Terpene Glycosides and Cytotoxic Constituents from the Seeds of Amomum xanthioides

Ki Hyun Kim¹, Jung Wook Choi¹, Sang Un Choi², Kang Ro Lee¹

- ¹ Natural Products Laboratory, College of Pharmacy, Sungkyunkwan University, Suwon, Korea
- ² Korea Research Institute of Chemical Technology, Daejeon, Korea

Abstract

V

Column chromatographic isolation of the MeOH extract of the seeds of *Amomum xanthioides* afforded a new diterpene glycoside, amoxanthoside A (1), two new monoterpene glycosides, (1S,4S,5S)-5-*exo*-hydroxycamphor 5-*O*- β -D-glucopyranoside (2) and (1R,4R,5S)-5-*endo*-hydroxycamphor 5-*O*- β -D-glucopyranoside (3), together with four known compounds, hedychiol A (4), pygmol (5), (1S,4R,6R)-(+)-6-*endo*-hydroxycamphor (6), and di-hydroyashabushiketol (7). The structures of the new compounds were determined through spectral analysis, including extensive 2D NMR data. The isolated compounds were tested for their cytotoxicity against four human cancer cell lines *in vitro* using a sulforhodamine B bioassay.

Key words

Amomum xanthioides · Zingiberaceae · diterpene glycoside · monoterpene glycoside · cytotoxicity

The seeds of *Amomum xanthioides* (Zingiberaceae) have been used in folk medicine for the treatment of stomach and digestive disorders [1]. This herb, listed in the Japanese Pharmacopoeia as Amomum seed, contains essential oil (1-1.5%) rich in monoterpenoids [2, 3]. Recently, we reported the isolation of terpene and phenolic constituents from the MeOH extract of the seeds of *A. xanthioides* [4]. In our continuing study of this source, we further isolated three new terpene glycosides (1-3), in addition to four known compounds (4-7), from the MeOH extract of this plant and tested the cytotoxicities of the isolates (\bigcirc Fig. 1).

The crude MeOH extract was analyzed by extensive chromatography, yielding the new diterpene glycoside amoxanthoside A (1), the two new monoterpene glycosides (1*S*,4*S*,5*S*)-5-*exo*-hydroxycamphor 5-*O*- β -D-glucopyranoside (2) and (1*R*,4*R*,5*S*)-5*endo*-hydroxycamphor 5-*O*- β -D-glucopyranoside (3), and the four known compounds hedychiol A (4) [5], pygmol (5) [6], (1*S*,4*R*,6*R*)-(+)-6-*endo*-hydroxycamphor (6) [7], and dihydroyashabushiketol (7) [8,9]. Known compounds were identified by comparison of physicochemical and spectroscopic data with previously reported literature values.

Compound **1** was obtained as an amorphous gum. The molecular formula was established as $C_{38}H_{60}O_{17}$ from the $[M + H]^+$ peak at m/z = 789.3925 (calcd. for $C_{38}H_{61}O_{17}$: 789.3909) in the HR-FAB-MS. Compound **1** displayed 38 carbon signals in its ¹³C-NMR spectrum, 20 of which could be assigned to the signals of aglycone. Extensive studies of the 1D and 2D NMR spectra (¹H-, ¹³C-NMR, DEPT, HMQC, HMBC, and NOESY) led to the identification of the aglycone part of **1** as *ent*-kaur-15-en-3 β ,17-diol [10]. This was also confirmed by enzymatic hydrolysis of **1**. In the ¹³C-NMR spectrum the chemical shifts of C-3 (δ_C = 88.8) and C-17

