Synthesis of 3-Aroylcoumarin-Flavone Hybrids

Hulluru S.P. Rao* and Venkata S. Tangeti

Department of Chemistry Pondicherry University, Pondicherry-605014, India

Received July 22, 2011: Revised November 04, 2011: Accepted November 04, 2011

Abstract: A facile two step synthesis of 3-aroylcoumarin-flavone hybrids was achieved from 7-hydroxyflavone and α -oxoketene dithioacetals. In the first step 7-hydroxyflavone was regioselectively formylated under Duff reaction conditions. Resulting 8-formyl-7-hydroxy flavones were condensed with α -oxoketene dithioacetals in the presence of a catalytic amount of piperidine to furnish 3-aroylcoumarin-flavone hybrids.

Keywords: 7-hydroxyflavone, α -oxoketene dithioacetal, 8-formyl-7-hydroxy flavones, coumrain-flaovone hybrid, duff reaction.

INTRODUCTION

Both coumarins and flavones are widely distributed heterocyclic natural products with varied biological activities [1]. In technological and medicinal fields, coumarins and flavones, independently, find extensive use [2]. While coumarins, especially those having electronic push-pull characteristics, find applications as fluorescent probes and as triplet sensitizers, flavones, particularly those with several phenolic hydroxyl groups, are used as antioxidants. In continuation of our synthetic efforts towards 3-aroyl coumarins we contemplated the synthesis of 3-aroylcoumarin-flavone hybrids. Such hybrid molecules represent both 3-aroylcoumarin and flavones characteristics. Even though there were scattered reports on simple coumarinflavone hybrid systems, no systematic synthesis or spectral characterization has been reported [3]. Moreover, 3aroylcoumarin-flavone hybrids, target molecules of present study are not known. We have shown recently that α oxoketene dithioacetals 1, the three carbon push-pull systems, on condensation with 2-hydroxybenzaldehydes furnish a wide variety of 3-aroylcoumarins [4]. We have now extended this study by condensation of a-oxoketene dithioacetals 1 with 2-hydroxybenzaldehyde incorporated in a flavone scaffold eg., 2 to furnish 3-aroylcoumarin-flavone hybrids 3 (Scheme 1). Synthesis of such heterocyclic entities holds promise for integrating medicinal and fluorescent properties.

7-Hydroxyflavones **4**, prepared from resacetophenone and aroyl chloride *via* Baker-Venkataraman rearrangement [5], were formylated with hexamethylenetetramine and acetic acid (Duff reaction) [6] to furnish 8-formyl-7-hydroxy flavones (2-(4-aryl)-7-hydroxy-4-oxo-4*H*-chromene-8carbaldehydes **2a**, $\mathbb{R}^2 = \mathbb{H}$ and **2b** $\mathbb{R}^2 = \mathbb{Cl}$) [3b]. Regioselectivity of formylation was ensured from the ¹H NMR spectra which displayed two doublets in the aromatic region for two 1,2-coupled hydrogens in **2**. Condensation of flavones **2a** and **2b**, independently, with one mole each of three α -oxoketene dithioacetals **1a-c** in presence of piperidine furnished a small combinatorial library of six 3aroylcoumarin-flavone hybrids **3a-f** in good yield (Scheme **1**). Appearance of two singlet signals at about δ 8.8 and 6.9 ppm in the ¹H NMR spectra assignable to two olefinic CH of 3-aroylcoumarin-flavone hybrids **3** confirmed formation of the product. Moreover, the ¹³C NMR spectra displayed two lactone carbonyls at about δ 177 and 163 ppm, in addition to one α , β -unsaturated carbonyl carbon at δ 191 ppm.

In conclusion we have described a short and facile twostep synthesis of 3-aroylcoumarin-flavone hybrids 3 from 7hydroxy flavone 4 and α -oxoketene dithioacetals 1.

EXPERIMENTAL SECTION

General

The progression of all the reactions was monitored by TLC using hexanes (60-80 °C boiling mixture) / ethyl acetate mixture as eluent. Column chromatography was carried on silica gel (100-200 mesh SRL chemicals) using increasing percentage of ethyl acetate in hexanes. ¹H NMR spectra (400 MHz) and ¹³C NMR (100MHz) and DEPT spectra were recorded for $(CDCl_3 + CCl_4)$ solutions on a Bruker - 400 spectrometer with tetramethylsilane (TMS) as internal standard; J-values are in Hz. IR spectra were recorded as KBr pellets on a Nicolet-6700 spectrometer. UV recorded using Hitachi ratio-beam spectra were spectrometer. Melting points were recorded using openended capillary tubes on VEEGO VMP-DS instrument. High resolution mass spectra were recorded on a Waters Micromass Q-TOF micro mass spectrometer using electron spray ionization mode. Organic solvents were distilled and dried before use.

