Self-controlled growth in highly stable α -Al₂O₃ nanoparticles in mesoporous structure

S. Rana and S. Ram^{*}

Materials Science Centre, Indian Institute of Technology, Kharagpur - 721 302, India

Received 25 November 2003, revised 23 October 2003, accepted 27 October 2003 Published online 22 January 2004

PACS 61.43.Gt, 61.46.+w, 82.60.Qr

Highly stable α -Al₂O₃ nanoparticles are obtained in a mesoporous structure (10–25% porosity) by reconstructive decomposition of a mesoporous AlO(OH) *x* H₂O, *x* ~ 0.7, powder followed by annealing at 1475–1900 K. At *x* ~ 0.7, self-controlled AlO(OH) *x* H₂O \rightarrow Al₂O₃ molecular decomposition occurs in a controlled desorption of H₂O through pores at 330–650 K. It was achieved by a novel hydrolysis method of Al metal with nascent surfaces in water at 295 K. Average α -Al₂O₃ crystallite size hardly grows to 30–50 nm (several hundred nanometers otherwise in a bulk sample) at 1475–1900 K. They are arranged through pores in a specific fashion as observed in TEM micrographs. A network structure forms of surface atoms in high-energy crystallites in a high configurational entropy (governs improved stability and superplasticity or other properties) by minimizing the Gibbs free energy. A metastable α -Al₂O₃ phase exists in processing at low temperature such as 1475 K. It has a modified X-ray diffraction or IR spectrum of equilibrium phase after annealing (reorders interstitial vacancies) at 1525 K or higher temperatures. It is proposed that a mobile Al³⁺ hole in a site neighboring an AlO_{6-δ} architect defect creates a center to a plane slipping or twin structure formation. Mesopores provide sites for crack initiation and also for crack arrest in confined cracks (support a high failure strain).

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Mesoporous materials, which comprise nanoparticles distributed through pores of 2-50 nm diameter in a specific structure, have been the subject of considerable interest owing to their potential applications in catalysts, hot filters, adsorption media, phosphors, and microelectronics [1-7]. Thermal stability with a controlled microstructure at this scale is one of the most important parameters of the material of reproducible properties. It determines the activity and performance of the material in a specific device as per its chemistry and other properties. A large surface area, pore structure, and surface chemistry play an essential role especially in adsorption and catalysis.

In this series, alumina (Al₂O₃) is a paradigm for fabricating mesoporous or classical ceramics [2–4]. Doping with a foreign metal oxide refines a stable microstructure and improves or adds other useful properties. Zhang et al. [4] stabilized a mesoporous γ -Al₂O₃ with 1–5 mol% Ce³⁺ or La³⁺. A composite mesoporous structure allows Al₂O₃ molecules access to large internal surfaces and cavities that enhance their catalytic and adsorption activities. Nanocrystals of α -Al₂O₃ are widely used as adsorbents, catalysts or catalyst carriers, gas sensors, coating and soft abrasives because of fine size, high surface area, and catalytic activity of their surfaces. These remarkable properties have a great deal of interest in understanding their origin and mechanisms in nanostructures [8–15].

^{*} Corresponding author: e-mail: sram@matsc.iitkgp.ernet.in

 γ -Al₂O₃ has a lower surface energy, $\sigma = 0.79 \text{ J/m}^2$, than $\sigma = 2.04 \text{ J/m}^2$ in α -Al₂O₃ and becomes energetically stable at surface area $A \ge 125 \text{ m}^2/\text{g}$, i.e. $d \le 13 \text{ nm}$ diameter in a spherical crystallite, and thermodynamically stable at even smaller $A \sim 75 \text{ m}^2/\text{g}$ at 800 K [11]. γ -Al₂O₃ can maintain $A \sim 150 \text{ m}^2/\text{g}$ at 1073 K while α -Al₂O₃ coarsens at $A \le 50 \text{ m}^2/\text{g}$ at such temperatures. θ -Al₂O₃, supposed to have an intermediate σ value, appears at intermediate A in coarse to $\gamma \rightarrow \alpha$ transformation [14]. Molecular dynamics simulations [16], assuming preferential exposure of the surfaces with lowest energy, predicts γ -Al₂O₃ as the energetically stable phase as A exceeds 125 m²/g. Distribution of Al³⁺ and vacancies in tetrahedral and octahedral sites in γ -Al₂O₃ [17] has a larger entropy S than in α -Al₂O₃ which has only octahedral sites [17, 18]. The $\gamma \rightarrow \alpha$ transition has as large change in S as 5.7 J/K mol [11], demonstrating γ -Al₂O₃ to be the probable phase to exist in small particles, $A \ge 100 \text{ m}^2/\text{g}$, at room temperature.

In this paper, we report the synthesis of monolithic α -Al₂O₃ in a self-confined 30–50 nm dimension through pores in a mesoporous structure. Firmly stable particles form at a temperature as low as 1475 K and do not grow much on raising the temperature as high as 1900 K. Pores support a metastable α -Al₂O₃ structure. The equilibrium α -Al₂O₃ structure occurs by a local atomic reordering at 1525 K or higher temperature. The results are analyzed and modeled with X-ray diffraction, microstructure, and vibrational spectrum. A twin boundary structure has been seen earlier in high-resolution electron microscopic (HREM) images in α -Al₂O₃ [18–20]. It influences grain growth, thermal stability, and other macroscopic properties. Small levels of porosity Φ (5–10%) offer superplasticity [10]. Uniformly distributed pores provide sites for both crack initiation and crack arrest, leading to a large number of short cracks, and to higher failure strains.

2 Experiment details

A mesoporous α -Al₂O₃ structure is derived from a mesoporous AlO(OH) *x* H₂O, *x* ~ 0.7, precursor with $\Phi = 18\%$ and d = 30 nm average crystallite size. As described earlier [15], it has been synthesized by a novel hydrolysis method of a high-purity (99.9%) Al metal (in the shape of a thin plate) with nascent surface in distilled water at 295 K. A self-induced exothermic hydrolysis reaction, Al + 2H₂O \rightarrow AlO(OH) + $\frac{3}{2}$ H₂, occurs as soon as the Al metal is immersed in water. The resulting AlO(OH) instantaneously reacts with H₂O and converts to AlO(OH) *x* H₂O. This is filtered and dried to a powder at room temperature in air. In sol-gel or other wet methods, a metastable AlO(OH) *x* H₂O precursor appears in a gel with a larger $x \ge 1.0$ [21, 22]. A refined mesoporous Al₂O₃ powder ($\Phi = 45\%$) appears on dehydration and reconstructive thermal decomposition at 500–600 K. It transforms to a mesoporous α -Al₂O₃ at temperature as low as 1475 K (Table 1).