 $(\delta_{C} = 71.2)$ indicated that three monosaccharides were present at two sites of the aglycone, one attached to C-3 and another to C-17 of *ent*-kaur-15-en-3 β ,17-diol [10]. The three anomeric protons detected at $\delta_{\rm H}$ = 5.36, 4.41, and 4.35 in the ¹H-NMR spectrum gave correlations with anomeric carbons at $\delta_{\rm C}$ = 100.6, 104.4, and 100.7, respectively, in the HMQC experiment. The units with anomeric protons at $\delta_{\rm H}$ = 4.41 (d, *J* = 7.0 Hz), 5.36 (d, *J* = 1.5 Hz), and 4.35 (d, J = 8.0 Hz) corresponded, respectively, to a β -D-glucopyranose (Glc), a terminal α -L-rhamnopyranose (Rha), and a terminal β -D-glucuronopyranosyl acid (GlcA). The deshielded value of C-2' ($\delta_{\rm C}$ = 78.2) of Glc suggested the position of linkage of the terminal rhamnosyl moiety. The HMBC spectrum showed correlations between H-1' ($\delta_{\rm H}$ = 4.41) of Glc and C-3 ($\delta_{\rm C}$ = 88.8) of aglycone, between H-1" ($\delta_{\rm H}$ = 5.36) of the terminal Rha and C-2' $(\delta_{\rm C} = 78.2)$ of Glc, and between H-1^{'''} $(\delta_{\rm H} = 4.35)$ of the terminal GlcA and C-17 (δ_{C} = 71.2) of aglycone. These connectivities were also confirmed by correlations observed in the NOESY spectrum between H-3 ($\delta_{\rm H}$ = 3.20) and H-1' ($\delta_{\rm H}$ = 4.41) of Glc, between H-2' $(\delta_{\rm H}$ = 3.42) of Glc and H-1" (δ H = 5.36) of the terminal Rha, and between H-17 (δ_{H} = 4.84) and H-1^{'''} (δ_{H} = 4.35) of the terminal GlcA. The presence of D-glucose and L-rhamnose was established by GC analysis of their chiral derivatives in the acidic hydrolysate [11, 12], and the p-configuration for glucuronic acid was determined by the measurement of optical rotation after separation from the crude sugar residue. Thus, **1** was elucidated as 3β -O-[α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranosyl]-17-O-[β -D-glucuronopyranosyl]-ent-kaur-15-ene (amoxanthoside A). A survey of the literature revealed that diterpene glycoside from this source was reported for the first time.

Compound	IC ₅₀ (μM) ^a							
	A549	SK-OV-3	SK-MEL-2	HCT-15				
1	> 100.0	> 100.0	> 100.0	> 100.0				
2	> 100.0	> 100.0	> 100.0	> 100.0				
3	> 100.0	> 100.0	> 100.0	> 100.0				
4	24.29	26.72	11.08	29.20				
5	22.64	27.19	24.11	16.42				
6	62.64	57.19	70.11	46.42				
7	12.41	17.62	11.73	14.29				
Doxorubicin ^b	0.16	0.38	0.04	0.82				

Table 1Cytotoxicity of com-pounds 1–7 against four culturedhuman cancer cell lines using theSRB assay in vitro.

 a The IC₅₀ value was defined as the concentration (μ M) that caused 50% inhibition of cell growth *in vitro*; b Doxorubicin was used as a positive control

Compounds **2** ($C_{16}H_{26}O_7$) and **3** ($C_{16}H_{26}O_7$) showed an [M + H]⁺ peak at m/z = 331.1757 and 331.1774 (calcd. for $C_{16}H_{27}O_7$: 331.1757), respectively, in the HR-FAB-MS. Their NMR spectral data displayed the presence of one glucose, three tert-methyls, two methylenes, one methine, two quaternary carbons, one hydroxylated methine, and one carbonyl carbon, which were similar to those of 5-hydroxycamphor [13]. From the results of the HMBC experiment (HMBC between H-1'/C-5), 2 and 3 had a glucosyl moiety at C-5. Because NOE interactions between H-3_{endo}/ H-5 and between H-5/H-6_{endo} were observed in NOESY spectra of 2, the configuration of H-5 of 2 should be endo. The CD spectrum of 2 showed a negative Cotton effect at 295 nm [7]. Thus, 2 was identified as (1S,4S,5S)-5-exo-hydroxycamphor 5-O-β-D-glucopyranoside. In addition, NOESY correlation of 3 between H-5/ H₃-8 indicated that the configuration of H-5 of **3** should be *exo*. Thus, 3 was characterized as (1R,4R,5S)-5-endo-hydroxycamphor 5-O- β -D-glucopyranoside, which was supported by a positive Cotton effect at 294 nm in the CD spectrum [7].

