## Oxygen Heterocycles

## Palladium-Catalyzed Asymmetric Synthesis of 2-Alkynyl Oxacycles\*\*

David S. B. Daniels, Amber L. Thompson, and Edward A. Anderson\*

The stereodefined synthesis of saturated heterocycles is an area of prime importance in organic chemistry, these motifs being widespread in both natural products and pharmaceuticals. Tetrahydrofurans (THFs) and tetrahydropyrans (THPs) in particular are not only valuable building blocks in synthesis,<sup>[1]</sup> but are among the most common structural motifs of bioactive heterocycles.<sup>[2]</sup> Oxacycles functionalized with unsaturated substituents represent a subclass of distinct synthetic utility, and the development of stereocontrolled routes for their synthesis is an important aim.<sup>[3]</sup> Whilst *E*-alkenyl THFs and THPs can be readily prepared using intramolecular etherifications,<sup>[1c,4]</sup> the stereoselective synthesis of alkynyl<sup>[5]</sup> or *Z*-alkenyl oxacycles<sup>[4e]</sup> presents a significantly greater challenge.

In the course of investigations into the palladium-catalyzed synthesis of allenyl alcohols from propargylic cyclic carbonates (Scheme 1),<sup>[6]</sup> we discovered that whilst the six-



**Scheme 1.** Palladium-catalyzed Suzuki cross-coupling reactions of propargylic cyclic carbonates. PMP=4-methoxyphenyl.

membered cyclic carbonates 1 a-c successfully afforded the  $\beta$ allenyl alcohols 2a-c under Suzuki cross-coupling conditions,<sup>[7]</sup> the seven-membered cyclic carbonates 3a-c exclusively gave the unexpected 2-alkynyl tetrahydrofurans 4a-c. We recognized that this side reaction might offer a new and general method to prepare alkyne-substituted oxacycles, and report here the optimization of this process and its application to the highly stereoselective synthesis of polysubstituted 2alkynyl THFs and THPs.

To investigate the stereoselectivity of the cyclization, we prepared the diastereomeric disubstituted cyclic carbonates **3d** and **3e** (Table 1),<sup>[8]</sup> the relative stereochemistry of the

| [*] D. S. B. Daniels, Dr. A. L. Thompson, <sup>[+]</sup> Dr. E. A. Anderson |
|-----------------------------------------------------------------------------|
| Department of Chemistry, University of Oxford                               |
| 12 Mansfield Road, Oxford, OX1 3TA, (UK)                                    |
| E-mail: edward.anderson@chem.ox.ac.uk                                       |
| Homepage: http://anderson.chem.ox.ac.uk                                     |
|                                                                             |

[<sup>+</sup>] X-ray crystal structure analysis of **3 d**.

[\*\*] We thank the EPSRC for an Advanced Research Fellowship (E.A.A.) and a Studentship (D.S.B.D.; grant no. EP/E055273/1).

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201105720.

former being confirmed through single-crystal X-ray diffraction.<sup>[9]</sup> We initially tested the cyclization of 3d solely in the presence of  $[Pd(PPh_3)_4]$  (1 mol%), which to our surprise led

 $\textit{Table 1:}\ Optimization of the cyclization of cyclic and acyclic carbonates.^{[a]}$ 



