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Abstract
Fluorescein (1), a known fluorescent tracer in microscopy with high photophysical properties, was esterified to have fluo-
rescein ethyl ester (2) and O-ethyl-fluorescein ethyl ester (3) in excellent yields. All of them were investigated for the pho-
tophysical and electrochemical properties as potential organic semiconductor materials. Absorptions and emission spectra 
were taken in various solvents, compound 2 showed emission maxima at λmax = 545 and compound 3 showed λmax = 550 nm. 
Optical band gap energy (Eg) was calculated for 1–3 and the values were found in between 2.34 – 2.39 eV. Possibility of 
shifting emission maxima was studied in various pH (5–9) buffers, and finally the thermal stability was examined using dif-
ferential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Increasing of conjugation system of 2 and 3 
were studied by HOMO and LUMO distributions of 1–3. Experimental results showed that compounds 2 and 3 have excellent 
photophysical and electrochemical properties hence can be used as excellent organic semiconductor materials.
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Introduction

Photo- and electroactive organic compounds, bearing high 
π-conjugate structures and/or fused aromatic system, have 
gained great attraction in most scientific, academic, and 
industrial societies due to their excellent potential applica-
tion in full-color-flat-panel displays and solid-state light 
source [1]. In recent years, organic semiconductor devices 
(e.g. organic solar cells, OSCs; organic field effects transis-
tors, OFETs; and organic light-emitting diodes, OLEDs etc.) 

made from organic compounds, got enormous achievements 
attributed to their comparatively low energy consumption, 
high efficiency and thermal stability. Their realistic color 
tunability can be further improved through chemical struc-
tural modification of those organic compounds. Organic 
molecules could also be used to produce thin, light, transpar-
ent, flexible, and efficient devices [2]. For example, OLED 
screens are mainly used in digital devices such as advanced 
television systems, desktop and laptop computer monitors, 
portable small sized systems such as smartphones, media 
players, digital cameras, and portable gaming consoles 
etc. However, some important characteristics should be 
considered before using an organic molecule in an organic 
semiconductor device. Figure 1 shows the electron distri-
bution on the highest occupied molecular orbital (HOMO) 
and lowest unoccupied molecular orbital (LUMO) level of 
organic semiconductor [3], the energy difference between 
HOMO and LUMO is defined as energy gap. The energy gap 
determines the minimum energy that can be absorbed by the 
molecules. The ionization potential is defined as the mini-
mum energy required when taking an electron from HOMO 
to the vacuum, whereas electronic affinity is defined as the 
minimum energy released when supplying an electron from 
the vacuum level to LUMO. This energy gap is also known 
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as optical band gap energy (Eg). If Eg is larger than 4 eV 
for a molecule, it acts as an insulator, and if it is lower than 
3 eV, it acts as semiconductor, therefore, Eg plays a vital role 
in selecting an organic molecule as organic semiconductor 
material [4].

Fluorescein (1) is a synthetic organic molecule with open/
cyclic form (Fig. 2), it is powder with dark orange/red in 
color, soluble in water as well as in alcohol. It was first syn-
thesized in 1871 [5]. It is commonly used as a fluorescent 
tracer in microscopy, a type of dye laser, and in forensics 
and serology to detect latent blood stains [6]. Compound 
1 has a pKa of 6.4, and its ionization equilibrium leads to 
pH-dependent absorption and emission over the range of 5 
to 9. In addition, the fluorescence lifetimes of the protonated 
and deprotonated forms of compound 1 are approximately 
3 and 4 ns, which allows for pH determination through non-
intensity-based measurements. The lifetimes can be recov-
ered using time-correlated single photon counting or phase-
modulation fluorimeter. Compound 1 has an isosbestic point 
(equal absorption for all pH values) at 460 nm [7].