In this study, the cytotoxicity of the isolates (1-7) against A549, SK-OV-3, SK-MEL-2, and HCT15 human tumor cell lines was evaluated using the sulforhodamine B (SRB) assay *in vitro*. The results (**• Table 1**) showed that **4**, **5**, and **7** exhibited cytotoxicity against A549, SK-OV-3, SK-MEL-2, and HCT15 cells, while the other compounds showed little cytotoxicity against the tested cell lines ($IC_{50} > 30 \,\mu$ M).

Materials and Methods

▼

The seeds of *A. xanthioides* (2.5 kg), which were imported from China, were bought at Kyungdong Market in December 2007 and identified by one of the authors (K. R. L.). A voucher specimen (SKKU-2007–12B) of the plant was deposited at the College of Pharmacy at Sungkyunkwan University, Suwon, Korea. NMR spectra, including ¹H-¹H COSY, HMQC, HMBC, and NOESY experiments, were recorded on a Varian UNITY INOVA 500 NMR spectrometer operating at 500 MHz (¹H) and 125 MHz (¹³C). Optical rotations were measured on a Jasco P-1020 polarimeter in MeOH. IR spectra were recorded on a Bruker IFS-66/S FT-IR spectrometer. CD spectra were measured on a JASCO J-715 spectropolarimeter. FAB and HR-FAB mass spectra were obtained on a JEOL JMS700 mass spectrometer.

The seeds of *A. xanthioides* (2.5 kg) were extracted at room temperature with 80% MeOH and evaporated under reduced pressure to give a residue (210 g), which was dissolved in water (800 mL) and partitioned with solvent to give *n*-hexane- (18 g), CHCl₃- (11 g), and *n*-BuOH- (23 g) soluble portions. The *n*-BuOH-soluble fraction was subjected to column chromatography (CC)