General Procedure for Formylation of 7-hydroxyflavone: 7-Hydroxy-4-oxo-2-phenyl-4*H*-chromene-8-carbaldehyde 2a

A solution of 7-hydroxyflavone (238 mg, 0.001 mol) dissolved in glacial acetic acid (5 mL), hexamethylenetetramine (560 mg, 0.004 mol) was added and the resulting solution was heated on a water bath for12 h. To the rt cooled solution 4 mL of 6 N aq HCl was added and then heated on a

^{*}Address correspondence to this author at the Department of Chemistry Pondicherry University, Pondicherry-605014, India; Tel: +914132654411; Fax: +914132656230; E-mail: hspr.che@pondiuni.edu.in

Scheme 1. Synthesis of coumarin-flavone hybrids **3** from α -oxoketene dithioacetals **1** and 8-formyl-7-hydroxyflavones **2**. *Reagents and conditions:* (i) piperidine, dry THF reflux, 8-32 h, 44-85%.

water bath for a further period of for 30 min. The reaction mixture was then diluted with water (10 mL) and left standing for 1 h at 5 °C in the refrigerator. The reaction mixture was extracted with dichloromethane (2 x 10 mL). Combined organic solution was washed with water (20 mL), brine (20 mL) and dried over anhydrous Na₂SO₄. Column chromatographic purification on silica gel with increasing amount of ethyl acetate in hexanes provided 2a as a free flowing solid in 70% yield. Analytical samples were obtained by recrystallization from chloroform. $mp = 181^{\circ}C$; UV (DCM), 343 nm (log ε = 3.28), 289 nm (log ε = 3.18); IR (KBr) v_{max} 3065, 2959, 1642, 1597, 1444, 1405, 1376, 1302, 1215, 1173, 1077, 1026, 860, 770 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 10.70 (s, 1H), 8.31 (d, J = 9.2 Hz, 1H), 7.83 (d, J = 8.8 Hz, 2H), 7.57-7.53 (m, 3H), 6.99 (d, J = 8.8, 2H),6.80 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) 191.9, 176.4, 167.6, 162.7, 158.1, 134.8, 131.2, 129.4, 126.1, 116.4, 109.0, 108.5 ppm. HRMS (ESI, m/z) $C_{16}H_{10}O_4$ calcd for (M+H) found 267.0530 and 267.0523.

2-(4-Chlorophenyl)-7-hydroxy-4-oxo-4H-chromene-8carbaldehyde 2b

Yellow color solid; Yield = 65%; mp = 190°C; UV (DCM) 349 nm (log ε = 3.46), 293 nm (log ε = 4.12); IR (KBr) υ_{max} 3453, 3078, 1657, 1594, 1412, 1315, 1294, 830 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 8.35 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.8, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.04 (d, J = 9.2 Hz, 1H), 6.80 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 176.1, 167.6, 161.6, 158.0, 138.3,134.8, 129.7, 129.6, 127.3, 116.5, 116.3, 108.9, 108.7 ppm; HRMS (ESI, m/z) C₁₆H₉ClO₄ calcd for (M+Na) found 323.0734 and 323.0729.

General Procedure for Synthesis of Coumarin-flavone Hybrids; 9-Benzoyl-2-phenylpyrano[2,3-f]chromene-4,8dione 3a

To stirred solution of 7–hydroxyl-8-formyl flavone **2a** (50 mg, 0.187 mol) and 3,3-bis(methylthio)-1-phenylprop-2-

