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Fingolimod (1)1 was developed as an analogue of the natural
product myriocin 2, a potent inhibitor of palmitoyltransferase

that demonstrates immunosuppressant activity (Figure 1). Com-
pound 1 has displayed clinical efficacy in transplantation2 and
remitting relapsing multiple sclerosis3 trials and is now marketed
in the United States for the latter indication. Administration of 1
leads to the sequestration of lymphocytes in secondary lymphoid
organs and consequently to a reduction of lymphocyte counts in
the peripheral blood. The unique pharmacological profile of 1 is
not due to any related myriocin-like activity. Indeed, 1 is
enantioselectively phosphorylated in vivo4,5 to give phosphate
3, a potent agonist of four of the five G-protein-coupled receptors
(S1P1 and S1P3�5) for sphingosine 1-phosphate (S1P) 4. S1P
has several physiological roles, but only agonism of S1P1 is
required to induce egress of T cells from lymphoid organs.6,7 On
the other hand, it has been demonstrated using selective tool
compounds8,9 or transgenic mice10 that the unwanted cardio-
vascular effects seen with 1 are related to its agonism of the S1P3
receptor, although selectivity against S1P3 may not preclude
bradycardia.11

Understanding of the unique mode of action of 1 has triggered
intensive effort toward the discovery of S1P1 agonists with an
increased degree of selectivity versus S1P3,

12,13 either as pro-
drugs such as KRP-20314 5 or as direct agonists such as ACT-
12880015 6 (Figure 2). Zwitterions such as 716 or propionic acids

such as 817 are likely to interact with S1P1 in a similar fashion
to S1P itself.18,19 Agonist 8 was of particular interest to us

Figure 1. Structures of fingolimod 1 and its phosphate 3, myriocin 2,
and S1P 4.
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ABSTRACT: Gilenya (fingolimod, FTY720) was recently
approved by the U.S. FDA for the treatment of patients with
remitting relapsing multiple sclerosis (RRMS). It is a potent
agonist of four of the five sphingosine 1-phosphate (S1P)
G-protein-coupled receptors (S1P1 and S1P3�5). It has been
postulated that fingolimod's efficacy is due to S1P1 agonism, while its cardiovascular side effects (transient bradycardia and
hypertension) are due to S1P3 agonism. We have discovered a series of selective S1P1 agonists, which includes 3-[6-(5-{3-cyano-
4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1H)-isoquinolinyl]propanoate, 20, a potent, S1P3-
sparing, orally active S1P1 agonist. Compound 20 is as efficacious as fingolimod in a collagen-induced arthritis model and shows
excellent pharmacokinetic properties preclinically. Importantly, the selectivity of 20 against S1P3 is responsible for an absence of
cardiovascular signal in telemetered rats, even at high dose levels.
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because biaryl oxadiazoles 920 and 1021 (Figure 3) are in clinical
trials (not as S1P1 agonists), suggesting good developability
properties. Our strategy to develop novel orally active S1P1
selective agonists focused on drugability:22 Several reports23,24

have highlighted that the attrition rate of oral compounds in
clinical trials can be correlated with compound properties such as
(high) molecular weight (MW),25 (high) lipophilicity (cLogP,
LogD), (low) polar surface area (PSA), or the number of rotable
bounds.26 Moreover, the odds of toxicity are minimal when
compounds have cLogP < 3 and PSA > 75 Å2.27 We focused on
these two parameters, in particular on lipophilicity, as the
pharmacophore of S1P precludes the discovery of compounds
with a MW < 350. Inspired by the structures of S1P agonists
7 and 8, we pursued the design and synthesis of constrained
triaryl scaffolds incorporating a zwitterionic moiety. The two
charged residues should increase the PSA and hydrophilicity
(Scheme 1).28 The substitution pattern on the distal ring was
influenced by the reported structure�activity relationship
(SAR),17 as it was likely to be optimal for in vitro potency.