The phase analysis was carried out with X-ray diffraction of annealed samples at elevated temperatures, using a P.W. 1710 X-ray diffractometer with filtered Co K_{α} radiation of $\lambda = 0.17902$ nm wavelength. Their microstructures were studied with a transmission electron microscope (TEM), model-JEM 2000 CX, in conjunction with an energy-dispersive X-ray spectrum analyzer for in-situ elemental analy-

trade name	density ^a (g/cm ³)	porosity (%)	V (nm ³)	$A (10^3 \text{ m}^2/\text{g})$	S_{g}^{b} (m ² /g)		
Boehmite	1.85 (2.25)	18	0.429	3.70	108.1		
θ -Al ₂ O ₃	2.50 (3.58)	30	0.186	3.38	200.0		
α -Al ₂ O ₃	2.98 (3.98)	25	0.770	4.84	57.5		
α -Al ₂ O ₃	3.20 (3.98)	20	0.767	4.82	48.1		
α -Al ₂ O ₃	3.25 (3.98)	18	0.755	4.77	45.0		
α -Al ₂ O ₃	3.60 (3.98)	10	0.763	4.80	33.3		
	trade name Boehmite θ -Al ₂ O ₃ α -Al ₂ O ₃	$\begin{array}{c} \text{trade name} & \text{density}^{a} \\ \hline \text{(g/cm}^{3)} \\ \hline \text{Boehmite} & 1.85 (2.25) \\ \theta \text{-Al}_{2}\text{O}_{3} & 2.50 (3.58) \\ \alpha \text{-Al}_{2}\text{O}_{3} & 2.98 (3.98) \\ \alpha \text{-Al}_{2}\text{O}_{3} & 3.20 (3.98) \\ \alpha \text{-Al}_{2}\text{O}_{3} & 3.25 (3.98) \\ \alpha \text{-Al}_{2}\text{O}_{3} & 3.60 (3.98) \\ \end{array}$	$\begin{array}{c c} trade name & density^{a} & porosity \\ (g/cm^{3}) & (\%) \\ \hline \\ Boehmite & 1.85 (2.25) & 18 \\ \theta-Al_{2}O_{3} & 2.50 (3.58) & 30 \\ \alpha-Al_{2}O_{3} & 2.98 (3.98) & 25 \\ \alpha-Al_{2}O_{3} & 3.20 (3.98) & 20 \\ \alpha-Al_{2}O_{3} & 3.25 (3.98) & 18 \\ \alpha-Al_{2}O_{3} & 3.60 (3.98) & 10 \\ \hline \end{array}$	trade namedensity ^a (g/cm ³)porosity (%)V (nm ³)Boehmite $1.85 (2.25)$ 18 0.429 $0-Al_2O_3$ $0-Al_2O_3$ $2.50 (3.58)$ 30 0.186 $\alpha-Al_2O_3$ $\alpha-Al_2O_3$ $2.98 (3.98)$ 25 0.770 $\alpha-Al_2O_3$ $\alpha-Al_2O_3$ $3.20 (3.98)$ 20 0.767 $\alpha-Al_2O_3$ $\alpha-Al_2O_3$ $3.25 (3.98)$ 18 0.755 $\alpha-Al_2O_3$ $\alpha-Al_2O_3$ $3.60 (3.98)$ 10 0.763	trade namedensitya (g/cm3)porosity (%)V (nm3)A (103 m2/g)Boehmite1.85 (2.25)180.4293.70 θ -Al_2O_32.50 (3.58)300.1863.38 α -Al_2O_32.98 (3.98)250.7704.84 α -Al_2O_33.20 (3.98)200.7674.82 α -Al_2O_33.25 (3.98)180.7554.77 α -Al_2O_33.60 (3.98)100.7634.80		

Table 1 Density, porosity (%), lattice volume (*V*), lattice surface area (*A*), and specific particle surface area (S_g) in AlO(OH) *x* H₂O, θ -Al₂O₃ and α -Al₂O₃ powders.

^a The density calculated from V is given in parentheses.

^b The S_{g} value refers to spherical shape of particles of average size *d* as determined by the $\Delta 2\theta_{1/2}$ value.

sis. No impurity has been found in a detectable 0.1 at.% or still lower trace. Average *d*-value has been calculated from the widths $\Delta 2\theta_{1/2}$ of the X-ray diffraction peaks with the Debye–Scherrer relation. Mesoporous structure of the sample was studied by Φ value, obtained from the difference in observed and theoretical values of its density and by the standard N₂ gas sorption method at low temperature such as 77 K. The density was measured, within an error of ±0.01 g/cm³, by displacement of N₂ gas by Archimedes principle using a Penta Pyknometer (from Quanta Chrome, USA).

3 Results and discussion

3.1 Molecular growth in mesoporous Al₂O₃ structure

The hydrolysis of Al atoms by the reaction with H_2O molecules at the nascent Al plate surface (immersed in water) occurs in a controlled manner by adding the reaction species of OH^- ions in successive steps. H_2O molecules that come into contact with the Al surface instantaneously dissociate into H^+ and OH^- ions to conduct the hydrolysis as in Fig. 1.

The intermediate $[AlO(OH)]^{2+}$ or $[AlO(OH)_2]^+$ reaction species in step (1a) or (1b) readily proceeds to the AlO(OH) molecule by neutralizing a total of zero electronic charge. It occurs by just releasing a proton H⁺ with a minor redistribution of the internal energy. The energy, being a local property, readily redistributes by dissipation of the excess heat through the surroundings.

Two primary driving forces, (i) the initial chemical potential μ_e between the reaction species and (ii) the flow of the reaction species, drive the nascent AlO(OH) molecules to grow in a common direction perpendicular to the reaction surface. A unidirectional polymeric structure results in molecules interconnecting one another in successive steps as long as it is not disrupted by local perturbations. This is satisfied in a controlled reaction at room temperature. A model structure of this is shown in Fig. 2a. As the temperature rises above room temperature, the interstitial H₂O molecules locally desorb and the structure redistributes in a modified Al₂O₃ x H₂O structure with 2AlO(OH) \rightarrow H₂O + Al₂O₃ molecular decomposition (Fig. 2b).

From the TEM micrograph (Fig. 3a), a non-disrupted AlO(OH) x H₂O growth appears to last over several molecules. It results in particles with $D \sim 35$ nm diameter. The particles distribute through pores (with 2 to 5 nm distance between particles) which develop when the reaction is disrupted by the local temperature. Their elongated ellipsoidal shapes, with $\phi \sim 1.8$ aspect ratio, are in accord with their growth in a directional Al hydrolysis. The corresponding electron diffraction pattern (Fig. 3b) has four rings at interplanar spacing d_{hkl} of 0.492, 0.320, 0.237 and 0.190 nm in comparison to the 0.4850, 0.3198, 0.2358 and 0.1872 nm values in (002), (112), (213) and (314) reflections in X-ray diffraction (Fig. 4a) with lattice parameters a = 0.866 nm, b = 0.506 nm, c = 0.983 nm and $\beta = 94^{\circ}34'$ in C_{2h}^{5} monoclinic structure

$$nAI + nH_{2}O \longrightarrow \left[\begin{array}{c} OH & OH & OH \\ ..., AI & AI & AI \\ AI & AI & AI \\ \end{array} \right]_{n}^{n+} + \frac{1}{2}nH_{2} \qquad (1a)$$

$$\left[\begin{array}{c} OH & OH OH OHOH OH \\ ..., AI & AI & AI \\ \end{array} \right]_{n}^{n+} + \frac{1}{2}nH_{2} \qquad (1b)$$

$$\left[\begin{array}{c} OH & O OH & O OH \\ ..., AI & AI & AI \\ \end{array} \right]_{n}^{n+} + \frac{1}{2}nH_{2} \qquad (1c)$$

Fig. 1 A schematic representation of surface hydrolysis of Al metal with nascent surface in AlO(OH) *x* H₂O in water. The initial chemical potential μ_e lies perpendicular to the surface.