| E un trans | Cultation | Cataluat                              | A                              | Duad                 |                                    | V: J.J                   |
|------------|-----------|---------------------------------------|--------------------------------|----------------------|------------------------------------|--------------------------|
| Eritry     | Substr.   | Catalyst                              |                                | ratio <sup>[b]</sup> | ее<br>го <u>/</u> 1 <sup>[с]</sup> |                          |
|            |           |                                       | (equiv)                        | ratio.               | [/0]                               | [/0]                     |
| 1          | 3 d       | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | none                           | 0:0:100              | -                                  | 84                       |
| 2          | 3 d       | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | PMPB(OH) <sub>2</sub><br>(1.2) | 90:10:0              | -                                  | 79                       |
| 3          | 3 e       | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | PMPB(OH) <sub>2</sub><br>(1.2) | 10:90:0              | -                                  | 83                       |
| 4          | 3 d       | [Pd(PPh₃)₄]                           | B(OMe)₃ (1.2)                  | 49:3:48              | _                                  | _[e]                     |
| 5          | 3 d       | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | B(OH) <sub>3</sub> (1.2)       | 80:20:0              | -                                  | 85                       |
| 6          | 3 d       | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | PPTS (1.2)                     | 95:5:0               | -                                  | 85                       |
| 7          | 3 d       | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | PPTS (0.1)                     | 99:1:0               | -                                  | <b>99</b> <sup>[f]</sup> |
| 8          | 3 e       | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | PPTS (0.1)                     | 5:95:0               | -                                  | <b>99</b> <sup>[f]</sup> |
| 9          | 6a        | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | PPTS (0.1 or<br>1.2)           | -                    | -                                  | n.r.                     |
| 10         | 6a        | [Pd(PPh <sub>3</sub> ) <sub>4</sub> ] | B(OH)₃ (1.1)                   | 100:0                | 20                                 | 99                       |
| 11         | 6a        | [Pd(dba) <sub>2</sub> ]/<br>dppp      | none                           | 44:56                | 96                                 | _[e]                     |
| 12         | 6a        | [Pd(dba)₂]/<br>dppb                   | none                           | 77:23                | 97                                 | _[e]                     |
| 13         | 6a        | [Pd(dba)₂]/<br>dppf                   | none                           | 83:17                | 97                                 | 95 <sup>[g]</sup>        |
| 14         | 6a        | Pd(OAc) <sub>2</sub> /                | none                           | 82:18                | 97                                 | 95                       |
| 15         | 6a        | Pd(OAc)₂/<br>dppf                     | B(OH) <sub>3</sub> (0.5)       | 100:0                | 96                                 | 99                       |

[a] Reactions conducted in dioxane at 100°C; reaction times 2–30 min; entries 1–8 performed using [Pd(PPh<sub>3</sub>)<sub>4</sub>] (1 mol%), entries 9–15 performed using 5 mol% [Pd] and 10 mol% ligand; **3d** and **3e** prepared with > 99:1 d.r.; **6a** prepared with 98% *ee*. [b] From **3d** and **3e**: ratio of **4d/4e/5**; From **6a**: ratio of **4a/7**; ratios determined by <sup>1</sup>H NMR spectroscopic analysis of the crude reaction mixture. [c] Determined by HPLC on a chiral stationary phase. [d] Combined yield of isolated products. [e] Not determined. [f] Reaction conducted at 50°C. [g] Product inseparable from dba. PPTS = pyridinium *p*-toluenesulfonate, dppp = 1,3-bis(diphenylphosphino)propane, dba = dibenzylideneacetone, dppb = 1,4-bis(diphenylphosphino)butane, dppf=1,1'-bis(diphenylphosphino)ferrocene. to the exclusive formation of enyne 5 (Table 1, entry 1, 84%, E/Z = 58:42). On repeating the reaction in the presence of arylboronic acid, the desired reactivity was restored, with 3d and 3e leading to a complementary 9:1 mixture of THF products 4d and 4e respectively (Table 1, entries 2 and 3). In each case, the major diastereomer was formed with retention of configuration of the propargylic stereocenter, as evidenced by NOE enhancements between H2 and H5 in 4e (arising from carbonate 3e) which were absent in 4d.<sup>[8]</sup> To investigate whether the boronic acid was acting as a Brønsted or Lewis acid, we conducted a screen of other additives. Whilst trimethyl borate delivered 4d with high stereoselectivity (Table 1, entry 4), its ability to prevent enyne formation was reduced, suggesting a purely Lewis acidic role to be unlikely. Boric acid itself was also able to mediate THF formation, albeit with reduced selectivity (Table 1, entry 5). In contrast, PPTS proved most effective in terms of yield and selectivity (Table 1, entry 6); reducing the loading of PPTS and lowering the reaction temperature (to 50°C) led to highly diastereoselective cyclizations for both 3d and 3e (Table 1, entries 7 and 8).

