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Abstract A synthesis of d5-VX adducted nonapeptide via solid-phase
approach has been developed. The d5-VX peptide could be used as the
isotope-labeled internal standard for LC–MS/MS detecting the BuChE-
OPNA biomarkers. The Kaiser test was utilized to ensure the right con-
nections of all of the amino acids. This method offers an access to the
synthesis and detection of other phosphorylated nonapeptides.

Key words d5-VX, solid-phase, nonapeptide, isotope label, BuChE-
OPNA adducts

Organophosphorus nerve agents (OPNAs) are typical
toxic chemical agents which could inhibit the enzymatic
activity of cholinesterase (ChE).1 The structures of three
commonly known OPNAs are shown in Figure 1. Because of
their high toxicity and illegal uses in terrorist attacks such
as sarin or its similar compounds attack in Tokyo, Matsu-
moto, and Syrian,2 OPNAs are still one type of the most po-
tential threats to human life and modern societies. There-
fore, an easy and reliable method for the retrospective de-
tection of OPNA exposure is of great demand. Several
methods have been developed for the detection of OPNA
exposure through mass spectrometry technology, such as
the direct analysis of OPNA hydrolysis products (e.g., O-al-
kyl methylphosphonic acids) in vivo3 and ‘biomarkers’ anal-
ysis of the OPNA combined proteins. Because of the short
lifetime (ca. 90% excretion in urinary within 2–3 d)4 of the
OPNA hydrolysis products existing in vivo, the adducted
biomarkers analysis method has become a more reliable
and efficient approach. Here, we report a d5-VX biomarker
via the solid-phase synthesis as the internal standard for
the mass spectrometric detection of OPNA exposure.

Figure 1  Structures of prominent organophosphorus nerve agents, 
their nonapeptides derived from the pepsin digestion of the BChE-
OPNA adducts, and the d5-VX nonapeptide

As a kind of the ChE, the butyrylcholine esterase (Bu-
ChE) which combined with OPNAs has a lifetime over two
weeks and mainly exists in blood.5 Due to the ability of
highly selective combining with serine-198 residue of Bu-
ChE by covalent bond and easy material availability, the Bu-
ChE-OPNA adducts were chosen to be the appropriate in
vivo biomarkers for the retrospective analysis for OPNA
post exposure.6 The biomarkers can be converted into the
phosphorylated nonapeptide7 compounds with similar
structures through the pepsin digestion. Currently, the de-
veloped method was based on high-performance liquid
chromatography with isotope dilution tandem mass spec-
trometric (LC–MS/MS) quantitative detection of the phos-
phorylated nonapeptide (Figure 1). Although the analysis of
the in vivo biomarker in blood sample plays an important
role in forensic investigations of the alleged use of nerve
agents currently, to the best of our knowledge, there is no
literature reporting the synthesis method of the isotope-la-
beled internal standard nonapeptides. Herein, we envi-
sioned to synthesize a brand new d5-VX nonapeptide (Fig-
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ure 1) which could be used as the isotope-labeled internal
standard of BuChE-OPNA biomarkers via LC–MS/MS detect-
ing.

The synthetic procedures of the d5-VX adducted nona-
peptide are presented in Scheme 1. As the starting material,
dimethyl methylphosphonate was treated with excess
equivalent sulfoxide chloride at 140 °C for six hours, afford-
ing methylphosphonic dichloride 28 in the 90% yield. Subse-
quent monoesterification with d6-ethanol in triethylamine
led to d5-ethyl methylphosphonic monocloridate 3 in 36%
yield.9 The chemical 3 must be purified by careful distilla-
tion under vacuum to prevent the undesired polymeriza-
tion. d5-Fmoc-serine(O-ethyl methylphosphonate) benzyl
ester (4)10 was obtained in the 60% yield by reacting with
the protected serine 6 in the presence of 4-dimethylamino-
pyridine (DMAP) and triethylamine. Four equivalents of the
intermediate 3 were used during the esterification because
of the low reactivity. Finally, target molecule 5, which is the
important precursor before solid-phase synthesis, was
formed by the Pd/C hydrogenation of 410 with 80% yield.