Fig. 2 a) A model $[AlO(OH) x H_2O]_n$, n = 8, metalloceramic polymeric structure in association of molecules one after another in a) directional Al hydrolysis. b) A polymeric structure retained in a controlled Al₂O₃ x H₂O phase transformation. It has a lot ($x \sim 1.4$) of H₂O molecules (shown by the solid circles) with hydrogen bonding in a microporous structure.

[23]. An average d = 30 nm, estimated from $\Delta 2\theta_{1/2}$ in the peaks, compares with the size of particles in TEM, characterizing them to be single crystallites.

The model [AlO(OH) $x H_2O]_n$, n = 8, structure (Fig. 2a) has plenty of H₂O molecules, since $x \sim 1.4$. The real value of *n* is still larger, of the order of 10⁵ in $D \sim 35$ nm structure, as can be determined by n = V/v, with $V = \frac{4}{3}\pi \left[\frac{1}{2}D\right]^3 (\phi)^{-2}$ its average volume and $v = 5.4 \times 10^{-2}$ nm³ the AlO(OH) $x H_2O$ molecular volume. A similar structure can be designed by a local molecular decomposition of it to Al₂O₃. In Fig. 2b, it is shown with a change in Al³⁺ coordination from three to four. The Al³⁺ cations in AlO₄ sites, as in liquid Al₂O₃ [17], involve an excess oxygen (ζ) in average Al₂O_{3+ ζ} $x H_2O$ composition. At $n \to \infty$, $\zeta \sim 0.75$ in the absence of oxygen vacancies. On heating, the H₂O molecules are liberated, mostly over 500–600 K, in a porous structure. A shown in Fig. 4b, a high-energy amorphous state exists before it transforms to polymorphic Al₂O₃. It is obtained at 600 K with an energized AlO(OH) $x H_2O$ with Φ as much as 30% by Al hydrolysis in H₂O vapour at ~310 K.

Part of the H₂O or oxygen in porous Al₂O₃ x H₂O in Fig. 2b is slowly liberated at temperature sufficient enough to reorder Al³⁺ and O²⁻ in Al₂O₃ polymorphs. It occurs as early as at 800 K by forming fine pores between growing structures in stable particles. Those H₂O confined in between particles of a few

Fig. 3 a) TEM micrograph and b) electron diffractogram in mesoporous AlO(OH) x H₂O.

Fig. 4 X-ray diffraction peaks in mesoporous AlO(OH) x H₂O in C_{2h}^{5} monoclinic crystal structure (curve a) and amorphous Al₂O₃ x H₂O obtained from it at 600 K for 2 h (curve b). Curve (c) is a close-up of curve (b) indicating three halos at 21.0, 29.1, and 43.6 nm⁻¹ wavevectors.

nanometers become immobile and hinder the particles from recombining and growing any more. In this case, they merely extend in tightly curved layers by enclosing the pores so as to minimize the total surface and volume Gibbs free energy. This is consistent with TEM micrograph (Fig. 5a) in α -Al₂O₃ obtained by heating the precursor at 1475 K for 2 h. Thin platelet particles of 15–30 nm diameter appear with pores in acicular shapes of 10–15 nm lengths with $\phi \sim 2$. This is in a refined microstructure in the precursor in Fig. 3a. The corresponding electron diffraction pattern (Fig. 5b) has four rings at 0.258, 0.225, 0.160, or 0.128 nm in (104), (006), (116), or (208) reflections.

Yang et al. [2] developed a similar large-pore (up to 14 nm) mesoporous Al_2O_3 using a metalloceramic gel with poly(alkylene oxide) block copolymer as a structure-directing agent in a solution with $AlCl_3$. In $AlCl_3$ -polymer solution in ethanol, Al^{3+} cations hydrolyze and polymerize into a network in a transparent gel at 313 K. The organic component burns out in a mesoporous Al_2O_3 powder if heating the

Fig. 5 a) TEM micrograph and b) electron diffractogram in mesoporous α -Al₂O₃ (metastable) powder after annealing at 1475 K for 2 h. Two typical diffraction spots in a twin structure are marked by the lines.

Fig. 6 A model mesoporous structure with hexagons of AlO₄ structural units in Al₂O₃.

gel (dried) at 673 K. It consists of nanocrystallites within relatively thick amorphous walls of 3.5 nm thickness. An altogether different structure with amorphous pore walls appears in silica and derivatives through a surfactant templating [1, 2]. This approach applies with sporadic success to-non-silica oxides. As compared to both of them, our method with Al metal hydrolysis seems to be rather simple, economic, and versatile for a large-scale synthesis of mesoporous Al_2O_3 and composites. It involves no other chemical to promote the hydrolysis carried out in an aqueous solution with common metal salts.

A schematic model of the kind of structure we envisage in mesoporous Al_2O_3 in this example is shown in Fig. 6. It consists of discrete fragments rather than a single continuous layer as per the TEM images. Townsend et al. [24] modeled a continuous layer structure in mesoporous carbon in terms of carbon rings. Harris et al. [7] extended this model with pentagons and hexagons of carbon rings, which more closely ascribe the observed curved surfaces in discrete fragments in mesoporous carbon deduced by carbonization of sucrose. In our model, curved and closed structures in Al_2O_3 result from molecular association of Al_2O_3 in AlO_4 structural units. A molecular structure of interconnected network is retained on the grain surface on recrystallizing it into Al_2O_3 polymorphs.

3.2 Controlled phase transformation in mesoporous Al₂O₃ structure

Mesoporous α -Al₂O₃ has a significant variation in X-ray diffraction as processed at different temperatures in the 1475–1900 K range. Figure 7 compares diffractograms in the samples processed at (a) 1475 K and (b) 1525 K for 2 h. As assigned in Table 2, diffractogram (a) involves a total of 17 peaks (peak intensity $I_p \ge 3$ units) in addition to those in the corundum structure [25] in diffractogram (b) or Table 3. They are relatively broad, according to d = 28 nm, at 0.4503, 0.3075, 0.2840, 0.2720, 0.2370, 0.2310, 0.2250, 0.2165, 0.2025, 0.1961, 0.1910, 0.1735, 0.1490, 0.1455, 0.1440, 0.1370 and 0.1285 nm. A similar series of peaks (Fig. 7c) lie in A2/M monoclinic θ -Al₂O₃ structure (processed at 1275 K in 2 h) of lattice parameters a = 0.5650 nm, b = 0.2900 nm, c = 1.1720 nm, and $\beta = 104.5^{\circ}$ against the reported a = 0.570 nm, b = 0.290 nm, c = 1.180 nm, and $\beta = 104.5^{\circ}$ values [25]. It has 12 major peaks of 0.2839, 0.2721, 0.2553, 0.2437, 0.2309, 0.2249, 0.2013, 0.1916, 0.1540, 0.1487, 01453, and 0.1388 nm in $\langle d \rangle = 12$ nm. The peak at 0.1388 nm, instead of the 0.2720 nm in the above series, is the most intense peak of the diffractogram.

Adversely, the present peak series has a larger $V_0 = 0.190 \text{ nm}^3$ lattice volume in $\langle d \rangle = 28 \text{ nm}$ over $V_0 = 0.186 \text{ nm}^3$ in the θ -Al₂O₃ in $\langle d \rangle = 12 \text{ nm}$, with a = 0.5720 nm, b = 0.2920 nm, c = 1.1750 nm, and

Fig. 7 X-ray diffraction peaks in nanoparticles in metastable α -Al₂O₃ (curve a), usual α -Al₂O₃ (curve b), and θ -Al₂O₃ (curve c) as annealed at 1475 K, 1525 K and 1275 K for 2 h, respectively.

