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a b s t r a c t

The first total synthesis of cis,cis-diunsaturated a-meromycolic acid has been accomplished using a con-
vergent strategy and a palladium-catalysed alkyl–alkyl Negishi reaction as the key step.

� 2011 Elsevier Ltd. All rights reserved.
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Palladium-catalysed cross-coupling reactions between organo-
metallic reagents and organic electrophiles are important transfor-
mations in organic synthesis.1 Nevertheless, despite the fact that
the importance of cross-coupling reactions in the synthesis of het-
erocyclic compounds is indisputable, the applicability of these
transformations in the synthesis of lipids has been limited. In par-
ticular, alkyl–alkyl cross-coupling reactions of unactivated alkyl
halides bearing b-hydrogens are known to be challenging sub-
strates due to their reluctance to undergo oxidative addition and
reductive elimination, and their tendency to give b-hydride elimi-
nation.2 Recently, however, progress has been reported in circum-
venting these difficulties for the Negishi reaction.3 In this
communication, we describe the first synthesis of cis,cis-diunsatu-
rated a-meromycolic acid (1) using a Negishi cross-coupling
reaction as the key step (Fig. 1).

The target molecule 1 is an important intermediate in the syn-
thesis of mycolic acids, which are essential components of the cell
wall of Mycobacterium tuberculosis (Mtb),4 the causative agent of
tuberculosis (TB). In Mtb, compound 1 is linked to an acyl carrier
protein (AcpM) and is the substrate of a cyclopropanating enzyme,
PcaA, which has recently been reported as essential for the viru-
lence and persistence of Mtb,5 and thus is considered a promising
target in TB drug discovery.6 Unfortunately, lipid 1 cannot be iso-
ll rights reserved.
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lated from bacterial cultures and its total synthesis is of paramount
importance to establish a biochemical assay7 to develop PcaA
inhibitors.

During the last 10 years, syntheses of a number of lipids related
to mycolic acids have been reported.8 In these studies, long-chain
alkanes have been synthesised by multi-step-procedures that
required the formation of a double bond, via Wittig or Julia–
Kocienski olefination, followed by its reduction. According to our
disconnection strategy for 1 (Fig. 1), we instead envisioned that
the framework of the ‘proximal’ C1�C19 fragment could be syn-
thesised directly by the Negishi coupling of two shorter and easily
available fragments. We also decided to synthesise the two cis dou-
ble bonds by two stereoselective Wittig reactions. Specifically, the
retrosynthetic analysis depicted in Scheme 1 shows that the prox-
imal double bond of 1 may be synthesised from aldehyde 2 and
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Figure 1. Disconnection strategy for cis,cis-diunsaturated a-meromycolic acid 1.
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Scheme 3. Synthesis of the phosphonium salt 3.
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Scheme 1. Retrosynthetic analysis of cis,cis-diunsaturated a-meromycolic acid 1.
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phosphonium salt 3, and that the distal double bond may be pre-
pared from aldehyde 4 and phosphonium salt 5. Interestingly, we
envisioned that phosphonium salts 3 and 5 could be obtained from
a common organohalide 7.

Bromide 7a and iodide 7b were readily prepared from 1,12-
dodecanediol using a 2-tetrahydropyranyl (THP) group to protect
the remaining alcoholic moiety (Scheme 2). The bromination was
achieved by treatment with aqueous hydrobromic acid in refluxing
toluene, while the iodination was accomplished by treatment with
iodine, triphenylphosphine and imidazole in anhydrous THF.9

Organohalides 7a and 7b were used to synthesise the bifunc-
tionalised C19 alkane 6 via a Negishi reaction with alkylzinc bro-
mide 8 using a Pd–N-heterocyclic carbene-based precatalyst
(PEPPSI-IPr) in the presence of lithium salts.3,10 However, initial at-
tempts to perform this cross-coupling reaction according to the
protocol of Organ et al.10 yielded 6 in low yields (625%).11 Under
these conditions the starting halides could be recovered in high
yields, or unmodified or as corresponding chloride due to LiCl-
mediated transhalogenation.12 Gratifyingly, it was found that bro-
mide 7a underwent cross-coupling in a 71% yield if the alkylzinc
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Scheme 2. Synthesis of organohalides 7a and 7b.
bromide was used in large excess, in the presence of LiBr as the
lithium ion source, and with a five-fold higher catalyst loading
(Scheme 3). The resulting nitrile 6 was deprotected quantitatively
by p-toluenesulfonic acid in methanol, and treated with aqueous
hydrobromic acid in the presence of sulphuric acid to afford the
x-bromo-carboxylic acid 13 in a 95% yield. Bromide 13 was
promptly converted into the corresponding bromide salt 3 in 94%
yield by treatment with triphenylphosphine in acetonitrile under
microwave irradiation.13

In order to synthesise aldehyde 2 (Scheme 1), nonadecanal (4)
was efficiently prepared from 1-eicosene via the epoxide interme-
diate as previously reported,14 while phosphonium salt 5 was pre-
pared from the halides 7a or 7b. However, numerous attempts to
treat the bromide 7a in the presence of triphenylphosphine in tol-
uene, THF or acetonitrile afforded the phosphonium bromide with
partial or complete deprotection of the THP group.15 Conversely,
the iodide 7b was smoothly converted into the desired phospho-
nium salt 5 using acetonitrile as the solvent (Scheme 4). The result-
ing phosphonium iodide 5 was treated with an equimolar amount
of sodium hexamethyldisilazide to generate the ylide, which
underwent stereoselective cis-olefination with aldehyde 4 in the
presence of DMPU16 in THF at�84 �C in a 52% yield.17 Deprotection
of THP ether 14 was carried out using magnesium bromide diethyl
etherate18 affording alcohol 15 in a quantitative yield and with
conservation of the Z-configuration of the existing double bond.
Alcohol 15 was converted into the corresponding aldehyde 2 using
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Scheme 4. Synthesis of the aldehyde 2.
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PCC under mild conditions in the presence of molecular sieves
(MS3Å)19 and sodium acetate in a 91% yield.

Attempts to carry out the Wittig reaction between phospho-
nium bromide 3 and aldehyde 2 in THF/DMPU failed to produce
the desired compound, leading instead to the formation of diph-
enylphosphorylalkylcarboxylic acid 16 as major product (Scheme
5). Gratifyingly, omitting the DMPU from the reaction mixture re-
sulted in the synthesis of compound 1 despite the by-product 16
still being present as the major component under these condi-
tions.20 The conversion of phosphonium salts, containing a long-
chain x-carboxyalkyl group, into the corresponding phosphoryl
derivatives has been previously reported to take place in the pres-
ence of bases and polar solvents only after several days.21 Con-
versely, preliminary results22 from our studies indicated that this
side-reaction is rapid and may be the principal cause of the low
yields reported23 in Wittig reactions of phosphonium salts with
pendent carboxy groups. Specifically, we suspect that this base-
promoted side-reaction may be due to intramolecular coordination
of the carboxylate group on the phosphonium moiety, where
DMPU has the role to solvate the sodium ion.

In conclusion, the first synthesis of cis,cis-diunsaturated a-mer-
omycolic acid has been accomplished using a convergent strategy
using readily available starting materials: 1,12-dodecanediol, 1-
eicosene and 6-cyanohexyl zinc bromide. The Negishi cross-cou-
pling reaction has proved to be a useful transformation for the
synthesis of long-chain fatty acids. Studies on biochemical applica-
tions of compound 1 are in progress and will be published in due
course.
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