Due to the high photophysical properties of compound 
1 (λabs = 494 and λemission ~ 512 nm in water), it has been 
functionalized with an isothiocyanate (-N = C = S) group 
(FITC, Chart 1) and the formed product has been studied 
for their physicochemical, photophysical properties before 
its application in biological implications as FITC-conjugates 
[8–22]. Compound 1 has also been functionalized on the top 
ring with a carboxylic acid group (FCA) [23] for the prepa-
ration of peptide/glycosides conjugates [24–29]. Hydroxyl 
groups of 1 have also been functionalized (FCA-OR) [30] 
for various purposes [31–42], such as artificial photosyn-
thesis and solar energy conversion [33]. A detailed search 
gives us the information that fluorescein derivatives were 
derived from cyclic form (Fig. 2, cyclic form) rather than 
open form of 1 (Fig. 2, open form) and have been studied 
for the detection of membrane-bound DNA [43], detection 
of damaged nucleic acids [44], measurement of mammalian 
phosphoinositide-specific phospholipase C activity [45] and 
proteolytic activities [46].

Early this year, Shumin Feng and co-workers reported 
that alkyl protected fluorescein enhanced its fluorescence 
properties [47]. In addition to this article, a review on 2017, 
done by Elisabete Oliveria and co-others after they had 
reviewed 265 articles, concluded that derivatization of fluo-
rescein (hydroxyl protection, esterification, hydrazone for-
mation as well as metal complexes formation) also enhanced 
the fluorescence properties a lot [48]. Since fewer conju-
gated π-bonds give lower λmax (towards the UV) while more 
conjugated π-bonds give higher λmax (towards the visible), 
we assumed that, it might be due to the free acid group of 
1, which might have been responsible for cyclic formation 
of 1. It should be noted that if cyclic formation occurs in 
1, the conjugated π-bonds became less, resulting in lower 
λmax, and if it stays in open form, the conjugated π-bonds 
get more, resulting in higher λmax. Based on this hypothesis, 
we therefore, designed and synthesized fluorescein ethyl 
ester (2) and ethyl protected fluorescein ethyl ester (3) and 
compared the photophysical properties with 1, and distri-
butions of HOMO and LUMO of 1–3 were studied to get 
more theoretical information, for further uses as potential 
organic semiconductor materials candidates. A resonance 
structure and conjugated π-bonds in those compounds (1–3) 
are shown below (Scheme 1).

Experimental Section

General

Chemicals and solvents were commercial reagent grade 
and were used without further purifications. Melting points 
were determined on a Barnstead electrothermal digital 
melting point apparatus model IA9100, BIBBY scientific 

Fig. 1  Electron distribution on the HOMO and LUMO level of 
Organic semiconductor [3]
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Scheme 1  Resonance structures and conjugated π-bonds in 1–3 
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limited, Stone, Staffordshire, ST15 0SA, UK. IR spectra 
were recorded on a Jasco FT/IR-6600 spectrometer, Japan. 
NMR spectra were taken using an Agilent Technologies 
400 MHz premium shielded NMR spectrometry, CA, USA. 
Electrospray ionization (ESI) mass spectrometry (MS) 
experiments were performed using an Agilent 6320 ion 
trap mass spectrometer fitted with an electrospray ioniza-
tion (ESI) ion source (Agilent Technologies, Palo Alto, CA, 
USA) with direct injection. UV–vis spectra were measured 
using a Genesys G10S UV–Vis spectrophotometer (Thermo 
scientific, CA, USA). For the compounds studied, the meas-
urements were performed using various solvent and quartz 
cells with a path length of 10.00 mm. The UV–vis spectra 
in solution were measured over the range of 200–700 nm. 
Based on each spectrum, the optical band gap was calculated 
according to Equation (i), which represents the optical band 
gap expressed in eV, and λae denotes the absorption edge 
wavelength expressed in nm [4, 49–51]. Fluorescence spec-
tra were recorded on JASCO spectrofluorometer FP-8200 
(Japan). Thermogravimetric analysis (TGA) spectra were 
recorded on a Perkin Elmer model Pyris 1 (Perkin Elmer 
Life and Analytical Sciences, Shelton, CT, USA). Differen-
tial scanning calorimetry (DSC) spectra were recorded on a 
Perkin Elmer model 4000 (PerkinElmer, Inc. Waltham, MA, 
USA). The geometrical, distribution of HOMO and LUMO, 
energy levels were performed using the Gaussian 16 pro-
gram package using Becke’s three-parameter hybrid func-
tional with Lee–Yang–Parr correlation functions (B3LYP) 
and the 6-31G(d) atomic basis set.