 $\beta = 104.5^{\circ}$. V_0 usually expands in the size effects in nanoparticles below a critical $d = d_c$. This is demonstrated with a high-resolution X-ray diffractogram in (113) peak in the true corundum structure in Fig. 8. The peak regularly shifts to smaller d_{hkl} as d grows from 35 nm in (a) to 41 nm in (c). An increase in d_{hkl} is noticed in d above 41 nm as in (e) in sample processed at 1900 K for 2 h. Possibly, a local O²⁻ redistribution occurs in regular AlO₆ sites if not achieved before. It is known that α -Al₂O₃ forms via θ -Al₂O₃ as a precursor state. Al³⁺ in θ -Al₂O₃ lies in AlO₄ and AlO₆ sites in a spinel structure with cation vacancies mostly in AlO₆ sites [13]. Part of these vacancies are retained in oxygen-deficient AlO_{6- δ}, $\delta \le 2$, sites on the phase transformation in α -Al₂O₃ at early temperatures.

A close-up of the X-ray diffraction reveals a trace of these peaks to be present on annealing at temperatures as high as 1900 K. For example, in Fig. 9, seven additional peaks lie in modified positions and intensities at 0.2810, 0.2293, 0.1957, 0.1919, 0.1765, 0.1335, and 0.1273 nm after 2 h of annealing at 1700 K. Redistribution of intensities in the peaks confirms reordering of atoms in the lattice. The most intense reflection thus appears in (104) peak on annealing at 1475 K (Fig. 7a) while in (113) peak at 1700 K (Fig. 9). They have the same intensity if annealing at 1525 K (Fig. 7b).

The obtained structure, which is stabilized with immobile pores, behaves as highly rigid and is nonreactive to its further growth at these temperatures. The pores maintain a strict control of grain growth and thus allow it in true nanocrystallites. Otherwise, at such high temperature, it rapidly grows to several hundred nanometers [11, 12, 26]. This is not feasible with a non-porous precursor in which the molecules adhere to one another by strong hydrogen bonding. They do not dehydrate in mesoporous structure. A seeding by 0.2–2 mol% additive of CuO, NiO, or MgO [10, 12] has been used to control submicrometer α -Al₂O₃ size. Spray pyrolysis with Al³⁺ chloride or nitrate [27] and glycothermal treatment of Al³⁺ hydroxide [28] give a reasonably controlled α -Al₂O₃ size. Nevertheless, it does not come down below 100 nm in any case.

Modified sol-gel and other new methods are being developed in order to control α -Al₂O₃ size in small crystallites [29–31]. Lin et al. [30] used an emulsion of Al(OH)₃ gel in oleic acid to obtain α -Al₂O₃ by firing it at temperature as high as 1373 K. Carbon, which is liberated by the decomposition of oleic acid during the thermal process, prevents the growth of agglomerates in a sequence of phase formation of the

d_{hkl} (nm)		Ι	h	k	l	
observed	calculated					
0.4503	0.4353	15	0	0	3 ^a	
0.3476	0.3488	69	0	1	2 ^b	
0.3075	0.3265	5	0	0	4	
0.2840	0.2995	45	1	0	3 ^a	
0.2720	0.2612	58	0	0	$5^{\rm a}$	
0.2550	0.2560	100	1	0	4^{c}	
0.2435	0.2383	54	1	1	$0^{\rm c}$	
0.2370	0.2344	43	1	1	1	
0.2310	0.2238	38	1	1	2^{a}	
0.2250	0.2177	25	0	0	6 ^a	
0.2165	0.2063	12	2	0	0	
0.2085	0.2090	90	1	1	3 ^b	
0.2025	0.2038	35	2	0	1^{a}	
0.1961	0.1967	4	2	0	2	
0.1910	0.1925	22	1	0	6 ^a	
0.1785	0.1744	9	0	2	4^{c}	
0.1735	0.1700	40	1	0	7	
0.1601	0.1607	65	1	1	6 ^b	
0.1545	0.1549	16	2	1	1^{c}	
0.1511	0.1518	9	0	1	8^{b}	
0.1490	0.1517	10	1	2	2^{a}	
0.1455	0.1497	17	2	0	6 ^a	
0.1440	0.1468	6	1	2	3 ^a	
0.1405	0.1407	43	1	2	4 ^b	
0.1385	0.1376	45	0	3	$0^{\rm c}$	
0.1370	0.1339	43	1	2	5	
0.1285	0.1280	7	2	0	8	
0.1240	0.1245	10	1	0	10 ^b	
0.1234	0.1239	6	1	1	9 ^b	
0.1190	0.1191	3	2	2	0^{b}	

Table 2 Interplanar spacing (d_{hkl}) and relative intensities (*I*) in characteristic peaks in X-ray powder diffraction in metastable phase in α -Al₂O₃ nanocrystals.

The calculated d_{hd} are from the average lattice parameters a = 0.4765 nm and c = 1.3060 nm. The sample has been annealed at 1475 K for 2 h. The peaks that match with other phases are marked as ^a θ -Al₂O₃, ^b α -Al₂O₃, and ^c θ -Al₂O₃, and ^c θ -Al₂O₃.

emulsion $\rightarrow \gamma$ -Al₂O₃ $\rightarrow \delta$ -Al₂O₃ $\rightarrow \theta$ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃. Average *d*-value has been controlled to be 60 nm. No δ -Al₂O₃ phase appears in processing by a mesoporous boehmite precursor in our work. It is more effective in controlling grain growth in extremely small Al₂O₃ crystallites of size under 50 nm at temperatures as high as 1900 K.

3.3 Critical dimension of thermodynamic stability in θ -Al₂O₃ particles

The metastable θ -Al₂O₃ forms and exists in self-confined dimension, $d \le R_c$, as per its total surface and volume Gibbs free energies. To determine the critical value R_c of its thermodynamic stability, we studied θ -Al₂O₃ growth by heating at selected temperatures from 1100 to 1400 K for 2 h. As derived by $\Delta 2\theta_{1/2}$, it appears at $d \sim 10$ nm and grows up to 20 nm. γ -Al₂O₃ lies at $d \le 10$ nm. The BET measurements give

$\mathbf{d}_{hkl} (\mathbf{nm})$		Ι	h	k	l	
observed	calculated					
0.3475	0.3484	76	0	1	2	
0.2550	0.2555	100	1	0	4	
0.2380	0.2381	44	1	1	0	
0.2085	0.2087	100	1	1	3	
0.1741	0.1742	42	0	2	4	
0.1603	0.1604	77	1	1	6	
0.1549	0.1548	2	2	1	1	
0.1515	0.1514	6	0	1	8	
0.1406	0.1406	31	1	2	4	
0.1375	0.1375	45	0	3	0	
0.1243	0.1242	12	1	0	10	
0.1236	0.1236	8	1	1	9	
0.1191	0.1191	4	2	2	0	
0.1187	0.1186	2	2	2	1	

Table 3 Interplanar spacing (d_{hkl}) and relative intensities (*I*) in characteristic peaks in X-ray powder diffraction in α -Al₂O₃ nanocrystals.

The calculated $d_{\text{\tiny hill}}$ are from the average lattice parameters a = 0.4762 nm and c = 1.3020 nm. The sample has been annealed at 1525 K for 2 h.