With these encouraging results in hand, we turned our attention to the nature of the propargylic leaving group. It was clear that if a cyclic carbonate is used, the hydroxy groups of its diol precursor need not be differentiated; however, its synthesis is likely restricted to seven-membered rings, which in turn limits the ring size of the product oxacycle. We therefore decided to investigate an acyclic carbonate leaving group, with the internal nucleophile now an alcohol rather than the alkoxide we presumed to be generated in situ from the cyclic carbonate. We selected acyclic carbonate 6a (Table 1) as a test substrate for this chemistry, where Noyori transfer hydrogenation<sup>[10]</sup> was used to install the propargylic stereocenter (98% ee).[8] To our surprise, no reaction was observed under the optimized conditions developed for the cyclic carbonates (i.e. PPTS as additive; Table 1, entry 9); however, reaction in the presence of boric acid gave the tetrahydrofuran 4a in quantitative yield but a disappointing 20% ee (Table 1, entry 10).

We hypothesized that the surprising difference in reactivity and stereoselectivity between the cyclic and acyclic carbonates might arise from the more reactive nature of the alkoxide generated from the cyclic carbonates (compared to the alcohol in 6a). It has been shown that bidentate phosphine ligands can reduce the extent of stereochemical erosion in propargylic cross-coupling reactions,[6a,11] and we were pleased to find that the combination of  $[Pd(dba)_2]$  or Pd- $(OAc)_2$  with a range of these ligands led to consistently high stereoselectivity (>96% ee; Table 1, entries 11–14). Despite this success, these reactions suffered from the formation of varying amounts of enol ether 7, a byproduct which likely forms through competitive attack of the alcohol on the central carbon atom of the allenylpalladium(II) intermediate. For reasons which remain unclear, the production of enol ether 7 could be minimized by using dppf as ligand (Table 1, entries 13 and 14) and eliminated entirely in the presence of boric acid (Table 1, entry 15).

Possible mechanisms for the two cyclizations are illustrated in Scheme 2. For the cyclic carbonate *syn*-**3**, initial *anti*-



Scheme 2. Proposed cyclization mechanisms.

 $S_{N2}$  oxidative addition<sup>[6c,12]</sup> leads, following loss of CO<sub>2</sub> and protonation, to the allenvlpalladium intermediate 8, which can form the major furan product syn-4 through an anti-S<sub>N</sub>2'type reductive elimination (path A). It is well-known that allenyl-palladium complexes can undergo syn-facial 1,3migrations to give complexes of type 9,<sup>[13]</sup> in this case potentially stabilized by the proximal nucleophile. Syn reductive elimination from this species would generate the minor isomer anti-4. From either intermediate 8 or 9, a competing hydride elimination, possibly mediated by the alkoxide, could give enyne 5. For the acyclic carbonates, the high stereoselectivity observed when bidentate phosphine ligands are used may be explained by the intermediacy of the cationic  $\eta^3$ -allenylpalladium(II) complex **10a**,<sup>[14]</sup> which not only reduces the propensity for 1,3-migration,<sup>[6a,11]</sup> but also renders the attack of the alcohol stereospecific (path B). However, this intermediate also accounts for the formation of enol ether 7, which arises from competitive attack of the alcohol on the central allene carbon of **10a** (path C);<sup>[14]</sup> indeed, enol ether 7 has been prepared in this manner.<sup>[15]</sup> In fact, the formation of propargylic substitution products from attack of heteroatoms on the terminal allene carbon of complexes such as 10 is rarely observed.<sup>[16]</sup> This outcome is likely due to the relative positioning of the palladium and nucleophile in the allenylpalladium intermediate, and the resulting trajectory of nucleophilic attack: In the majority of reported cases,<sup>[14,15]</sup> the palladium is positioned on the allene carbon proximal to the nucleophile, and the trajectory of attack is perpendicular to this alkene (path D, complex 10b), whereas in our system, the palladium is located on the distal allene carbon, and central carbon attack takes place via an orthogonal trajectory (path C). We speculate that the role of the acidic additives in preventing the formation of 5 or 7 may be to "soften" the alkoxide nucleophile (for example through formation of a borate complex, as proposed by Trost et al. in related allylic etherifications).<sup>[17]</sup>