Synthesis

Synthesis of Fluorescein Ethyl Ester (2)

Fluorescein (1, 3.32 g, 0.01 mol) was dissolved in 50 mL of 
absolute ethanol, a catalytic amount of concentrate sulfuric 
acid was added and the mixture was refluxed for overnight. 

(1)Eg(eV) = h × f = h × c∕�a.e ≈ 1240∕�a.e(nm)

Solvent was evaporated under vacuum, ethyl acetate was 
added and subsequently washed with water, 5%  NaHCO3, 
brine and dried over anhydrous  Na2SO4, filtered, and the 
solvent was evaporated to obtain compound 2 (3.35 g, 93%) 
as white powder. Mp. 241–242 °C [52–54].

Synthesis of Ethoxyfluorescein Ethyl Ester (3)

Fluorescein (1, 30.00 g, 90.000 mmol) was suspended in 
DMF (30 mL) in a 500 mL round bottom flask equipped 
with magnetic stirrer.  K2CO3 (2.2 equiv.) was added to the 
reaction mixture followed by the addition of ethyl iodide 
(2.2 equiv. g ~ 16 mL, d = 1.94). The reaction mixture was 
stirred at room temperature until the starting materials were 
fully consumed (approximately for 24 h). The reaction was 
diluted with 500 mL water and the pale-yellow color solid 
precipitation was collected by filtration followed by washing 
it with excess amount of water (100 × 3), afforded analytical 
pure 3 (26.00 g, 82%).  Rf = 0.5 (Ethyl acetate: n-hexane = 3: 
7). Mp. 151–152 °C [54].

Results and Discussion

Esterification of fluorescein (1) was carried out in the pres-
ence of catalytic amount of concentrate sulfuric acid in etha-
nol to afford fluorescein ethyl ester (2) in an excellent yield 
(93%). O-Ethyl fluorescein ethyl ester (3) was also prepared 
from fluorescein (1) with ethyl iodide in the presence of 
potassium carbonate  (K2CO3) in DMF at room temperature 
for 24 h in very good yield (82%) (Scheme 2).

Photophysical properties of synthesized fluorescein esters 
were evaluated to see the possibility of using these materials 
as organic semiconductor materials (i.e. OLEDs/OSCs). Ini-
tially, absorbance and fluorescence spectra were taken under 
various solvents in constant concentration (2.77 ×  10–5 M for 
absorbance; 6.94 ×  10–7 M for fluorescence) at room tem-
perature to see which solvent would give higher absorbance  
and emission. Figure 3A, C and E show the absorption  
spectra of compounds 1, 2 and 3 in ethanol, methanol, water, 

Scheme 2  Synthesis of fluorescein esters 2 and 3 
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Fig. 3  Absorbance and emission spectra of compounds 1–3 in different solvents with λmax (nm), A absorbance of compound 1, B emission of 
compound 1, C absorbance of compound 2, D emission of compound 2, E absorbance of compound 3, F emission of compound 3 
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tetrahydrofuran, chloroform, acetonitrile, ethyl acetate and 
acetone, respectively. Figure 3B, D and F display/dem-
onstrate the fluorescence spectra of compounds 1, 2 and 3  
in the same solvents.