10–25 nm average particle surface area diameter, with a volume to surface shape factor of 6. It converts to α -Al₂O₃ by a sudden increase in *d* of 35 nm on raising the temperature to 1475 K. A similar *d*-value has been reported by Wen et al. with AlO(OH) α H₂O precipitate by reaction of Al³⁺ nitrate with NH₄OH [14]. A pure θ -Al₂O₃ appears as early as at 1173 K, with a complete conversion to α -Al₂O₃, *d* = 45 to 55 nm, at 1453 K. No θ -Al₂O₃ lies at *d* > 25 nm. It can be taken as the *R_c* value for all practical purposes.

Fig. 8 Shift in X-ray diffraction peak in (113) reflection in α -Al₂O₃ nanoparticles with processing temperature at a) 1475 K, b) 1525 K, c) 1700 K, d) 1900 K and e) 1900 K for 2 h, except in d) for 10 min.

Fig. 9 a) A close-up of X-ray diffraction showing the additional peaks present for metastable α -Al₂O₃ in weak intensity (marked by the asterisks) in the sample annealed at 1700 K for 2 h. b) The peaks in the usual α -Al₂O₃ are indexed with (hkl).

Although the impurities, dopants, or porosity modify the grain growth and phase transformation, their role in R_c has not been addressed so far.

Thermodynamically, formation of a solid particle in volume V enclosed in surface area A involves a change in the total Gibbs free energy,

$$\Delta G = A \sigma - \Delta G_{\rm v} V, \tag{2}$$

with ΔG_{ν} (>0) the change in the volume Gibbs free energy per unit volume on its formation from an amorphous state [32]. Assuming a spherical shape of particle of radius r, it can be rewritten as

$$\Delta G = 4\pi r^2 \sigma - \frac{4}{3}\pi r^3 \Delta G_{\nu}.$$
(3)

On dividing by the mass, $m = \frac{4}{3} \pi r^3 \rho$ (with ρ the density), it turns into a simple working relation,

$$\Delta G_m^k = \frac{3\sigma}{r\rho} + C_m^k,\tag{4}$$

with $C_m^k = -\Delta G_v^k \rho^{-1}$ a constant for a polymorph *k*.

. . . .

. ~ .

Fig. 10 Gibbs free energy change ΔG_m^k in formation of a) γ -Al₂O₃, b) θ -Al₂O₃, and c) α -Al₂O₃ nanoparticles in a spherical shape. The figure in the inset portrays their C_m^k energy level diagram at zero surface area.

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Equation (4) represents a monotonically decreasing function of release of the excess structural energy ΔG_m^k with grain growth *r*. The ΔG_m^k vs. *r* curve in a polymorph *k* differs from the one in the thermodynamic standard state (α -Al₂O₃) primarily in C_m^k . Extrapolation of the curve to $r \rightarrow \infty$ gives the value of C_m^k by the ΔG_m^k bulk value. The simulations made with $\rho = 3.67, 3.58$, or 3.98 g/cm³ and $\sigma = 0.79, 1.58$, or 2.08 J/m² in γ -, θ -, or α -Al₂O₃ are portrayed in Fig. 10. An intermediate σ -value of twice that in γ -Al₂O₃ is taken in θ -Al₂O₃ for lack of its known value. A relative C_m^k value, i.e. 178.4 J/g in γ -Al₂O₃ or 17.1 J/g in θ -Al₂O₃, used with respect to the C_m^{α} value (assumed to be zero as usual) in bulk α -Al₂O₃ reproduces the experimental $R_c = 10$ or 25 nm values at which they execute the phase transformation to θ -Al₂O₃ or α -Al₂O₃. The 178.4 J/g value derived for C_m^{γ} compares with the $\Delta H = 132 \pm 20$ J/g enthalpy proposed in hypothetical coarse-grained γ -Al₂O₃ relative to bulk α -Al₂O₃ using molecular dynamics (MD) simulations [11].

The intersections in curves (a) γ -Al₂O₃ and (b) θ -Al₂O₃ with curve (c) α -Al₂O₃ at points A and B in Fig. 10 determine the critical $S_m^{\gamma} = 129.1$ and $S_m^{\theta} = 105.9$ J/g surface energies (after the corrections for the C_m^k values) below which the particles exist in the involved structures. $A_m^{\gamma} = 163.5$ and $A_m^{\theta} = 67.0 \text{ m}^2/\text{g}$ are obtained by their abscissas. This is in agreement with the MD simulations that γ -Al₂O₃ becomes energetically stable as A_m^k exceeds $125 \text{ m}^2/\text{g}$ [11]. As shown by the energy level diagram in the inset to Fig. 10, both of them are surface-stabilized high-energy polymorphs with respect to α -Al₂O₃. γ -Al₂O₃, involving the maximum energy, nucleates and grows first in early sizes to point A. In a non-disrupted growth, the resulting particles convert and grow in θ -Al₂O₃ as an intermediate phase at moderate energy between A and B. α -Al₂O₃ appears after point B at $A_m^k < 67 \text{ m}^2/\text{g}$ (d > 25 nm). It involves γ -and θ -Al₂O₃ phase selection sequence as per S_m^k energy. Differences in S_m^k allow the formation and existence of a particular phase at a given temperature.

3.4 Vacancy-stabilized α-Al₂O₃ nanoparticles and twin structure

The Al^{3+} vacancies (holes) and oxygen-deficient $AlO_{6-\varepsilon}$ sites determine a metastable α - Al_2O_3 structure. Let us consider an ideal close packing of the atoms in an ideal α - Al_2O_3 structure and then point out small

Fig. 11 Distribution of Al³⁺ cations and holes in a) O^{2-} layer and b) simple hexagonal lattice in α -Al₂O₃. A_1 , A_2 , and A_3 are the basal hexagonal cell vectors. The lattice vectors a_1 , a_2 , and a_3 describe a rhombo-hedral subcell (after Kronberg [19]).

Fig. 12 A local model distribution of Al^{3+} cations and holes in AlO_6 and AhO_6 sites in a plane (*hkl*) in three feasible configurations: a) all AlO_6 sites, b) two AlO_6 and two AhO_6 sites, and c) three AlO_6 and one AhO_6 sites. A modified plane (a) in d_{hkl} spacing appears in (b) while it splits into two modified planes in a twin structure in (c).

deviations that arise in these defects. It consists of $R\overline{3}c$ hexagonal unit cell with $Z = 18 \text{ Al}_2\text{O}_3$ molecules per hexagonal lattice. Distribution of Al³⁺ and holes in two O²⁻ layers is given in Fig. 11a. The O²⁻ forms a near-close-packed hexagonal sublattice and Al³⁺ occupies two-thirds of the AlO₆ sites. The unit cell (Fig. 11b) has four consecutive O²⁻ layers in average 20 Al³⁺ cations and 11 holes. A_1 , A_2 , and A_3 are the unit lattice vectors in the basal plane.

Fig. 13 Curing oxygen-deficient structural units from (a) $AIO_{6-\delta}$, $\delta = 2$, to (b) AIO_6 by a reaction with (c) O^{2-} in the mobile AhO_6 hole in a metastable α -Al₂O₃. As given in (d) θ -Al₂O₃, an enhanced dimension appears of AIO_6 if it exists with $AIO_{6-\delta}$, $\delta \le 0$, in a high-energy configuration.