Among several bicyclic rings/bqn containing a basic nitrogen
that we explored, the C-5 substituted tetrahydroisoquinoline
(THIQ) appeared most promising and was used for further
optimization. A representative synthesis of these agonists is

depicted in Scheme 2: The R,β-unsaturated ketone 13 was
accessed via reaction of an enamine derived from ketone 12.
Its palladium-mediated oxidation led to the corresponding
phenol, which was transformed into 14 via triflation followed
by cyanation. The addition of hydroxylamine to 14 and reaction
of the corresponding hydroxy-amidine with 15 followed by
dehydration of the noncyclized intermediate gave oxadiazole
16. Deprotection in acidic media of the secondary amine and
Michael addition to ethyl acrylate followed by saponification led
to agonist 20.

The key SAR findings are summarized in Table 1 and show
(1) the need for a meta-substituent on the distal aromatic ring
(cf. 18 vs 19 and 20); lipophilic functionalities (19) and
substituents with some polarity (20) are tolerated in this posi-
tion, but the nitrile group proved optimal in terms of potency,
selectivity, and lipophilicity (cf. 20 vs 19). (2) The isopropoxy
para-substituent on this ring was optimal for potency (cf. 21 vs
20)29 and S1P3 selectivity (cf. 22, 23 vs 20). (3) Replacement of
the phenyl ring with electron-poor aromatic leads to a significant
loss of potency (24 and 19 as representative examples).30 (4)
Introduction of a C-4 substituent on the THIQ aromatic ring is
beneficial for S1P3 selectivity without compromising S1P1 activ-
ity (cf. 25 vs 20). (5) Introduction of an acid group as a
phosphate mimetic31 on the N-substituent is beneficial for
activity and selectivity (cf. 26 vs 20, 27, and 28), but the length
of the chain (1�3 carbons) has no impact on these parameters
(cf. 20 vs 27 and 28).

With these data in hand, the most potent and selective
compounds were screened in our pharmacodynamic (PD)
lymphocyte reduction model in rats following oral administra-
tion. Compound 20 proved to deliver full lymphopenia at the
lowest oral dose (0.1 mg/kg po, Figure 4). As opposed to 1, this
reduction of lymphocyte count is reversible within 24 h. Our
pharmacokinetic (PK)/PD modeling shows that this differentia-
tion is due to the much shorter half-life of agonist 20 in rats (vide
infra). A head-to-head comparison with 1 in a collagen-induced
arthritis model was performed (Figure 5). At a dose of 3 mg/kg
po, agonist 20 shows a clear dose-dependent reduction of paw

Figure 2. Structures of known S1P1 agonists.

Figure 3. Structure of biaryl oxadiazoles.

Scheme 1. Lead Generation Strategy Toward Druglike S1P1
Agonist Leadsa

aReagents and conditions: (a) Palladium-mediated nitrile formation.
(b) Addition of hydroxylamine. (c) Compound 11, base, heat. (d) HCl.
(e) Alkylation. (f) Saponification.
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volume and similar efficacy to 1.32 We next turned our attention
to the effect on heart rate of our compounds following oral
administration. To our delight, 20 did not show any statistically
significant effect on heart rate at doses as high as 100 mg/kg po33

and therefore clearly differentiates it from 1 (Figure 6).
Because of these promising data, further profiling of 20 was

implemented. This compound has excellent intrinsic properties
(Table 2), and its poor solubility is compensated by excellent
permeability, allowing linear PK in rats up to 300 mg/kg po. No
significant CYP inhibition was observed with this molecule, and
no covalent adducts were detected in glutathione trapping

experiments (nor time-dependent inhibition of CYP 3A4 and
2D6). Low in vitro hepatocyte clearance also translated into low
in vivo clearance in three preclinical species (Table 3). Agonist
20 showed good distribution in tissues translating into moderate
half-life; oral bioavailability was excellent in all species tested
(mouse, rat, and dog).

In conclusion, we have identified a druglike S1P3-sparing S1P1
agonist34 showing similar efficacy to 1 at low doses in a model of
arthritis. This compound, unlike 1, does not cause bradycardia in
rats even at high oral doses. Its excellent PK suggest low human
therapeutic doses (<10 mg/kg po once daily).