en-1-one 1a (42 mg, 0.187 mmol) in dry THF and piperidene (13 mg, 0.187 mmol) in dry THF (1.2 mL) was added drop wise at rt under a blanket of nitrogen. The reaction mixture was heated at reflux in a pre-heated oil bath (80 °C) for 36 h for completion of reaction (TLC, 20% dicholromethane in hexanes; $R_f = 0.3$). The reaction mixture was diluted with dichloromethane (10 mL) and the organic solution was washed with water (20 mL) and brine (20 mL) and dried anhydrous Na_2SO_4 . Column chromatographic over purification on silica gel with increasing amount of dichlormethane in hexanes provided 3a as a free flowing solid in about 68% yield. Analytical samples were obtained by recrystallization from 5% DCM in hexanes. $mp > 240^{\circ}C$; UV (DCM), 361 nm (log $\varepsilon = 3.48$), 293 nm (log $\varepsilon = 3.35$); IR (KBr) υ_{max} 3058, 2919, 1731, 1664, 1439, 1379, 1260, 1087, 865, 804 cm $^{-1};$ 1H NMR (500 MHz, DMSOD_6) δ 8.93 (s, 1H), 8.31 (d, J = 5.5 Hz, 1H), 8.20 (d, J = 7.5 Hz, 2H), 7.73 (t, J = 7.5 Hz, 1H), 7.59-7.55 (m, 1H), 7.20 (s, 1H); ¹³C NMR (125 MHz, DMSO D₆) δ 190.7, 176.3, 163.1, 158.0, 157.9, 153.0, 138.0, 136.2, 134.6, 132.5, 130.2, 130.7, 129.7, 129.6, 127.9, 127.1, 120.0, 115.0, 109.7, 108.1 ppm; HRMS (ESI, m/z) calcd for $C_{25}H_{14}O_5$ (M+Na) 417.0734 found 417.0725.

9-Benzoyl-2-(4-chlorophenyl)pyrano[2,3-f]chromene-4,8dione 3b

Colorless solid; Yield = 48%; mp = >240 °C. UV (DCM) 349 nm (log ε = 3.46), 293 nm (log ε = 4.12); IR (KBr) υ_{max} 3053, 1734, 1657, 1625, 1481, 1438, 1406, 1375, 1256, 1093, 830 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.47 (d, *J* = 6.8 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 1H), 6.87 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 175.0, 165.0, 159.0, 154.0, 153.0, 145.03, 138.7, 134.1, 132.3, 131.7, 130.9, 129.6, 128.7, 127.9, 127.5, 126.5, 121.6, 114.0, 108.5, 107.9 ppm; HRMS (ESI, m/z) 451.0349 calcd for C₂₅H₁₃ClO₅ (M+Na) found 451.0345.

9-(4-Chlorobenzoyl)-2-phenylpyrano[2,3-f]chromene-4,8dione 3c

Colorless solid; Yield = 53%; mp > 240 °C; UV (DCM), 315 nm (log ε = 3.44), 298 nm (log ε = 4.18); IR (KBr) υ_{max} 2927, 1732, 1657, 1613, 1532, 1438, 1375, 1262, 1093, 824 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.78(s, 1H), 8.45 (d, *J* = 8.9 Hz, 1H), 7.89 (d, *J* = 8.6 Hz, 2H), 7.85 (d, *J* = 2.4 Hz, 2H), 7.57 (t, *J* = 9.9 Hz, 1H), 7.52 (d, *J* = 4.4 Hz, 2H), 7.50 (d, *J* = 6.7 Hz, 2H), 7.44 (d, *J* = 8.8 Hz, 1H), 6.89 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 177.0, 163.5, 158.4, 154.9, 153.0, 145.5, 139.0, 134.2, 132.2, 131.2, 130.9, 129.4, 129.1, 127.2, 126.2. 120.5, 114.6, 108.7 ppm; HRMS (ESI, m/z) 429.0530 calcd for C₂₅H₁₃ClO₅ (M+H) found 429.2375.

9-(4-Chlorobenzoyl)-2-(4-chlorophenyl)pyrano[2,3f]chromene-4,8-dione 3d

Colorless solid; Yield = 44%; mp 240 °C above, UV (DCM), 335 nm (log ε = 3.44), 298 nm (log ε = 4.18); IR (KBr) υ_{max} 3071, 1738, 1663, 1625, 1412, 1368, 1262, 1093, 861, 830, 780 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.48 (d, J = 5.2 Hz, 1H), 7.84 (d, J = 4.8Hz, 2H), 7.55(d, J = 4.4 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8 Hz, 1H), 6.87 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 176.9, 163.4, 158.9, 157.4, 153.6, 149.0, 138.0, 134.1, 132.4, 131.0, 130.7, 130.1, 129.7, 129.5, 127.9, 127.1, 120.3, 114.7, 108.8, 108.5 ppm; HRMS (ESI, m/z) 484.9959 calcd for C₂₅H₁₂Cl₂O₅ (M+Na) found 484.9963.