We found that polarity of the solvents playeds a cru-
cial role in taking absorption/fluorescence spectra for 
compound 1–3. Since compound 1 possesses a free acid 
group, it was not properly dissolved in all the solvents 
studied and therefore it didn’t show excellent absorption. 
But in case of compounds 2 and 3, absorption/emission 
spectra were perfect as expected. Bathochromic shift 
was observed in absorption/emission spectra depend-
ing on change in polarity of the solvent. According to 
electronic transition, electrons are promoted from their 
ground state to an excited state when an atom or mol-
ecule absorbs energy. In a molecule, the atoms can rotate 
and vibrate with respect to each other. These vibrations 
and rotations also have discrete energy levels, which can 
be considered as being packed on top of each electronic 
level. The electronic transitions involved in the ultravio-
let and visible regions of these compounds [55, 56]. As  
shown in the Fig.  3A, C and E, all three compounds  
gave n → π* / π → π* transitions. Emission spectra of 1–3 

gave significant broad peaks at 480–600 nm because of 
the π* → n / π* → π transitions. Photophysical proper-
ties of 1–3 in different solvents are illustrated in Table 1 
in details. Molar absorptivity was calculated for 1–3 in 
the solvent evaluated. As shown in Table 1, compound 3 
displayed a higher molar absorptivity than compound 2, 
which displayed a higher molar absorptivity than com-
pound 1 in most cases.

Photographs of 1–3 were taken in standard methanolic 
solution under naked eye (Fig. 4A), 254 nm (Fig. 4B) 
and 365 nm (Fig. 4C), respectively. Compounds 1–3 hav-
ing high luminescence in naked eyes. The photographs 
clearly indicate that compounds 1–3 having photophysical 
properties.

Emission spectra of compounds 1–3 at different pH 
(5–9) in THF were also taken to observe the stability of 
emission maxima and to clarify the correlation among the 
fluorescence behavior of 1–3 (Fig. 5). It was found that 
the emission maxima of 1 is lower in all the buffer solu-
tions than in normal THF solutions. Emission maxima was 
obtained at 530 nm for normal THF solution (Fig. 5A) 
but shifted 4–7 nm (523 – 526 nm) for different pH buffer 
solutions (Fig.  5B). In case of compound 2 (545  nm) 

Table 1  Photophysical properties of compounds 1–3 in respective solvents

Solvent 1 2 3

λabs (nm) 
in
3.10 ×  10–5 M

λFL (nm) 
in
7.53 ×  10–7 M

ε ×  104

(L  mol−1  cm−1)
λabs (nm) 
in 
2.77 ×  10–5

M

λFL (nm) 
in
6.94 ×  10–7 M

ε ×  104

(L  mol−1  cm−1)
λabs (nm) 
in
2.57 ×  10−5 M

λFL (nm) 
in
6.44 ×  10−7 M

ε ×  104

(L  mol−1  cm−1)

Ethanol 500 523 1.8 469, 508 527 0.8 460, 490 518, 547 2.4
Methanol 480 512 0.6 464, 501 501 0.6 457, 487 515 2.3
Water 486 510 1.7 465, 496 516 0.8 457, 480 515 2.3
THF 510 530 0.04 460, 520 545 0.4 460, 490 522, 550 2.1
CHCl3 462 520 0.02 462, 490 515 0.7 460, 490 520, 550 1.9
ACN 509 540 2.5 477, 517 541 0.9 456, 489 524, 546 1.7
EtOAc 460 520 0.02 460, 490 534 0.3 457, 487 520 548 1.7
Acetone 509 540 0.3 481, 519 545 1.1 455, 485 521, 549 1.9

Fig. 4  Luminescence properties of compounds 1–3 in MeOH: A under normal light, B under a 254 nm light, C under a 365 nm light
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(Fig. 5C), it has also shifted 14–11 nm, becoming 531-
534 nm (Fig. 5D). Fluorescence spectra were obtained 
with little differences for compound 3 in varying pH buff-
ers. It should be noted that compound 3 showed 522 nm 
and a shoulder at 550 nm (Fig. 5E), but in case of dif-
ferent pH buffers, normalized wavelength at 532–534 nm 
was observed (Fig. 5F). Interestingly, all three compounds 
gave maximum emission at pH = 7. It can be concluded 
that pH has no/negligible effect on emission maxima of 
compounds 1–3.

