
+ 3] cycloadducts in good to excellent yields (Table 2, entries
1−3). Cyclopropanes with heteroaryl or alkenyl substituents
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Table 1. Reaction Optimizationa

entry 2 time (h) conv. (%)b 3/4b yield (%)c

1 2b 1 >99 − <5
2 2c 1 >99 − <5
3 2d 53 91 60/40 38
4 2e 1 >99 >99/1 56
5 2f 31 92 >99/1 77
6 2a 64 >99 95/5 87
7d 2a 8 >99 >99/1 95

a1a (0.30 mmol), 2 (0.20 mmol), Cu(ClO4)2·6H2O (0.020 mmol), L-
rac (0.022 mmol), CH2Cl2 (2.0 mL), 40 °C, 4 Å MS (100 mg), argon.
bConversion and the ratio of 3/4 were determined by 1H NMR
spectroscopy. cIsolated yield. dCu(SbF6)2 was used. Ad = 2-adamantyl.
PMP = para-methoxyphenyl
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delivered high yields of the desired products. (entries 4−7). For
less active cyclopropanes, the benzyl ester group was
demonstrated to be more favored to ensure a high yield
(entries 8−17). The reaction was found to be insensitive to the
ortho-, meta-, or para-substituents at the aromatic rings (entries
9−11). Notably, reactions of vinyl-substituted cyclopropane
also proceeded smoothly to give the desired product in 52%
yield (entry 17). Furthermore, enol silyl ethers with different
substituents (R1 = Me, Et, Ph, H) were all suitable substrates
(entries 1, 18−20).
The presence of the scaffold in enantiopure form in many

natural products encouraged us to develop the asymmetric
version of this reaction. As BOX L-rac is highly efficient for the
racemic reaction, we first tried the asymmetric reaction with
chiral BOX L1 instead of L-rac (Scheme 1). Unfortunately, we
found that BOX L1 slowed down the reaction dramatically,
resulting in 34% yield of 3a due to poor regioselectivity and
incomplete conversion. SaBOX L2 was also employed, which
proved to be very efficient in the asymmetric [3 + 2] annulation
reaction of D−A cyclopropanes with enol silyl ether.3c The
yield of 3a was improved to 73% in 93% ee with a 81/19 ratio
of 3a/4a. Further examination11 of Lewis acids, solvents, ester
groups, SaBOX, and TOX ligands as well as reaction
temperature showed that a mixture of [4 + 3] and [3 + 2]
annulation products were obtained. The best result was
achieved by employing TOX L3 which gave 86% yield of 3a
in 92% ee, with a 92/8 ratio of 3a/4a.

To further improve the selectivity and gain a deeper
understanding of the inter-relationship between [4 + 3] and
[3 + 2] products, 1H NMR was used to monitor the reaction.
As shown in Figure 1, at the initial stage of the reaction (1 h),

the [3 + 2] annulation product rac-4e (unique peaks at 6.0
ppm) was produced as the major products with a 35/65 ratio of
rac-3e/rac-4e. After 5 h, the peaks of cyclopropane 2j
disappeared, and the [4 + 3] product rac-3e became
predominant. Eight hours later, rac-4e was converted into
rac-3e completely. This observation suggests the [3 + 2]
annulation is a kinetically controlled process, and the [4 + 3]
product rac-3e is thermodynamically favored. In addition, the
intermediate cyclopetane rac-4e was isolated and was subjected
to the optimized reaction conditions (Scheme 2). Significantly,
it was found that rac-4e was readily converted to the
corresponding cycloheptene rac-3e in 82% yield after 10 h.
Moreover, the optically active 4e (88% ee) could also be
transformed into 3e (88% ee) in the presence of 10 mol %
BOX L-rac/Cu(SbF6)2 without loss of enantiomeric excess.11

These results clearly demonstrate that the reaction mainly

Table 2. Generality of the Reactiona

entry R1 R2 R3
time
(h) product

yield
(%)b

1 Me(1a) 4-MeOC6H4 (2a) 2-Ad 8 rac-3a 95
2 Me(1a) 4-BnOC6H4 (2g) 2-Ad 56 rac-3b 88
3 Me(1a) (3,4-MeO)2C6H3

(2h)
2-Ad 34 rac-3c 68

4 Me(1a) N-Boc-Indolyl (2i) 2-Ad 30 rac-3d 80
5 Me(1a) CHCHPh (2j) 2-Ad 15 rac-3e 80
6c Me(1a) 2-thiophenyl (2k) 2-Ad 7 rac-3f 72
7c Me(1a) 5-Me-2-thiophenyl