9-(4-Methylbenzoyl)-2-phenylpyrano[2,3-f]chromene-4,8dione 3e

Colorless solid; Yield = 85% ; mp > 240 °C; UV (DCM) 303.5 nm (log ε = 3.36), 340.5 nm (log ε = 4.18), IR (KBr) υ max 3071, 2921, 1737, 1661, 1625, 1441, 1380, 1266, 1087, 867, 832 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.48 (d, *J* = 9.2 Hz, 1H), 7.89 (d, *J* = 9.6 Hz, 2H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.59-7.45 (m, 3H), 7.44 (d, *J* = 9.2 Hz, 1H), 7.31(d, *J* = 8 Hz, 2H), 6.90 (s, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 176.8, 163.5, 158.4, 157.4, 153.0, 145.2, 138.0, 133.2, 132.2, 130.9, 130.7, 129.8, 129.5, 129.4, 127.8, 126.2, 120.3, 114.6, 108.7, 108.6, 21.90 ppm; HRMS (ESI, m/z) calcd C₂₆H₁₆O₅ for 431.0895 (M+Na) found 431.0898.

2-(4-Chlorophenyl)-9-(4-methylbenzoyl)pyrano[2,3f]chromene-4,8-dione 3f

Colorless solid; Yield = 56%; mp > 240 °C, UV (DCM), 345 nm (log ε = 3.45), 296 nm (log ε = 4.04); IR (KBr) υ_{max} 3079, 2921, 1737, 1654, 1615, 1440, 1408, 1378, 1265,1182, 1092, 868, 782, 674 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.46 (d, *J* = 8.8 Hz, 1H), 7.83 (d, *J* = 8.8Hz, 2H), 7.81 (d, *J* = 8.8Hz, 2H), 7.53 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 1H), 7.32 (d, *J* = 8 Hz, 2H), 6.87 (s, 1H), 2.45(s, 3H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ 190.7, 176.3, 162.3, 158.2, 157.4, 152.9, 145.5, 138.6, 137.9, 133.1, 130.6, 129.8, 129.7, 129.5, 129.3, 127.9, 127.4, 120.2, 114.8, 108.76, 108.73, 21.9 ppm; HRMS (ESI, m/z) 443.0630 calcd for C₂₆H₁₅ClO₅ (M+H) found 443.0625.

ACKNOWLEDGEMENTS

H.S.P.R thanks UGC, UGC-SAP, CSIR and DST-FIST for financial assistance. V. S. T. thanks CSIR for fellowship. We thank IISc, Bangalore for recording MS spectra.

CONFLICT OF INTEREST

Declared none.

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publishers Web site along with the published article.

REFERENCES

- (a) Murry, R. D. H.; Mendez, J.; Brown, S. A. *The Natural Coumarins: Occurrence, Chemistry and Biochemistry*, John Wiley & Sons: New York, **1982**. (b) Andersen, M.; Markham, K. R. (Ed) *Flavonoids: Chemistry, Biochemistry and Applications*, CRC Press, Boca Raton, **2006**.
- [2] (a) Meuly, W. C. *Kirk-Othmer Encyclopedia of Chemical Technology*, New York, **1979**, *7*, 196-206, 3rd Ed, John Wiley & Sons. (b) Havsteen, B. H. The biochemistry and medicinal significance of the flavonoids. *Pharm. & Ther.*, **2002**, *96*, 67-202.
- [3] (a) Subba Raju, K. V.;Srimannarayana, G.; Subba Rao, N. V. Reaction of some substited 2-Allyl Phenols with 2,3 dichloro-5, 6-Dicyano-1,4-Benzoquinone (DDQ)-a new method for the synthesis of coumarins *Tetrahedron Lett.* 1977, 473-476. (b) Rangaswami, S.; Seshadri, T. R. 7-Hydroxychromene-8-aldehydes and their conversion into chromono-7, 8-a-pyrones.*Proceedings Ind. Acad. Sci., Section A* 1939, 9A, 7-9. Chemical Abstracts Number 1939 33:29861.
- [4] Rao, H.S.P.; Sivakumar, S. Condensation of α-Aroylketene dithioacetals and 2-hydroxyarylaldehydes results in facile synthesis of a combinatorial library of 3-aroylcoumarins. J. Org. Chem., 2006, 71, 8715-8723.
- [5] Wheeler, T. S. Flavone. Org.Syn.1952, 32, 72-76.
- [6] Duff, J. C.; Bills, E. J. Reactions between hexamethylenetetramine and phenolic compounds, part II: Formation of phenolic aldehydes: Distinctive behaviour of *p*-nitrophenol. J. Chem. Soc., **1932**, 1987-1988.