An Al³⁺ hole (Ah), a region of localized negative charge, is bounded by outer electrons in O²⁻ in AhO₆. The cations and holes are arranged in a manner to give a maximum separation of like charges and a minimum separation of unlike charges as per the Al³⁺ and O²⁻ bonding, so that the total charge is neutralized. The AhO₆ group thus has a manifested AlO₆ dimension. As shown in Fig. 12, a substitution of AhO₆ in part of the AlO₆ sites raises the separation between the layers from d_{hkl} to $d_{hkl'}$. Two different d_{hkd} and $d_{hkl'}$ sets of planes may result at a small $f^h < 0.36$ fraction of holes, insufficient to fill all of their positions ($f^h = 11/31 \cong$ 0.36) in the four layers. In this case, at least one layer gets its modified position. A single set of d_{hkl} or $d_{hkl'}$ planes exists at $f^h = 0$ or 0.36. No stable structure exists with holes at $f^h > 0.36$. An AlO₆₋₈ defect causes moderate $d_{hkl'}$ as it has a smaller size than AlO₆, e.g., Al³⁺ has 0.0675 nm ionic size in AlO₆ while 0.0530 nm in AlO₄ [33].

This model structure describes the X-ray diffraction in metastable α -Al₂O₃ (Table 2), with the same $R\overline{3}c$ hexagonal structure as in bulk α -Al₂O₃. It has larger a = 0.4765 nm and c = 1.3060 nm over the equilibrium a = 0.4742 nm and c = 1.2930 nm values after 2 h of annealing at 1700 K. A non-porous bulk α -Al₂O₃ has a = 0.4758 nm and c = 1.2991 nm [25]. The excess volume is relieved by local reordering of atoms in the equilibrium configuration by a structural relaxation [18, 34]. The peaks in metastable α -Al₂O₃ in (003), (005), (006), (110), and (112) reflections have relatively larger d_{hkl} by 0.005 to 0.015 nm over the average values calculated from the average a and c values. These are the hole-sensitive reflections. The (103), (004), and (206) peaks have lower d_{hkl} values by up to 0.019 nm over the calculated ones. A large atomic relaxation, as much as 0.1 nm, is shown in α -Al₂O₃ boundary planes through atomistic simulation of the grain boundary structure [20]. It was realized quite early [19, 35] that the Al³⁺ displaces towards the vacant sites. The cation sheets are thus puckered or staggered rather than flat. It distorts AlO₆ in different Al–O bonds (Fig. 13).

In Fig. 14, electron diffractograms (a) and (b) in a mesoporous α -Al₂O₃ of TEM (c) have a number of twins as marked by the asterisks. They lie at off positions of the regular diffraction points in the regular

(b)

arrays. The results are in accord with the basal slip and twinning observed in HREM images in α -Al₂O₃ [18, 20]. Each of the two boundaries in a basal twin has a different two-dimensional structure. This arises in "splitting of the basal plane" in two d_{hkl} sets in AhO₆ and AlO₆ size mismatch. Our model gains further support by the fact that the grain boundary or facet planes in α -Al₂O₃ are found to be dense in O^{2–} anions [36], i.e., they have significant AhO₆ groups. A problem in studies of twins in α -Al₂O₃ arises from the fact that a unidirectional shear involving successive displacements of pairs of O^{2–} planes does not give a twin [37]. Chen and Howitt [37] proposed successive motion of partial dislocations, while Bilde-Sorensen et al. [38] included cross-slip of the partials to model twin formation in α -Al₂O₃. Kaplan et al. studied HREM images with energy and grain boundary structure calculations with an ionic model [18]. The twin boundary assumes one of two different configurations, which arise in anisotropic grain growth during twin formation.

The Al³⁺ holes and O²⁻ ions surrounding a hole in an AhO₆ site appear to be stable at 1475 K. They become effectively mobile at a temperature as high as 1900 K and thus locally react with nearby oxygen-deficient AlO_{6- σ} groups to cure in regular AlO₆ groups. This is shown in Fig. 13 with δ = 2 in AlO₄ group. As in θ -Al₂O₃ [13], the four O atoms in AlO₄ are in three different Al–O bond lengths, 0.1710, 0.1745, and 0.1811 nm. They assume enhanced 0.1969 and 0.1857 nm values [13] in cured AlO₆. This is well reflected in 1.1 % increase in V in the lattice (Fig. 8e) relative to that in the sample processed at 1700 K (Fig. 8c).

3.5 IR spectrum in vacancy-controlled α -Al₂O₃ structure

IR spectroscopy is a very sensitive analytical tool for analyzing local structure in molecular species and their reordering in a specific structure [39–43]. This is applied here by analyzing whether our metastable

 α -Al₂O₃ phase (obtained at 1475 K) has really a new local structure of AlO₆ groups, or defects of Al³⁺ vacancies (in AhO₆ sites) and AlO_{6- δ} architects, or just an intermediate structure in the two phases α - and θ -Al₂O₃. To resolve it, we studied the spectra in (a) θ -Al₂O₃, (b) metastable α -Al₂O₃, (c) α -Al₂O₃, and (d) a 1:1 mixture of (a) and (c). The results compared in Fig. 15 reveal the spectrum in two primary band groups of (i) 300–525 cm⁻¹ and (ii) 400–1000 cm⁻¹ as marked by the letters A, B, and C. The shape, size, and internal structure of bands differ markedly in the four samples. For example, band group (i), which extends to 400 cm⁻¹ in (a), marked by point B, shifts to 475 cm⁻¹ in (b) and to 525 cm⁻¹ in (c) or (d). The intensity profile in band group (ii) varies in a near Vshape in (a) and (b), while no such distinct structure persists

Fig. 15 IR spectra in nanocrystals in (a) θ -Al₂O₃, b) metastable α -Al₂O₃, (c) usual α -Al₂O₃, and d) 1:1 mixture in a) and c). The three polymorphs have been annealed for 2 h at 1275 K, 1475 K, and 1525 K, respectively.

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

bands (cm ⁻¹)			assignment	
θ -Al ₂ O ₃	metastable α -Al ₂ O ₃	α -Al ₂ O ₃	-	
330 (vw)	335 (vw) 366 (w)		V_2 (AlO ₄), deformation	
460 (ww)	448 (ms)	383 (vw)	v_2 (AlO _{6-δ}), deformation v_2 (AlO _{6-δ}), deformation	
400 (VW)	535 (s)	490 (s) 490 (vw)	v_2 (AIO ₆), deformation v_4 (AhO _{6-δ}), deformation	
550 (vs) 610 (s)	580 (vs) 640 (s)	585 (vs) 640 (s) \int	v_4 (AlO ₆), deformation	
704 (ms)	712 (ms)	710 (ms)	v_1 (AlO ₄)/(AlO ₆), stretching	
772(8) 820 (vs)	820 (s)	805 (ms)	v_3 (AlO ₆), stretching	
875 (s)	820 (s)		v_3 (AlO ₄), stretching	

Table 4 Infrared characteristic bands in nanoparticles in the metastable α -Al₂O₃ and usual θ -Al₂O₃ and α -Al₂O₃ polymorphs.