The target compound 7 was synthesized via the solid-
phase peptide synthesis on a Fmoc-Ser (t-Bu)-Wang resin.
Compared with the method reported before,10 it takes less
time for the resin elution to obtain the target peptide and
the method could be used in practical synthesis. The syn-
thesis was done manually from C-terminal to N-terminal to
enhance the coupling efficiency. The peptides were synthe-
sized using Fmoc chemistry and HBTU/DIPEA activation.
Piperidine/DMF (25%) was used to deprotect the Fmoc
group. The rest of the amino acid residues were induced
onto the resin in sequence by HBTU/DIPEA activation. The
Kaiser test was used to ensure the connection with the cor-
rect amino acid residue upon every step. After this point,
cleavage from the resin was achieved by treating the pep-
tide resin with the solution containing 68.5% TFA, 10% 1,2-

ethanedithiol, 10% thioanisole, 5% phenol, 3.5% double-dis-
tilled water, and 1% triisopropylsilane for three hours at
room temperature.

The crude product of the phosphorylated peptide,
which could be precipitated by anhydrous diethyl ether,
was further purified by reversed-phase HPLC on a C18 col-
umn (0.05% TFA–water–2% MeCN). Peptide purity was >90%
by analysis of HPLC-DAD. It was also verified by NMR spec-
troscopy and high-resolution mass spectrometry. HRMS
(ESI+) data showed the molecular weight 907.3968
(C36H51D5PN9O16), and the 1H NMR (599.7 MHz, D2O) data
were shown as follows: δ =1.28 (t, J = 7.4 Hz, 9 H), 1.47 (d,
2JH–C–P = 17.6 Hz, 3 H), 1.80–2.11 (m, 6 H), 2.37 (t, J = 7.1 Hz,
2 H), 3.12 (m, 3 H), 3.75–3.88 (m, 6 H), 4.20–4.35 (m, 9 H),
4.55 (s, 1 H), 7.18 (d, J = 7.2 Hz, 2 H), 7.26–7.31 (m, 3 H).

Figure 2  LC-HRMS of the d5-VX adducted nonapeptide.

Scheme 1  Synthesis route of d5-VX nonapeptide. Reagents and condi-
tions: (a) SOCl2 (2.5 equiv), 140 °C, 90% yield; (b) C2D5OD (1 eqiuv), 
Et3N, benzene, 36% yield; (c) reagent 6 (0.25 equiv), Et3N, DMAP, ben-
zene, 0 °C, 75% yield; (d) H2, 10% Pd/C, THF–MeOH, 80% yield; (e) man-
ual solid-phase peptide synthesis procedure
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The fragmentation of the d5-VX adducted nonapeptide
(Figure 2 and Figure 3) was observed by precursor-to-prod-
uct ion transitions monitored using multiple reaction mon-
itoring (MRM). The protonated peptide-adduct fragments
showed losses of the adducted agent, the C-terminal serine
and the C-terminal alanine. It showed the same fragmenta-
tion pattern as the VX-BuChE nonapeptide.7c As shown in
the Figure 3, the precursor ion for the chemical 7 (m/z =
907.3968) exhibited product ions derived from a loss of
129.0604 Da which corresponds to the loss of the d5-VX
moiety (m/z = 778.3364); further losses of the terminal ser-
ine (m/z = 673.2932), and the alanine (m/z = 602.2554) resi-
due were also exhibited.

Figure 3  Product ion scan of protonated d5-VX –adducted nonapep-
tide

In summary, a synthesis approach of d5-VX adducted
nonapeptide via solid phase has been developed.11 The
MS/MS fracture manner of the d5-VX nonapeptide is the
same as that of VX-BuChE nonapeptide.7c So the brand new
compound d5-VX peptide could be used as the isotope-la-
beled internal standard for LC–MS/MS-detecting BuChE-
OPNA adducts. Additionally, the synthesis material d6-Etha-
nol used in the procedure has a much more easier availabil-
ity and cheaper price than the deuterated amino acid used
in the former literature.5 This method may also find appli-
cations in the synthesis and detection of other phosphory-
lated nonapeptides.
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