With optimized sets of reaction conditions established, a selection of cyclic and acyclic carbonates were prepared to explore the scope of the reaction for asymmetric oxacycle synthesis (Table 2).<sup>[8,18]</sup> Pleasingly, the monosubstituted cyclic





| Entry | Substrate                                                    | Product                            | ee [%] <sup>[-]</sup> /<br>d.r. <sup>[d]</sup> | [%] <sup>[e]</sup> |
|-------|--------------------------------------------------------------|------------------------------------|------------------------------------------------|--------------------|
| 1     | Ph 3a                                                        | Ph 4a                              | 95                                             | 99                 |
| 2     | BnO 0 3f                                                     | Bno <sup>4</sup> 4f                | 96                                             | 99                 |
| 3     | <sup>N</sup> → <sup>0</sup> → <sup>0</sup> 3g                | N 4g                               | 98                                             | 86 <sup>[f]</sup>  |
| 4     | Ph 3h                                                        | Ph 4h                              | 83:17                                          | 90 <sup>[f]</sup>  |
| 5     | Ph OCO <sub>2</sub> Me 6b                                    | Ph 4h                              | 93:7                                           | 76 <sup>[g]</sup>  |
| 6     | Ph OCCo <sub>2</sub> Me 6c                                   | Ph 4i                              | 96:4                                           | 91 <sup>[g]</sup>  |
| 7     | Ph                                                           | Ph 11a                             | 94                                             | 99                 |
| 8     | BnO M4 6e                                                    | Bno <sup>64</sup> 11b              | 87                                             | 92                 |
| 9     | Ph                                                           | Ph 11c                             | 90:10                                          | 85                 |
| 10    | Ph OCO <sub>2</sub> Me OH 6g                                 | Ph 0 11d                           | 95:5                                           | 45 <sup>[h]</sup>  |
| 11    | Ph ÖH                                                        | Ph OHEt 4j                         | 95:5                                           | 88                 |
| 12    | Ph OCO <sub>2</sub> Me OH<br>Et 6i                           | Ph O H Et 4k                       | 95:5                                           | 82                 |
| 13    | Ph OH CO <sub>2</sub> Me OH CO <sub>2</sub> Me               | Ph OH<br>CO <sub>2</sub> Me        | 97:3                                           | 82 <sup>[i]</sup>  |
| 14    | Ph OCO <sub>2</sub> Me OH CO <sub>2</sub> Me<br>OH <b>6k</b> | Ph OH<br>CO <sub>2</sub> Me<br>11f | 96:4                                           | 77 <sup>[i]</sup>  |

carbonates 3a,f,g delivered the corresponding furans in excellent yield and enantioselectivity (Table 2, entries 1–3), showing that aryl-, alkyl-, and heteroaryl-substituted alkynes are all competent substrates. However, we were surprised to find that the allyl-substituted carbonate 3h, which closely



[a] Substrates prepared with  $\geq$  95 % *ee*, and > 95:5 d.r. where applicable; see the Supporting Information for details. [b] Major product [c] Determined by HPLC on a chiral stationary phase. [d] Determined by <sup>1</sup>H NMR spectroscopic analysis of the crude reaction mixture. [e] Yield of the isolated major diastereomer. [f] Conducted at 100 °C. [g] 1.1 equiv B(OH)<sub>3</sub>. [h] 50% of **6g** consistently recovered. [i] 0.5 equiv B(OH)<sub>3</sub>.

resembles the methyl-substituted carbonate **3d** used earlier, required elevated temperatures to achieve high conversion and cyclized with inferior stereoselectivity. In contrast, the use of the allyl-substituted acyclic carbonates **6b** and **6c** gave the *anti*- and *syn*-disubstituted THFs **4h** and **4i** with very high diastereoselectivity.

