

Tetrahedron Letters 39 (1998) 7185-7188

TETRAHEDRON LETTERS

Towards the Total Synthesis of Phorboxazoles A and B: Stereocontrolled Synthesis of a C₂₀-C₃₂ Subunit

Ian Paterson* and Euan A. Arnott

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Received 29 June 1998; accepted 20 July 1998

Abstract: The $C_{20}-C_{32}$ phorboxazole subunit 4, containing 5 stereocentres, was prepared in 8 steps (34%) from ethyl ketone (S)-7. Key steps included a boron-mediated *anti* aldol reaction and an intramolecular hetero-Michael reaction. Installation of the $C_{19}-C_{20}$ (E)-alkene using a Wittig reaction produced a $C_{15}-C_{32}$ fragment, including both oxazoles present in the natural product. © 1998 Elsevier Science Ltd. All rights reserved.

In 1995 Searle and Molinski isolated the marine natural products phorboxazoles A (1) and B (2) (Scheme 1) from a novel Indian Ocean sponge of the genus *Phorbas*.¹ Both C₁₃ epimers are potent cytostatic agents ($GI_{50} < 0.8$ nM). Moreover, the ability of the phorboxazoles to halt the cell cycle in S-phase provides a potential complement to the tubulin-mediated activity of antineoplastic agents causing M-phase arrest (*e.g.* discodermolide).^{1,2} Because of their powerful biological activity and structural complexity, the phorboxazoles have inspired considerable interest as synthetic targets,^{3,4} including a recent total synthesis by Forsyth.^{3a} Salient features of the phorboxazole skeleton include a 25-membered macrolide ring containing three tetrahydropyrans and a 2,4-substituted oxazole; the pendant sidechain comprises a further oxazole, a hemiacetal, diene system, and terminal vinyl bromide.

In our convergent approach to phorboxazole A (1), we envisage three key disconnections, thereby dividing the natural product into subunits 3-5, all of comparable complexity (Scheme 1). It is anticipated that the $C_{33}-C_{46}$ segment will be incorporated *via* addition of a C_{32} -metallated methyl oxazole to δ -lactone 3.⁵ We plan to assemble the macrocyclic ring itself by (*E*)-olefination to install the $C_{19}-C_{20}$ double bond, followed by macrolactonisation to close the 25-membered ring. As part of our studies towards the synthesis of phorboxazole A, we now report a stereocontrolled synthesis of the $C_{20}-C_{32}$ subunit 4. Construction of the pivotal pentasubstituted tetrahydropyran ring ($C_{22}-C_{26}$) involved three key stereodetermining steps: a boron-

mediated *anti* aldol reaction, substrate-directed 1,3-*anti* reduction, and an intramolecular hetero-Michael reaction. The feasibility of the proposed C_{19} - C_{20} olefination was then demonstrated by the further synthesis of a more elaborate C_{15} - C_{32} fragment of 1.

The route to the C₂₀-C₃₂ subunit 4 is summarised in Scheme 2.⁶ The synthesis began with a substratecontrolled *anti* aldol reaction between readily available aldehyde 6⁷ and chiral ketone (S)-7.⁸ Following our usual conditions for the generation of the (E)-enol borinate of 7,⁸ addition of aldehyde 6 gave the expected *anti* aldol adduct 8 in 94% yield with \geq 97% ds. Stereoselective reduction of the C₂₄ carbonyl of 8 was then achieved using a modified Evans-Tishchenko reaction,⁹ whereby the catalytic species was pre-formed by mixing Sml₂ (30 mol%) and RCHO (R = Me or ⁱPr), followed by addition of 8. This produced the 1,3-*anti* reduction products 9a (96%) or 9b (86%) with \geq 97% ds and simultaneously allowed differential protection of the C₂₄ and C₂₆ hydroxyls.