Molar absorptivity (ε), wavelengths at the maxima 
(λmax.), absorption edge wavelengths (λedge) and opti-
cal band gaps (Eoptical band gap eV) were calculated using 
UV–Vis spectra for compounds 1–3 in ethanol, and 
were depicted in Fig. 6. The values are presented in the 
Table 2.

As expected, the UV–Vis spectra of 1–3 showed peak 
maxima at 498 nm (optical band gap ~ 2.36 eV), 508 nm 
(2.34 eV), and 458 & 488 nm (2.37 – 2.39 eV), respec-
tively (Fig. 6 & Table 2). The obtained optical band gap 
values are consistent with standard organic semiconductor 

materials, thus compounds 1, 2 and 3 are suitable for 
organic semiconductors materials.

Differential scanning calorimetry  (DSC) was taken 
under nitrogen atmosphere for compounds 1–3 to study 
their thermodynamic stability (Fig.  7). As shown in 
Fig. 6, from the DSC curve, compound 1 has a glass tran-
sition (Tg) peak at 77 ℃ without exhibiting other phase 
transitions, whereas compound 2 gave a glass transition 
peak at 102 ℃ and underwent crystallization (Tc) at 151 
℃. On the other hand, compound 3 gave all three phases 
transition with glass transition (Tg) peak at 53 ℃, crys-
tallization (Tc) peak at 140 ℃ and melting (Tm) peak at 
153 ℃. From the data analysis of DSC, it turneds out 
that, compound 2 has more thermodynamic stability than 
compounds 1 and 3.

Thermogravimetric analysis (TGA) was also taken under 
nitrogen atmosphere for compounds 1–3 to study their ther-
modynamic stability (Fig. 8). It can be seen from the TGA 
curve in Fig. 7 that the compounds 1–3 have thermal decom-
position temperature (5% weight loss temperature) at 70, 
144 and 245 ℃, respectively. From the DSC and TGA it can 
be concluded that compounds 2 and 3 have more thermal 
stability than 1, thus can better serve as excellent candidates 
of organic semiconductor materials which are necessary for 
light emitting devices.

Molecular modeling is an iterative process of analyzing 
and predicting compound with desired properties. In order 
to have a better understanding of the molecular features, 
fluorescein derivatives were optimized and calculated by 
Gaussian 16 program package. The stability of compound 
1 is important for this scenario because we are focusing on 
the development of stable fluorescein compounds. Hence, 
Bond Dissociation Energy (BDE), a crucial indicator to 
evaluate the stability of the compound, has been computed. 
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Fig. 6  UV–Vis spectra recorded in ethanol, at room temperature for compounds 1–3. A Molar absorptivity vs wavelengths maxima of 1–3 in 
ethanol, B Molar absorptivity vs optical band gaps of 1–3 in ethanol

Table 2  Values of the molar absorptivites and wavelengths at the 
maxima, absorption edge wavelengths and experimental optical band 
gaps for compounds 1–3 

Entry ε ×  103 
L  mol−1  cm−1

λmax (nm) λedge (nm) Eoptical band gap eV

1 18.2 498 527 2.36
2 7.57 508 531 2.34
3 23.9 458 521

517
2.37
2.3918.7 488
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The calculated BDE value of “C-O” bond in the lactone of 
cyclic 1 is 52.06 kcal/mol, which is much lower than the 
common “C-O” bond (109.3 kcal/mol), means the cyclic 
state is readily to be formed [57]. Meanwhile, the energy of 

singlet  (S1) and triplet  (T1) states of cyclic 1 are calculated 
to be 94.24 kcal/mol, 86.96 kcal/mol respectively, all of 
which are higher than the value of “C-O” BDE, indicating 
that the cyclic 1 is also not stable and can easily undergo 