Attention was next turned to THP formation, which would likely be difficult to achieve using a cyclic carbonate because of the problem of preparing the requisite eightmembered ring. We were thus delighted to find that carbonates **6d** and **6e** gave the THPs **11a** and **11b** with excellent yield and *ee* (Table 2, entries 7 and 8), despite the need for a higher temperature (100 °C) and additional boric acid. This selectivity was maintained for the disubstituted substrates **6f** and **6g**, which afforded the corresponding 2,6-disubstituted THPs **11c** and **11d** with high selectivity for both isomers (Table 2, entries 9 and 10).

With successful stereoselective cyclizations achieved for relatively simple acyclic systems, we decided to study some more complex substrates to conduct a deeper investigation into aspects of selectivity in the reaction, in particular the preference for the formation of differently sized rings. These experiments were carried out on enantiomerically and diastereomerically pure carbonates containing syn 1,2diols,<sup>[8,19]</sup> using both diastereomers of each carbonate (relative to the syn diol) in order to investigate any differences in the cyclization to cis or trans oxacycles. Firstly, substrates 6h and 6i were evaluated (Table 2, entries 11 and 12), which were designed to test the preference for five- or six-membered ring formation. Perhaps unsurprisingly on kinetic grounds, the THFs 4j and 4k, featuring a stereodefined hydroxy group on the furan side chain, proved to be the exclusive products. The homologous substrates 6j and 6k (Table 2, entries 13 and 14) lead exclusively to THP formation over the corresponding oxepanes, with very high selectivity for both the 2,6-anti- and 2,6-syn-THPs. Finally, we pushed the competition between five- and six-membered ring formation to the limit using substrates 61 and 6m (Table 2, entries 15 and 16), where cyclization of the tertiary alcohol would give a 2,5,5-trisubstituted furan, whereas the cyclization of the secondary alcohol would give a disubstituted pyran. Remarkably, both of these substrates gave solely the THF products 41 and 4m.



[a] Reaction conditions:  $Pd(OAc)_2$  (5 mol%), dppf (10 mol%), B(OH)<sub>3</sub> (0.5 equiv), dioxane (0.1 m), 75 °C, 16 h. [b] All substrates prepared with 94:6 d.r. and >99% *ee*. [c] Yield of isolated bifuran with >95:5 d.r.

In all six of these more challenging cases, the reactions proceeded with excellent diastereoselectivities ( $\geq$  95:5) and yields.

These experiments firmly established the regiochemical preferences of the cyclization of diol-containing substrates, and as a final demonstration of the methodology, we contemplated the synthesis of bis-oxacycles, motifs which are commonplace in many natural product families.<sup>[2c,e]</sup> The high kinetic selectivity exhibited in the cyclization ought to permit the stereodefined synthesis of such frameworks, and towards this end we prepared a selection of substrates to investigate a two-directional formation of bicyclic oxacycles.<sup>[8]</sup> Our prediction for these substrates (12a-d, Table 3) was that the bifuran product 13 would be kinetically favored over the fused-ring pyranopyran 14. To our delight, the cyclization of all four bis-carbonate diols 12a-d led exclusively to the formation of the bifuran frameworks **13a-d**, with none of the pyranopyran being detected by <sup>1</sup>H NMR and <sup>13</sup>C NMR spectroscopic analysis,<sup>[20]</sup> and in all cases cyclization occurred with the expected retention of stereochemistry at the propargylic center as assigned by <sup>1</sup>H NMR NOE enhancements for the 2,5-syn-disubstituted furans.<sup>[8]</sup> The exquisite selectivity observed in this process for the transfer of stereochemistry to the cyclized product thus gives access to multiple permutations of the bifuran ring system using a single synthetic strategy.