Scheme 2: (a) (*c*-Hex)₂BCl, Et₃N, Et₂O, 0 °C, 1 h; 6, -78 \rightarrow -20 °C, 18 h; H₂O₂, MeOH, pH 7 buffer; (b) SmI₂ (30 mol%), RCHO, THF, -20 °C, 15 min; 8, -20 °C, 1 h; (c) TBSCl, Im, DMAP, DMF, 80 °C, 50 h; (d) DDQ, 20:1 CH₂Cl₂/H₂O, 20 °C, 1 h; (e) (COCl)₂, DMSO, -78 °C, 10 min; **10a** or **10b**, -78 °C, 1 h; Et₃N, -78 \rightarrow -40 °C, 40 min; (f) Ba(OH)₂, (MeO)₂P(O)CH₂CO₂Me, 80:1 THF/H₂O, 20 °C, 1 h; (g) LiCl, DBU, (MeO)₂P(O)CH₂CO₂Me, 4:1 CH₃CN/CH₂Cl₂, 20 °C, 2.5 h; (h) K₂CO₃, MeOH, 20 °C, 26 h; (i) DIBAL, CH₂Cl₂, -78 °C, 5 h; (j) DIBAL, CH₂Cl₂, -78 °C, 5 h; (k) SO₃•pyr, Et₃N, 2:1 CH₂Cl₂/DMSO, 0 °C, 2 h.

Protection of the C₂₄ hydroxyl groups of **9a** or **9b** as TBS ethers was best achieved using TBSCl under forcing conditions (1.0 M, 80 °C, >2 days).¹⁰ Unfortunately, some migration of the ester protecting group occurred under the silylation conditions, resulting in limited scrambling of the C₂₄ and C₂₆ protecting groups. For the acetate series, an inseparable 4:1 regioisomeric mixture was obtained, while the isobutyrate afforded a 9:1 mixture, from which the minor regioisomer could be readily removed by flash column chromatography.¹¹ Oxidative cleavage of the PMB ether then afforded primary alcohols **10a** or **10b** in good overall yield (R = Me, 69%; R = ⁱPr, 64% over 3 steps). Swern oxidation followed by Horner-Wadsworth-Emmons olefination with trimethylphosphonoacetate, using either $Ba(OH)_2^{12a}$ (for R = Me) or LiCl/DBU^{12b} (for R = ⁱPr), gave the required (*E*)-enoates 11a or 11b.

With these differentially-protected (*E*)-enoates in hand, two different routes towards the $C_{22}-C_{26}$ tetrahydropyran were pursued. For the acetate series (R = Me), methanolysis of the ester led to concomitant cyclisation to afford a separable mixture of tetrahydropyran **12** (33%) and its C_{22} epimer (22%). Our intention was to correct this lack of kinetic selectivity by equilibration under basic conditions *via* a series of Michael/retro-Michael reactions.¹³ However, treatment of the minor C_{22} epimer with Triton-B methoxide failed to induce equilibration to the desired C_{22} isomer. Reduction of desired tetrahydropyran ester **11** with DIBAL resulted in direct conversion to aldehyde **4** in 63% yield: this therefore represents a route to the required C_{20} - C_{32} subunit (10% overall yield from **6**).

In order to achieve better control over the C_{22} stereocentre, an alternative route was pursued with the isobutyrate series. In this approach, enoate **11b** was fully reduced with DIBAL to give diol **13**, followed by selective oxidation of the primary C_{20} hydroxyl under Parikh-Doering conditions.¹⁴ The resulting enal underwent cyclisation during isolation to give aldehyde **4** (81%) as a separable 4:1 mixture of C_{22} epimers. Furthermore, subjecting the minor, undesired tetrahydropyran aldehyde to basic equilibration conditions did indeed result in rapid conversion to give exclusively the all-equatorial C_{22} epimer **4**.^{13,15} Thus, recycling of the unwanted epimer increased the net control exerted over the formation of the C_{22} stereocentre. This second route afforded the C_{20} – C_{32} subunit in an improved 34% overall yield over 8 steps.

Scheme 3: (a) 14, ⁿBuLi, THF, -78 °C, 30 min; 4, THF, 0 °C, 1 h; (b) 14, NaHMDS, THF, 0 °C, 30 min; 4, THF, 0 °C, 2 h; (c) 14, KHMDS, THF, 0 °C, 30 min; 4, THF, 0 °C, 1 h; (d) 15, LiHMDS, DMF, 0 °C, 30 min; 4, DMF, 0 °C, 1 h.