Table 1. SAR Data in the Triaryl THIQ S1P1 Agonist Series

pEC50 (n)

compd R1 R2 R3 X n S1P1 GTPγS S1P1 β-arrestin S1P3 GTPγS CHROM LogDa at pH 7.4

3 8.4( 0.31 (130) 7.7( 0.17 (44) 8.3( 0.31 (38)

18 H �CH(CH3)2 CH3 CH 2 6.5( 0.25 (7) 6.5( 0.30 (10) 4.9 (1) 3.81

19 Cl �CH(CH3)2 CH3 CH 2 7.9( 0.24 (13) 8.5( 0.12 (11) 5.2( 0.27 (5) 4.35

20 CN � CH(CH3)2 CH3 CH 2 7.5( 0.24 (8) 8.3( 0.11 (11) <4.4 (8) 3.41

21 CN �n-C2H5 CH3 CH 2 7.3( 0.31 (7) 7.5( 0.14 (10) <4 (9) 3.01

22 CN �n-C3H7 CH3 CH 2 7.5( 0.22 (7) 7.8( 0.15 (10) 5.1( 0.21 (4) 3.54

23 CN �n-C4H9 CH3 CH 2 7.2( 0.30 (7) 7.7( 0.15 (9) 5( 0.34 (8) 4.06

24 Cl �CH(CH3)2 CH3 N 2 7.1( 0.17 (5) 7.6( 0.49 (5) 4.7( 0.04 (2) 4.46

25 CN �CH(CH3)2 H CH 2 8.2 ( 0.23 (11) 8.5( 0.11 (8) 5.4 ( 0.14 (11) 3.30

26 CN �CH(CH3)2 CH3 CH 0 (NH) 7.6( 0.3 (10) 7.2 ( 0.89 (27) 4.9( 0.43 (4) 4.21

27 CN �CH(CH3)2 CH3 CH 1 7.8( 0.3 (9) 8.3( 0.1 (8) <4 (7) 3.32

28 CN �CH(CH3)2 CH3 CH 3 7.7( 0.27 (9) 8.2( 0.09 (8) <4 (11) 3.51
aCHROM LogD = chromatographic hydrophobicity index [CHI]� 0.0857� 2; for comparison, CHI LogD = CHI� 0.0525� 1.467. See Valko, K. ;
Bevan, C. ; Reynolds, D. Anal. Chem. 1997, 69, 2022�2029.

Scheme 2. Synthesis of 20a

aReagents and conditions: (a) Pyrrolidine, toluene, Dean�Stark, reflux. (b) Pent-1-en-3-one, hydroquinone, 59% (2 steps). (c) Lithium bis-
(trimethylsilyl)amide (LiHMDS), THF, �63 �C and then trimethylsilyl chloride (TMSCl). (d) Pd(OAc)2, CH3CN, T < 35 �C, and then tetra-n-
butylammonium fluoride (TBAF), 55% (2 steps). (e) Tf2O, pyridine, CH2Cl2, �30 �C. (f) Zn(CN)2, Pd(PPh3)4, DMF, 100 �C, 92% (2 steps). (g)
Aqueous NH2OH, EtOH, 80 �C, 86%. (h) Compound 15, pyridine, toluene, 0�110 �C, 51% (2 steps). (i) HCl, dioxane, room temperature, 98%. (j)
Ethyl acrylate, diaza(1,3)bicycle[5.4.0]undecane (DBU), CH3CN, room temperature, 94%. (k) NaOH, EtOH/water, room temperature, 91%.
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Chapman, J.; Cameron, M.; Guerrero, M.; Roberts, E.; Rosen, H. Full
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Require S1P-Like Headgroup Interactions. Mol. Pharmacol. 2008,
74, 1308–1318.
(32) In this experiment, as the free base of 20 was used rather than

the sodium salt, maximal lymphopenia was observed only at the 3mg/kg
po dose (in sharp contrast with what was observed in the lymphocyte
count experiment using the sodium salt; Figure 4). See the experimental
part for details.
(33) The exposure of 20 depends linearly of the dose given between

0.1 and 300 mg/kg po in rats.
(34) Compound 20 was inactive at S1P2 (pEC50 < 4.48, n = 6) and

S1P4 (pEC50 < 4.38, n = 4) and a partial agonist at S1P5 (pEC50 = 6.8(
0.16, 77% of maximum response, n = 6). See the experimental part for
assay protocols.


