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Abstract: A new modification of the Friedländer reaction is de-
scribed and the new byproduct obtained from the reaction of o-ami-
nonitriles and ketones was found to be 2,3-dihydroquinazolin-
4(1H)-one. The mechanism probably involved the formation of an
intermediate oxazine, via the Pinner reaction and its transformation
into new products via the Dimroth rearrangement.
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Aromatic o-aminonitriles are versatile synthons1 for the
synthesis of quinolines,2 pyrimidines,3 quinazolines,4

quinazolinones,5 quinazolinediones,6 and other fused ni-
trogen-containing heterocycles. The classical Friedländer
annulation involving the cyclocondensation of an o-ami-
nobenzonitrile with a carbonyl compound possessing a re-
active a-methylene group is a straightforward method for
the synthesis of quinoline skeleton compounds.7

Tacrine (9-amino-1,2,3,4-tetrahydroacridine, commer-
cially named THA),8 which is currently one of the major
approved drugs for treatment of mild to moderate Alz-
heimer’s disease, is obtained by Friedländer-type cyclocon-
densation of o-aminobenzonitrile with cyclohexanone.
Because of the serious toxicity of THA, a large number of
its derivatives and analogues have been synthesized
through this kind of reaction.9 Recently, during our syn-
thetic study of THA derivatives, a new conversion was
found that proceeded along with the normal Friedländer
annulation. The structure of the new product, which was
obtained from the reaction of o-aminonitriles and cyclo-
hexanone under refluxing in the presence of anhydrous
ZnCl2, was assigned as spiropyrimidinones (Scheme 1).

A subsequent study of the reaction of aromatic o-ami-
nobenzonitriles with ketones in our laboratory gave simi-
lar results. Thus, additional experiments based on both the
mechanism of this new conversion and the structures of
products were carried out. Herein, we report the results of
our findings.

3-Amino-1-phenyl-1H-benzo[f]chromene-2-arbonitriles
1, the starting materials for this work, were conveniently
synthesized from a three-component reaction using com-
mercial b-napathanol, aldehyde and malononitrile using a
standard methodology reported by Sakurai.10 Cyclization

of 1 with cyclohexanone in DMF in the presence of anhy-
drous ZnCl2 under reflux gave two different compounds.
One was the expected quinoline 2 (tacrine analogues) ob-
tained from the normal Friedländer condensation, and the
other was the ‘unexpected’ spiro compound 4 obtained
from the new annulation. Compounds 2 gave satisfactory
analytical and spectroscopic data in agreement with their
postulated structures.11 As for the new conversion prod-
ucts, their structures were assigned to be spiropyrimidino-
ne derivatives 4, not oxazines 3. High resolution mass
spectrometry of 4a suggested an elemental composition of
C26H23N3O4 for its molecular ion and its IR spectrum
showed two strong bands in the range of 3186–3239 cm–1

due to NH absorptions, and one strong band at 1659 cm–1

due to C=O absorption. In the 13C NMR spectrum, the sig-
nals of two quaternary carbons, C2 and C4, resonated at
d = 165.5 and 67.1 ppm, respectively. And their chemical
shifts were coincident with those of similar compounds in
the literature (Figure 1).12
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Figure 1 13C NMR spectroscopic data of known compounds

To unambiguously confirm the structure of compound 4a,
yellow single crystals of 4a were grown from a solution of
tetrahydrofuran by slow evaporation at room temperature
and its X-ray diffraction data were collected.13 The molec-
ular structure of 4a (Figure 2) further confirmed the spiro-
pyrimidinone structure. Two molecules of 4a were linked
by two N(2)–H(2)…O(6) and N(5)–H(5) …O(2) hydro-
gen bonds, together with two tetrahydrofuran molecules
to form a triclinic crystal structure. A similar structure was
also found for compound 4b (Figure 3).13

Figure 2 Crystal structure of compound 4a
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Figure 3 Crystal structure of compound 4b

Table 1 Reaction of o-Aminobenzonitriles with Ketonesa

Entry R1 R2 R3, R4 Time 
(h)

Yield (%)b 
of 7

Yield (%)b 
of 8

a H Cl R3, R4 = (CH2)4 1.5 17 69

b H NO2 R3, R4 = (CH2)3 1 15 71

c H NO2 R3 = Me
R4 = Et

1 12 75

d H NO2 R3 = Me
R4 = Me2CH

1 trace 76

e Cl H R3 = Me
R4 = Et

1.5 trace 70

f Cl H R3 = Me
R4 = Me2CH

1.5 trace 65

g Cl H R3 = Me, R4 = 4-
MeOC6H4

1.5 trace 66

a All reactions were carried out using 5 (6 mmol), 6 (4 mL), ZnCl2 (6 
mmol), and DMF (8 mL).
b Isolated yield.
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the new conversion route. The results also showed that o-
aminobenzonitriles 5 having strong electron-withdrawing
substituents on the aromatic ring were cyclized with ke-
tones to give the corresponding quinolines 7 in lower
yields but quinazolinones 8 in better yields than other o-
aminobenzonitriles. This probably suggests that electron-
withdrawing groups on the aromatic ring facilitate the
new conversion. In addition, different ketones could be
employed but had not much influence on the yield of
product 8.

On the basis of these observations, a possible mechanism
was proposed (Scheme 3). The formation of pyridine ring
compound IV takes place via normal Friedländer reaction
(A), while the new modification may proceed via a differ-
ent route (B) after the key intermediate I is formed by ad-
dition of the amino group of the o-aminonitrile onto the
carbonyl of the cyclohexanone. The hydroxyl group of in-
termediate I then attacks the nitrile group (i.e. Pinner
reaction14) to afford a benzoxazine II, which subsequently
rearranges to give the new conversion product III (Dim-
roth rearrangement15). We called this new conversion as
the PDF pathway.16

In summary, a new modification of Friedländer annula-
tion for the cyclization of o-aminonitriles with ketones in
the presence of ZnCl2 was described, and the structures of
the conversion products were confirmed as quinazolinone
derivatives. Further studies to extend the scope of this new
conversion and to fully understand its mechanism are in
progress.
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