In summary, we have developed two distinct catalytic systems for the highly stereoselective synthesis of 2-alkynyl tetrahydrofurans and tetrahydropyrans from cyclic and acyclic carbonates. We have developed a clear understanding of the preference for the formation of different ring sizes, irrespective of steric considerations, and have in addition applied the reaction to the stereocontrolled synthesis of bicyclic oxacycles. Further investigations into the scope of this cyclization, and its application towards selected targets, are ongoing. Received: August 12, 2011 Published online: October 6, 2011

Keywords: alkynes  $\cdot$  asymmetric synthesis  $\cdot$  cyclization  $\cdot$  oxygen heterocycles  $\cdot$  palladium

- a) J. P. Wolfe, M. B. Hay, *Tetrahedron* 2007, 63, 261; b) I. Larrosa, P. Romea, F. Urpì, *Tetrahedron* 2008, 64, 2683; c) J. Muzart, *Tetrahedron* 2005, 61, 5955; d) P. A. Clarke, S. Santos, *Eur. J. Org. Chem.* 2006, 2045; e) B. Figadere, G. Jalce, X. Franck, *Tetrahedron: Asymmetry* 2009, 20, 2537.
- [2] a) I. Vilotijevic, T. F. Jamison, Angew. Chem. 2009, 121, 5352; Angew. Chem. Int. Ed. 2009, 48, 5250; b) T. Nakata, Chem. Rev. 2005, 105, 4314; c) A. Bermejo, B. Figadere, M. C. Zafra-Polo, I. Barrachina, E. Estornell, D. Cortes, Nat. Prod. Rep. 2005, 22, 269; d) K. S. Yeung, I. Paterson, Chem. Rev. 2005, 105, 4237; e) C. J. Dutton, B. J. Banks, C. B. Cooper, Nat. Prod. Rep. 1995, 12, 165.
- [3] For examples of natural products and bioactive molecules featuring propargylic oxacycles, see: a) B. I. Morinaka, C. K. Skepper, T. F. Molinski, Org. Lett. 2007, 9, 1975; b) S. M. Lee, K. H. Bae, H. J. Sohn, Tetrahedron Lett. 2009, 50, 416; c) J. Chiba, Y. Doi, T. Morikawa, M. Inouye, J. Am. Chem. Soc. 2008, 130, 8762.
- [4] For selected recent examples, see: a) A. Aponick, B. Biannic, Org. Lett. 2011, 13, 1330; b) A. Guérinot, A. Serra-Muns, C. Gnamm, C. Bensoussan, S. Reymond, J. Cossy, Org. Lett. 2010, 12, 1808; c) Y. K. Chung, G. C. Fu, Angew. Chem. 2009, 121, 2259; Angew. Chem. Int. Ed. 2009, 48, 2225; d) S. Tanaka, T. Seki, M. Kitamura, Angew. Chem. 2009, 121, 9110; Angew. Chem. Int. Ed. 2009, 48, 8948; e) Z. B. Zhang, R. A. Widenhoefer, Angew. Chem. 2007, 119, 287; Angew. Chem. Int. Ed. 2007, 46, 283; f) B. M. Trost, M. R. Machacek, B. D. Faulk, J. Am. Chem. Soc. 2006, 128, 6745.
- [5] For recent examples, see: a) S. R. Mothe, P. Kothandaraman, W. D. Rao, P. W. H. Chan, J. Org. Chem. 2011, 76, 2521; b) X. W. Liu, J. Zeng, S. Vedachalam, S. H. Xiang, Org. Lett. 2011, 13, 42; c) L. Liu, P. E. Floreancig, Angew. Chem. 2010, 122, 3133; Angew. Chem. Int. Ed. 2010, 49, 3069; d) A. Boyer, S. V. Ley, G. E. Veitch, E. Beckmann, Angew. Chem. 2009, 121, 1343; Angew. Chem. Int. Ed. 2009, 48, 1317; e) J. K. D. Brabander, B.

## Communications

Liu, M. Qian, Org. Lett. **2008**, 10, 2533; f) D. D. Diaz, J. M. Betancort, V. S. Martin, Synlett **2007**, 343.