Entry	Х	Base	Conditions	Yield	Selectivity $(E:Z)$
1 ^a	$(EtO)_2P(O)$	ⁿ BuLi	THF, 0 °C	100%	38:62
2 ^b	$(EtO)_2P(O)$	NaHMDS	THF, 0 ℃	79%	46:54
3°	$(EtO)_2P(O)$	KHMDS	THF, 0 °C	71%	44:56
4 ^d	ⁿ Bu ₃ P ⁺	LiHMDS	DMF, 0 °C	91%	89:11

Table 1. Optimisation of the C₁₉-C₂₀ (E)-olefination

The feasibility of the proposed disconnection of the $C_{19}-C_{20}$ double bond was then tested by conducting a series of olefinations on aldehyde 4 (Scheme 3).¹⁶ Metallation of diethyl phosphonate 14 and addition of aldehyde 4 gave the larger $C_{15}-C_{32}$ segment, 16, as a separable mixture of geometric isomers (Table 1, entries 1-3). Notably, using lithium, sodium or potassium cations, the undesired (Z)-olefin was obtained as the major isomer in each case. After extensive screening of conditions, it was found that best results were achieved using a Wittig procedure.^{16b} Hence, phosphonium salt 15 was formed *in situ* from the corresponding bromide and ⁿBu₃P in DMF (60 °C, 5 h), immediately deprotonated with LiHMDS (0 °C, 30 min), and then allowed to react with aldehyde 4 to afford 16 as an 89:11 *E:Z* mixture, now in favour of the desired olefin.^{6,17}

In conclusion, the $C_{20}-C_{32}$ subunit 4, containing 5 stereocentres arrayed around the $C_{22}-C_{26}$ tetrahydropyran ring as well as the oxazole-(*E*)-alkene unit of the phorboxazole sidechain, was prepared in 8 steps from ethyl ketone (*S*)-7 to provide 34% overall yield¹⁵ of the correct diastereomer. High levels of stereocontrol resulted from the key stereodetermining reactions: a boron-mediated *anti* aldol reaction, substrate-directed 1,3-*anti* reduction, and an intramolecular hetero-Michael reaction. Controlled (*E*)-olefination of aldehyde 4 to give the C_{15} - C_{32} fragment 16 has also been achieved. Studies on the C_{32} - C_{33} bond formation and further work towards the total synthesis of the phorboxazoles are currently underway.

Acknowledgements: We are grateful to the EPSRC (GR/K54052, L41646) and Rhône-Poulenc Rorer, in particular Dr Chris Newton and Dr Philippe Pitchen, for supporting this work.

References and Notes:

- (a) Scarle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126. (b) Searle, P. A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J. Am. Chem. Soc. 1996, 118, 9422. (c) Molinski, T. F. Tetrahedron Lett. 1996, 37, 7879.
- 2. Hung, D. T.; Jamison, T. F.; Schreiber, S. L. Chemistry & Biology 1996, 3, 623.
- (a) Forsyth, C. J.; Ahmed, F.; Cink, R. D. Lee, C. S. J. Am. Chem. Soc. 1998, 120, 5597. (b) Ahmed, F.; Forsyth, C. J. Tetrahedron Lett. 1998, 39, 183. (c) Cink, R. D.; Forsyth, C. J. J. Org. Chem. 1997, 62, 5672. (d) Lee C. S.; Forsyth, C. J. Tetrahedron Lett. 1996, 37, 6449.
- 4. Ye, T.; Pattenden, G. Tetrahedron Lett. 1998, 39, 319.
- 5. (a) Lipshutz, B. H.; Hungate, R. W. J. Org. Chem. 1981, 46, 1410. (b) Arnott, E. A.; Paterson, I. Unpublished results.
- 6. All new compounds gave spectroscopic data in agreement with the assigned structures. (*E*)-Olefin **16** had: ¹H NMR δ (400 MHz, CDCl₃) 8.00 (1H, s, <u>H</u>₁₇), 7.48 (1H, s, <u>H</u>₃₀), 6.78 (1H, ddd, *J* = 16.0, 8.3, 6.3 Hz, <u>H</u>₂₀), 6.35 (1H, d, *J* = 16.1 Hz, <u>H</u>₁₉), 6.17 (1H, s, <u>H</u>₂₈), 3.54 (1H, ddd, *J* = 8.0, 5.5, 1.9 Hz, <u>H</u>₂₂), 3.44 (1H, d, *J* = 10.2 Hz, <u>H</u>₂₆), 3.42 (1H, dd, *J* = 10.0, 4.8 Hz, <u>H</u>₂₄), 2.56 (1H, dddd, *J* = 14.8, 7.9, 6.3, 1.8 Hz, <u>H</u>_{21b}), 2.43 (3H, s, <u>H</u>₃₂), 2.31 (1H, dddd, *J* = 14.8, 8.3, 5.6, 1.1 Hz, <u>H</u>_{21a}), 1.91 (3H, d, *J* = 1.1 Hz, <u>H</u>₄₈), 1.78-1.71 (2H, m, <u>H</u>₂₃ and <u>H</u>₂₅), 1.57 (9H, s, CO₂C<u>Me₃</u>), 0.97 (3H, d, *J* = 6.9 Hz, C₂₃Me), 0.90 (9H, s, SiC<u>Me₃</u>), 0.74 (3H, d, *J* = 6.5 Hz, C₂₅Me), 0.06 (3H, s, Si<u>Me</u>), 0.04 (3H, s, Si<u>Me</u>); ¹³C NMR δ (100.6 MHz, CDCl₃) 161.4, 160.6 (2C), 142.5, 138.4, 138.1, 137.8, 135.6, 135.3, 118.6, 117.6, 88.8, 82.0, 77.4, 77.3, 39.3, 36.5, 34.8, 28.2, 25.8, 18.1, 14.3, 13.9, 13.8, 5.9, -4.1, -4.8.
- 7. Boger, D. L.; Curran, T. T. J. Org. Chem. 1992, 57, 2235.
- (a) Paterson, I.; Goodman, J. M.; Isaka, M. Tetrahedron Lett. 1989, 30, 7121. (b) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister, M. A. J. Am. Chem. Soc. 1994, 116, 11287. (c) Paterson, I.; Nowak, T. Tetrahedron Lett. 1996, 37, 8243. (d) For a review of boron-mediated aldol reactions, see: Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1.
- 9. Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.
- 10. Treatment of **9a** with TBSOTf afforded the undesired tetrahydropyran product **17** even at -78 °C, *via* a Lewis acid-promoted cyclisation with precedent in other work performed in this laboratory:

- 11. For R = Me, the minor regioisomer could not be removed until cyclisation to afford tetrahydropyran ester 12.
- (a) Paterson, I.; Yeung, K.-S.; Smaill, J. B. Synlett 1993, 774. (b) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
- For related examples, see: (a) Duan, J. J.-W.; Kishi, Y. *Tetrahedron Lett.* 1993, 34, 7541. (b) Betancort, J. M.; Martín, V. S.; Padrón, J. M.; Palazón, J. M.; Ramírez, M. A.; Soler, M. A. J. Org. Chem. 1997, 62, 4570. (c) Ramírez, M. A.; Padrón, J. M.; Palazón, J. M.; Martín, V. S. J. Org. Chem. 1997, 62, 4584. (d) Banwell, M. G.; Bui, C. T.; Pham, H. T. T.; Simpson, G. W. J. Chem. Soc., Perkin Trans. 1 1996, 967. (e) Paterson, I.; Keown, L. E. Tetrahedron Lett. 1997, 38, 5727.
- 14. Parikh, J. R.; von Doering, W. J. Am. Chem. Soc. 1967, 89, 5505.
- 15. Unfortunately, self-condensation of the aldehyde could not be avoided during equilibration with Triton-B methoxide, leading to a modest 52% recovery of configurationally pure 4.
- (a) Liu, P.; Celatka, C. A.; Panek, J. S. Tetrahedron Lett. 1997, 38, 5445. (b) Zhao, Z. C.; Scarlato, G. R.; Armstrong, R. W. Tetrahedron Lett. 1991, 32, 1609.
- 17. The high (*E*)-selectivity is largely attributable to the use of the phosphonium ylid instead of the phosphonate, with the change of solvent from THF to DMF having little effect.