(2l)
2-Ad 12 rac-3g 84

8d Me(1a) Ph (2m) Bn 14 rac-3h 79
9d Me(1a) 2-MeC6H4 (2n) Bn 24 rac-3i 90
10d Me(1a) 3-MeC6H4 (2o) Bn 10 rac-3j 84
11d Me(1a) 4-MeC6H4 (2p) Bn 8 rac-3k 94
12d Me(1a) 4-F-C6H4 (2q) Bn 10 rac-3l 86
13d Me(1a) 4-Cl-C6H4 (2r) Bn 14 rac-3m 75
14d Me(1a) 4-Br-C6H4 (2s) Bn 13 rac-3n 73
15d Me(1a) 4-I-C6H4 (2t) Bn 10 rac-3o 75
16d Me(1a) 4-tBu-C6H4 (2u) Bn 10 rac-3p 93
17d Me(1a) vinyl (2v) Bn 10 rac-3q 52
18 Et (1b) 4-MeOC6H4 (2a) 2-Ad 32 rac-3r 96
19 Ph (1c) 4-MeOC6H4 (2a) 2-Ad 24 rac-3s 94
20e H (1d) 4-MeOC6H4 (2a) 2-Ad 12 rac-3t 75

a1 (0.30 mmol), 2 (0.20 mmol), Cu(SbF6)2 (0.020 mmol), L-rac
(0.022 mmol), CH2Cl2 (2.0 mL), 40 °C, 4 Å MS (100 mg), argon. No
[3 + 2] cycloadducts were observed. bIsolated yield. cDCE (2.0 mL),
at 60 °C. dWith 20 mol % of catalyst. eDCE (1.0 mL), at 80 °C.

Scheme 1. Ligand Effects on Asymmetric [4 + 3]
Annulations

Figure 1.Monitoring the Cu(SbF6)2/L-rac-catalyzed reaction between
1a and 2e in CH2Cl2 by

1H NMR.
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undergoes a stepwise mechanism in which the [3 + 2]
annulation first takes place kinetically, followed by the ring
opening of the [3 + 2] intermediate and intramolecular
cyclization to afford the thermodynamically stable [4 + 3]
annulation product. The stepwise mechanism of our method-
ology distinguishes it from the concerted cycloaddition reaction
of 1,3-diphenylisobenzofuran with cyclopropanes.12

Based on these observations, we continued to optimize the
reaction conditions by means of several typical methods that
would favor a thermodynamically controlled process, including
elevating the reaction temperature and prolonging the reaction
time. However, no further improvement on increasing the ratio
of 3a/4a was made. In order to minimize the undesired [3 + 2]
products and to increase the catalytic efficiency, we designed
new ligands that can speed up this transformation. Since iPr-
TOX L3 was found to favor the [4 + 3] product, we envisioned
that TOX ligands possessing a similar chiral environment, but
bearing sterically rigid cyclohexyl backbones, might be
beneficial for the transformation of 4a to 3a. As expected, we
found that Cy-TOX L4 could promote the reaction very
efficiently, affording 3a exclusively in 94% yield with 94% ee
(Scheme 1).
Under the optimized conditions, 1a reacted with 2a in the

presence of Cu(ClO4)2·6H2O and L4 in dichloromethane
providing 3a in 94% yield with 94% ee (Table 3). Good to
excellent levels of enantioselectivity were obtained in the
reaction of electron-rich phenyl-substituted cyclopropanes with
88−95% ee (3a−3c, 3r). Moreover, cyclopropanes with
heteroaryl and alkenyl substitutents were also compatible for
the reaction with high enantioselectivity (3e, 3f). Of note is the
cyclic enol silyl ethers, bearing five-, six- and seven-membered
rings, could also react with electron-rich phenyl- and aryl-
substituted cyclopropanes smoothly in good yields with
excellent enantioselectivities, even under an elevated temper-
ature in DCE (3u−3w, 3y).13 The obtained optically active
[n,5,0]carbobicyclic structural motif is a key intermediate in a
plenty of biologically active and natural products.1

In conclusion, an efficient Cu(II)/TOX catalyzed [4 + 3]
annulation of D−A cyclopropanes with dienes has been
developed. By employing a newly designed chiral Cy-TOX
instead of BOX ligand, asymmetric version of the current
reaction can be realized with excellent enantioselectivity,
providing an efficient and new access to a variety of optically
active cycloheptenes and [n,5,0]carbobicycles. To the best of
our knowledge, these reactions represent the first examples of
catalytic asymmetric [4 + 3] annulation reactions of enol silyl
ethers with D−A cyclopropanes. Preliminary study reveals that
a stepwise mechanism is mainly involved in the reaction, which
undergoes an unusual five-membered ring opening of the [3 +
2] intermediate, followed by an intramolecular cyclization to
afford the thermodynamically stable [4 + 3] annulation
product.
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Scheme 2. Conversion of [3 + 2] Cycloadduct to [4 + 3]
Product

Table 3. Asymmetric [4 + 3] Annulation of 1 with 2

Reaction conditions: Cu(ClO4)2·6H2O (0.020 mmol), L4 (0.022
mmol), 1 (0.30 mmol) and 2 (0.20 mmol) in 2.0 mL of CH2Cl2, 40
°C, the ratio of [4 + 3] and [3 + 2] cycloadducts is >99/1. a60 °C, in
DCE. bUsing Cu(SbF6)2.

c20 mol % Cu(ClO4)2·6H2O was used.
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(j) Schaẗz, A.; Rasappan, R.; Hager, M.; Gissibl, A.; Reiser, O. Chem.
Eur. J. 2008, 14, 7259−7265. (k) Rasappan, R.; Olbrich, T.; Reiser, O.
Adv. Synth. Catal. 2009, 351, 1961−1967. (l) Hager, M.; Wittmann, S.;
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