- [6] a) C. Darcel, S. Bartsch, C. Bruneau, P. H. Dixneuf, Synlett 1994, 457; b) C. Darcel, C. Bruneau, P. H. Dixneuf, J. Chem. Soc. Chem. Commun. 1994, 1845; c) For a recent review on allene synthesis, see: S. C. Yu, S. M. Ma, Chem. Commun. 2011, 47, 5384.
- [7] M. Yoshida, T. Okada, K. Shishido, Tetrahedron 2007, 63, 6996.
- [8] See the Supporting Information for details.
- [9] Single-crystal diffraction data for 3d were collected on using a Nonius KCCD,<sup>[21]</sup> solved using SIR92,<sup>[22]</sup> and refined within the CRYSTALS suite.<sup>[23]</sup> CCDC 842713 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.
- [10] K. Matsumura, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1997, 119, 8738.
- [11] a) M. Yoshida, M. Hayashi, K. Shishido, Org. Lett. 2007, 9, 1643;
  b) H. Ohmiya, M. Y. Yang, Y. Yamauchi, Y. Ohtsuka, M. Sawamura, Org. Lett. 2010, 12, 1796.
- [12] C. J. Elsevier, H. Kleijn, J. Boersma, P. Vermeer, Organometallics 1986, 5, 716.
- [13] a) S. M. Ma, Eur. J. Org. Chem. 2004, 1175; b) S. M. Ma, G. W.
   Wang, Angew. Chem. 2003, 115, 4347; Angew. Chem. Int. Ed.
   2003, 42, 4215.
- [14] Cationic η<sup>3</sup>-allenylpalladium complexes are formed from loss of a ligand (e.g. AcO<sup>-</sup>) from the neutral η<sup>1</sup>-allenylpalladium complex. See: a) L. N. Guo, X. H. Duan, Y. M. Liang, *Acc. Chem. Res.* **2011**, *44*, 111; b) A. Okano, K. Tsukamoto, S. Kosaka, H. Maeda, S. Oishi, T. Tanaka, N. Fujii, H. Ohno, *Chem.*

*Eur. J.* **2010**, *16*, 8410; c) M. Yoshida, Y. Morishita, M. Fujita, M. Ihara, *Tetrahedron Lett.* **2004**, *45*, 1861.

- [15] C. Fournier-Nguefack, P. Lhoste, D. Sinou, Synlett 1996, 553.
- [16] a) S. Inuki, Y. Yoshimitsu, S. Oishi, N. Fujii, H. Ohno, J. Org. Chem. 2010, 75, 3831; b) K. Tsutsumi, K. Fujimoto, T. Yabukami, T. Kawase, T. Morimoto, K. Kakiuchi, Eur. J. Org. Chem. 2004, 504.
- [17] B. M. Trost, E. J. McEachern, F. D. Toste, J. Am. Chem. Soc. 1998, 120, 12702.
- [18] Noyori transfer hydrogenation was used to install the propargylic stereocenter of all substrates (see Ref. [10]); Leighton allylation was used to install allyl side chains; see: K. Kubota, J. L. Leighton, Angew. Chem. 2003, 115, 976; Angew. Chem. Int. Ed. 2003, 42, 946.
- [19] H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, *Chem. Rev.* 1994, 94, 2483.
- [20] a) J. W. Burton, H. M. Sheldrake, C. Jamieson, S. I. Pascu, Org. Biomol. Chem. 2009, 7, 238; b) J. W. Burton, S. G. Smith, R. S. Paton, J. M. Goodman, J. Org. Chem. 2008, 73, 4053.
- [21] Z. Otwinowski, W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode Methods Enzymolgy (Eds.: C. W. Carter, R. M. Sweet), Academic Press, New York, 1997, p. 276.
- [22] A. Altomare, A. G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
- [23] a) P. W. Betteridge, J. R. Carruthers, R. I. Cooper, C. K. Prout, D. J. Watkin, *J. Appl. Crystallogr.* 2003, *36*, 1487; b) R. I. Cooper, A. L. Thompson, D. J. Watkin, *J. Appl. Crystallogr.* 2010, *43*, 1100.