Relative band intensities are given in parentheses: vs, very strong; s, strong; ms, medium strong; w, weak; and vw, very weak.

in other samples. Furthermore, in comparison to (a), a new band (bandwidth $\Delta v_{1/2} = 30 \text{ cm}^{-1}$) has developed at 448 cm⁻¹ together with an improved energy as well as intensity in the band at 580 cm⁻¹ (550 cm⁻¹ in (a)) in (b). A rather broad band, $\Delta v_{1/2} = 50 \text{ cm}^{-1}$, at 450 cm⁻¹ appears with two satellite components at 383 and 490 cm⁻¹ in (c).

The metastable α -Al₂O₃ is thus characterized by an unambiguously different IR spectrum than in θ -Al₂O₃ or α -Al₂O₃. It does not represent their mixed phase. A mixed α -Al₂O₃ phase, if it exists at all with significant θ -Al₂O₃ (under 50% as per I_p in the X-ray diffraction peaks in Fig. 7), results in an altogether different and complex spectrum, as shown in Fig. 15d. Assignments of all observed bands in terms of possible modes of vibration in AlO₄ and/or AlO₆ groups are given in Table 4. As can be derived through group theory [39], there are a total of four vibration groups v_i , $i = 0 \rightarrow 4$, in AlO₄ whereas there are six ($i = 0 \rightarrow 6$) in AlO₆. Their distributions and symmetry species in T_d (AlO₄) and O_h (AlO₆) point groups are given in Tables 5 and 6. The occurrence of most of them in the IR spectra in Table 4 infers lowered site symmetry C₁ in AlO₄ and D_{2d} or C₁ in AlO₆ in the presumed sublattice distortion. Otherwise, only the v₃ and v₄ bands occur in IR in both AlO₄ and AlO₆. This is obeyed in γ -Al₂O₃ with four bands at 357, 536, 744, and 807 cm⁻¹ [41].

The doublet band at average 350 cm⁻¹, intrinsic to v₂ and v₄ AlO₄ deformation vibrations [39], in spectra (a) and (b) demonstrates AlO₄ groups to be present in metastable α -Al₂O₃ as well. The ratio (F_{tt0}) of AlO₄/AlO₆ is 1:2 in θ -Al₂O₃ [13]. While heating at 1475 K, part of the AlO₄ in it converts to AlO₆ with the phase transformation to the metastable α -Al₂O₃. This reflects a drastic increase in intensity in

Table 5	Distribution of four fundamental molecular vibration groups in AlO_4 structural unit in Al_2O_3 .

mode	symmetry sp	ecies				
	point group (T _d)		site symmetry (C ₁)		factor group (D _{2d})	
v_1	$A_{1}(R)$				$A_1(\mathbf{R})$	
V_2	E (R)		$A_1(\mathbf{R}, \mathbf{IR})$		$B_1(\mathbf{R})$	
V_3	$F_2(R, IR)$	\sim			$B_2(IR, R)$	
V_4	$F_2(R, IR)$	/			E(IR, R)	

R, Raman-active; and IR, infrared-active vibrations. Vibration v_2 is doubly degenerate while v_3 and v_4 are triply degenerate in the total of nine vibrations.

mode species C_1 T_d point group (O_h) $A_{1g}(R)$ $A_1(R)$ v_1 $E_{g}(R)$ E (R) v_2 $F_{1u}(IR)$ $A_1(R, IR)$ $F_2(R, IR)$ V_{3}, V_{4} $F_{2g}(R)$ $F_2(R, IR)$ V_5 F_{2u} (IA) F_1 (IR) v_6

Table 6 Distribution of six fundamental molecular vibration groups in AlO₆ structural unit in O_h , T_d and C_1 point groups.

R, Raman-active; IR, infrared-active; and IA, inactive vibrations. Vibration v_2 is doubly degenerate while v_3 to v_6 are triply degenerate in the total of 15 vibrations.

the characteristic band v_2 at 448 cm⁻¹ (or v_4 at 580 cm⁻¹) at the expense of that in the v_3 (AlO₄) band at 875 cm⁻¹. A fractional value of AlO₄ groups of

$$F_{t}^{k} = \kappa \frac{I_{t}}{I_{t} + I_{0}} \sim 18\%$$
(5)

is obtained from relative intensities I_t and I_0 in the 366 and 448 cm⁻¹ bands in two sites in metastable α -Al₂O₃. The constant $\kappa = 0.475$, derived with $F_t^k = \frac{1}{3}$ with I_t and I_0 in the θ -Al₂O₃ bands, is used. Another band at 535 cm⁻¹, which lies as a shoulder of v_4 (AlO₆) band at 580 cm⁻¹ in metastable α -Al₂O₃, is ascribed to the v_4 band in Al³⁺ holes in AhO₆ sites. It disappears on raising the temperature to 1525 K (Fig. 15c) as the holes become mobile at this temperature, presumably recombining to AlO₄ architect defects, $F_t^k \sim 18\%$, to cure into regular AlO₆ groups. This is accompanied with a concomitant decrease in I_t in the 800–900 cm⁻¹ region (marked by the downward arrow in Fig. 15) with an increase in I_0 in the band at 585 cm⁻¹. Moreover, two new bands developed with an extremely weak intensity at 383 and 490 cm⁻¹ (in v_2 and v_4 vibrations in Table 4) in a modified force field in trace of AhO_{6- δ} sites in coupling with neighboring Al³⁺ cations. Other AhO₆ vibrations do not appear in distinct bands in overlapping with AlO₆ bands.

4 Conclusions

Thermodynamically stable α -Al₂O₃ nanoparticles in support with high-energy surface and Al³⁺ vacancies form at a controlled porosity, 10–25%, in a mesoporous structure. The structure is analyzed and modeled with X-ray diffraction, microstructure, and IR spectrum. The synthesis carried out with a monolithic AlO(OH) *x* H₂O precursor powder (mesoporous) precludes the possibility of other structural inclusions. Unusually, the α -Al₂O₃ nanoparticles arranged through immobile pores (5–15 nm diameter) behave as highly stable in a confined size of 30–50 nm diameter. Otherwise, they readily grow as big as several hundred nanometers in bulk sample [11, 12] at temperatures as high as 1900 K. The configurational entropy predominates the enthalpy to inhibit their confined growth in a thermodynamically stable structure.

The specimen obtained at moderate temperature, ~1475 K, has copious structural defects of oxygendeficient AlO_{6- δ}, $\delta \le 2$, groups and Al³⁺ vacancies (negatively charged holes) in octahedral AhO₆ sites in a metastable α -Al₂O₃ structure. The like or unlike charges arrange themselves at a maximum or minimum separation by neutralizing their total value. A hole thus reassumes a manifested AlO₆ dimension. It is modeled that an uneven distribution of holes in a specific (*hkl*) plane triggers it in a modified structure. This accords with the X-ray diffraction observed with additional peaks relative to those in bulk α -Al₂O₃. A similar twin structure has been observed in selected area electron diffraction and high-resolution electron microscopic images in bulk α -Al₂O₃ [18, 20]. The average concentration in it is not sufficient to show up in X-ray diffraction. The metastable α -Al₂O₃ phase has 2.0% excess volume over the equilibrium value in nanoparticles after annealing (reorders holes and occupied sites by recovering AlO_{6- δ} defects) at temperatures as high as 1700 K. It is characterized with a different vibrational structure than in α -Al₂O₃.