Fig. 7  Differential scanning 
calorimetry (DSC) of com-
pounds 1–3 
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photodegradation to form the open 1 as illustrated in 
Fig. 9A. Additionally, distributions of HOMO and LUMO 
of 1 also apparently show that open form gets more con-
jugated systems because the HOMO and LUMO of open 
1 are located mainly on the xanthene system while cyclic 
1 are separated located on xanthene and isobenzofuran 

systems, respectively, as depicted in Fig. 9B, which is con-
sistent with optical properties discussed above. Therefore, 
on the one hand, it is necessary to prevent the cyclic ring 
formation by protecting carboxyl group with inert substitu-
ents, while on the other hand, steric hindrance also has to 
be taken into consideration that to avoid the carboxylate to 

BDE (C-O)=ΔfH0 (A·+B·) -ΔfH0 (AB)

52.06 kcal/mol

cyclic 1-LUMO

open 1-HOMO

cyclic 1-HOMO

open 1-LUMO

cyclic 1

A

B

open 1

E (S1) 94.24 kcal/mol

E (T1) 82.96 kcal/mol

Fig. 9  A Stability analysis of cyclic and open state compound 1, B Optimized structure and distribution of HOMO and LUMO of cyclic and 
open state compound 1 
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be attacked by nucleophile. Additionally, the acidic phe-
nol group on xanthene system is another unstable factor 
because it is easy to lose proton under base conditions. 
Calculated Mulliken charge value of the proton is 0.416 

a.u., and the value of BDE is 79.11 kcal/mol, even close to 
the phenol BDE [58]. All of the data indicate that protec-
tion of phenol group is also important. Hence, we used 
large steric hindrance group, ethyl groups, to stabilize and 
protect the active compound 1.

Likewise, HOMO and LUMO distributions of compound 
2 and 3 are all dispersed on the xanthene rings, which are 
significant proofs of the increasing conjugated system as 
summarized in Table 3. All of the data we calculated were 
well associated with the experimental ones, which are direct 
evidences to verify our ideas, illustrating our molecular 
design strategy is on the right way.

Optimized structure and distribution of HOMO and 
LUMO of compounds 2 and 3 is depicted in Fig. 10.

Table 3  Values of the calculated data of compound 1–3 

Entry HOMO (eV) LUMO (eV) S1 (eV) T1 (eV)

1open -5.53 -2.36 2.65 1.58
1cyclic -6.03 -1.29 4.09 3.60
2 -5.52 -2.34 2.66 1.59
3 -5.81 -2.76 2.53 1.50

Fig. 10  Optimized structure and distribution of HOMO and LUMO of compounds 2 and 3 
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Conclusion

Fluorescein esters (2 and 3) only have open form rather 
than cyclic/open form of fluorescein (1), and therefore 
having more conjugated π-bonds, contributing to giving 
higher λmax in most of the organic solvents studied. Fluo-
rescein (1) and esters (2 and 3) are having high lumines-
cence in naked eyes. Synthesized esters (2 and 3) are also 
stable in different pH (5–9), which leads to no significant 
difference in λmax values. Both 2 and 3 have optical band 
gap (Eg) in between 2.34 – 2.39 eV. Fluorescein esters (2) 
have more thermodynamic stability than compounds 1 and 
3. Considering the above-mentioned properties, it can be 
concluded that modified fluorescein esters 2 and 3 can be 
excellent organic semiconductor materials. It should be 
noted that since fluorescein esters 2 and 3 have neither 
cyclic form nor free acid group, and have displayed excel-
lent photophysical properties in all the solvent evaluated 
as well as no changes in emission spectra in different pH, 
these compounds can be used as fluorescent tracer and   
for the synthesis of conjugates. HOMO and LUMO distributions  
of compounds 1–3 significantly prove the increasing con-
jugated system of 2 and 3. Further uses of these materials 
in devices will be studied and the results will be explored 
in due courses.
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