A mobile Al^{3+} hole in a site neighboring an $AlO_{6-\delta}$ defect promotes a plane slipping or a twin structure formation. The dislocation moves into a region of the particle along the $AlO_{6-\delta}$ defects and not along the reverse direction. It is found that the O^{2-} in the hole becomes mobile in metastable α -Al₂O₃ at 1525 K or above, and thus reacts with the defects to cure into a regular AlO₆ polyhedron. A characteristic Ah–O deformation vibration v_4 observed at 535 cm⁻¹ (580 cm⁻¹ in AlO₆) in the IR spectrum in metastable α -Al₂O₃ characterizes the holes to be exclusively present in AhO₆ sites. Its relative intensity with respect to that in θ -Al₂O₃ ($F_{tt0} \sim 33\%$) determines a fractional $F_{tt0} \sim 18\%$ value of Al^{3+} in AlO_{6- δ}, $\delta \sim 2$. Two weak bands developed at the expense of this band in v_2 and v_4 vibrations at 383 and 490 cm⁻¹ in trace of AhO_{6- δ} in a modified force field in cured α -Al₂O₃ at 1525 K.

The results demonstrate the possibilities of varying the microstructure and related properties of α -Al₂O₃ following controlled grain growth and self-induced pinnings of the local structures through mesopores. The AlO_{6- δ} defects and Al³⁺ holes provide sites for initiation and also arrest of self-confined cracks, designing a strengthened structure. The pores act as local pinning barriers to a non-disrupted crack propagation. Otherwise, it grows to be non-disrupted through several grains.

Acknowledgement This work has been financially supported by a research grant from the DRDO (Defence Research & Development Organization) of the Government of India.

References

- [1] T. Sun and J. Y. Ying, Nature (London) 389, 704 (1997).
- [2] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Nature (London) 396, 152 (1998).
- [3] O. Jessensky, F. Muller, and V. Gosele, Appl. Phys. Lett. 72, 1173 (1998).
- [4] W. Zhang and T. J. Pinnavaia, Chem. Soc. Chem. Commun. 1185 (1998).
- [5] W. Cai, Y. Zhang, and L. Zhans, Appl. Phys. Lett. 73, 2709 (1998).
- [6] S. Kondoh, Y. Iwamoto, K. Kikuta, and S. Hirano, J. Am. Ceram. Soc. 82, 209 (1999).
- [7] P. J. F. Harris, A. Burian, and S. Duber, Philos. Mag. Lett. 80, 381 (2000).
- [8] M. Gantier, G. Renaud, L. P. Van, B. Vilette, M. Pollack, N. Thromat, F. Jollet, and J. P. Durand, J. Am. Ceram. Soc. 77, 323 (1994).
- [9] I. Tanaka and H. Adachi, Phys. Rev. B 54, 4604 (1996).
- [10] Z. C. Wang, T. J. Davies, N. Ridley, and A. A. Ogwu, Acta Mater. 44, 4301 (1996).
- [11] J. M. McHale, A. Auroux, A. J. Perrotta, and A. Navrotsky, Science 277, 788 (1997).
- [12] N. S. Bell, S. B. Cho, and J. H. Adair, J. Am. Ceram. Soc. 81, 1411 (1998).
- [13] S. D. Mo and W. Y. Ching, Phys. Rev. B 57, 15219 (1998).
- [14] H.-L. Wen, Y.-Y. Chen, F.-S. Yen, and C.-Y. Huang, Nanostruct. Mater. 11, 89 (1999).
- [15] S. Ram and S. Rana, Mater. Sci. Eng. A 304-306, 790 (2001).
- [16] S. Blonski and S. H. Garofalini, Surf. Sci. 295, 263 (1993).
- [17] S. Ansell, S. Krishnan, J. K. R. Weber, J. J. Felten, P. C. Nordine, M. A. Beno, D. L. Price, and M. L. Saboungl, Phys. Rev. Lett. 78, 464 (1997).
- [18] W. D. Kaplan, P. R. Kenway, and D. G. Brandon, Acta Mater. 43, 835 (1995).
- [19] M. L. Kronberg, Acta Metall. 5, 507 (1957).
- [20] T. Höche, P. R. Kenway, H.-J. Kleebe, and M. Rühle, J. Am. Ceram. Soc. 77, 339 (1994).
- [21] B. E. Yoldas, in: Ultrastructure Processing of Advanced Ceramics, Ed. J. D. Mackenzie and D. R. Ulrich (John Wiley and Sons, New York, 1988), p. 333.
- [22] S. Ram, T. B. Singh, and S. Srikant, Mater. Trans. JIM 39, 485 (1998).
- [23] S. Rana and S. Ram, J. Solid State Chem. 157, 40 (2001).
- [24] S. J. Townsend, T. J. Lenosky, D. A. Muller, C. S. Nichols, and V. Elser, Phys. Rev. Lett. 69, 921 (1992).
- [25] JCPDS (Joint Committee on Powder Diffraction Standards), Powder Diffraction Files, edited by W. F. McClume (International Center for Diffraction Data, Swarthmore, PA, 1979), (A) 11.517, θ -Al₂O₃ and (B) 10.173, α -Al₂O₃.

443

- [26] C. A. Shaklee and G. L. Messing, J. Am. Ceram. Soc. 77, 2977 (1994).
- [27] V. Jokanovic, D. Janackovic, A. M. Spasic, and D. Uskokovic, Mater. Trans. JIM 37, 627 (1996).
- [28] M. Inoue, H. Tanino, Y. Kondo, and T. Inui, J. Am. Ceram. Soc. 72, 352 (1989).
- [29] N. Bahlawane and T. Watanabe, J. Am. Ceram. Soc. 83, 2324 (2000).
- [30] C.-P. Lin, S.-B. Wen, and T.-T. Lee, J. Am. Ceram. Soc. 85, 129 (2002).
- [31] P. K. Sharma, V. V. Varadan, and V. K. Varadan, J. Eur. Ceram. Soc. 23, 659 (2003).
- [32] A. B. Pevtsov, V. Y. Davydov, N. A. Feoktistov, and V. G. Karpov, Phys. Rev. B 52, 955 (1995).
- [33] R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
- [34] S. Ram, Phys. Rev. B 42, 9582 (1990).
- [35] C. B. Carter and K. J. Morrissay, in: Structure and Properties of MgO and Al₂O₃ Ceramics, Vol. 10 (American Ceramic Society, Columbus, OH, 1984) p. 303.
- [36] A. H. Heuer and J. Castaing, in: Structure and Properties of MgO and Al₂O₃ Ceramics, Vol. 10 (American Ceramic Society, Columbus, OH, 1984), p. 238.
- [37] S. J. Chen and D. G. Howitt, Acta. Metall. Mater. 40, 3249 (1992).
- [38] J. B. Bilde-Sorensen, B. F. Lawlor, T. Geipel, P. Pirouz, A. H. Heuer, and K. P. D. Lagerlof, Acta. Metall. Mater. 44, 2145 (1996).
- [39] S. D. Ross, Inorganic Infrared and Raman Spectra (McGraw-Hill, Maidenhead, UK, 1972), p. 289.
- [40] P. Bruesch, R. Kotz, H. Neff, and L. Pietronero, Phys. Rev. B 29, 4691 (1984).
- [41] Y. T. Chu, J. B. Bates, C. W. White, and G. C. Farlow, J. Appl. Phys. 64, 3727 (1988).
- [42] S. Ram, Phys. Rev. B **51**, 6280 (1995).
- [43] E. Husson and Y. Repelin, Eur. J. Solid State Inorg. Chem. 33, 1223 (1996).