over silica gel (230-400 mesh, 500 g, 6 × 90 cm), eluting with a gradient solvent system of CHCl₃-MeOH-H₂O (4:1:0.1, 5:2:0.1, and 5:2:0.2, 2 L of each solvent) to yield five crude fractions (F1-F5). F2 (2.4 g) was applied to CC over Sephadex LH-20 (200 g, 3×90 cm; Pharmacia Co.), eluting with a solvent system of MeOH-H₂O (9:1, 1.5 L) to give 8 subfractions (F21-F28). The subfraction F23 (500 mg) was purified further by semipreparative HPLC, using CH₂Cl₂-MeOH (13:1) over 30 min at a flow rate of 2.0 mL/min (Alltech Econosil Silica 5µ column; 250×10 mm; Shodex refractive index detector) to yield **3** (12 mg, $R_{\rm f}$ = 15.5 min). The subfraction F25 (190 mg) was also purified by semipreparative HPLC, using CHCl₃-MeOH (10:1) to yield 2 (21 mg, R_t = 13.0 min). F3 (3.1 g) was subjected to CC over silica gel (230-400 mesh, 500 g, 9 × 60 cm) using CHCl₃-MeOH (4:1, 3 L) to yield 6 fractions (F31-F36). Compound 1 (10 mg) was isolated from F32 (100 mg) by semipreparative HPLC using CHCl₃-MeOH (6:1, flow rate of 2.0 mL/min, R_t = 14.5 min). Compounds **4-7** were isolated from the *n*-hexane-soluble fraction (18 g) by CC over silica gel, Sephadex LH-20, and semipreparative HPLC. Amoxanthoside A (1): 10 mg; amorphous gum; $[\alpha]_D^{25}$: -4.7 (*c* 0.2, MeOH); IR (KBr): v_{max} = 3390, 2947, 1638, 1026 cm⁻¹; FAB-MS: $m/z = 789 [M + H]^+$; HR-FAB-MS: $m/z = 789.3925 [M + H]^+$ (calcd. for C₃₈H₆₁O₁₇: 789.3909). ¹H- and ¹³C-NMR data: see **C** Table 2. (1S,4S,5S)-5-exo-hydroxycamphor 5-O- β -D-glucopyranoside (2): 21 mg; colorless gum; $[\alpha]_D^{25}$: -20.8 (*c* 0.8, MeOH); IR (KBr): v_{max} = 3394, 2965, 1728, 1639, 1371, 1028 cm⁻¹; CD (MeOH): λ_{max} ($\Delta \varepsilon$) = 295 (-2.6) nm; FAB-MS: m/z = 331 [M + H]⁺; HR-FAB-MS: m/z = 331.1757 [M + H]⁺ (calcd. for C₁₆H₂₇O₇: 331.1757). ¹H-NMR (500 MHz, CD₃OD): δ = 4.30 (1H, d, J = 8.0 Hz, H-1'), 4.03 (1H, dd, J=3.5, 7.5 Hz, H-5_{endo}), 3.91 (1H, br d, *J* = 11.5 Hz, H-6'a), 3.72 (1H, dd, *J* = 3.5, 11.5 Hz, H-6'b), 3.37–3.14 (4H, m, H-2', 3', 4', 5'), 2.47 (1H, dd, J = 1.0, 5.0 Hz, H-4), 2.36 (1H, dd, J = 5.0, 18.5 Hz, H-3_{exo}), 1.95 (1H, dd, J = 7.5, 15.0 Hz, H-6_{endo}), 1.78 (1H, m, H-6_{exo}), 1.76 (1H, d, J = 18.5 Hz, H-3_{endo}), 1.23 (3H, s, H-8), 0.90 (3H, s, H-10), 0.84 (3H, s, H-9); ¹³C-NMR (125 MHz, CD₃OD): δ = 221.1 (C-2), 103.9 (C-1'), 82.7 (C-5), 78.4 (C-5'), 78.1 (C-3'), 75.2 (C-2'), 71.8 (C-4'), 62.9 (C-6'), 59.5 (C-1), 50.5 (C-4), 47.7 (C-7), 40.9 (C-6), 39.6 (C-3), 21.2 (C-9), 20.7 (C-8), 9.4 (C-10). (1R,4R,5S)-5-endo-hydroxycamphor 5-O-β-D-glucopyranoside (**3**): 12 mg; colorless gum; $[\alpha]_{D}^{25}$: -14.8 (*c* 0.4, MeOH); IR (KBr): v_{max} = 3393, 2966, 1730, 1638, 1375, 1077 cm⁻¹; CD (MeOH): λ_{max} ($\Delta \epsilon$) = 294 (+2.1) nm; FAB-MS: m/z = 331 [M + H]⁺; HR-FAB-MS: m/z = 331.1774 [M + H]⁺ (calcd. for C₁₆H₂₇O₇: 331.1757). ¹H-NMR (500 MHz, CD₃OD): δ = 4.73 (1H, dddd, J = 2.0, 4.0, 4.5, 9.5 Hz, H-5_{exo}), 4.28 (1H, d, J = 7.5 Hz, H-1'), 3.87 (1H, br d, J = 11.5 Hz, H-6'a), 3.67 (1H, dd, J = 3.5, 11.5 Hz, H-6'b),3.35–3.14 (4H, m, H-2', 3', 4', 5'), 2.80 (1H, d, J = 19.0 Hz, H-3_{endo}),

Position	δ _H	δ _C	Position	δ _H	δς	Т
1	1.61 m, 0.95 m	37.1	Glc			13
2	1.65 m, 1.40 m	28.4	1′	4.41 d (7.0)	104.4	J
3	3.20 dd (10.0, 6.0)	88.8	2'	3.42 m	78.2	
4		39.1	3'	3.36 m	78.3	
5	0.95 m	54.7	4'	3.38 m	71.2	
6	1.37 m, 0.78 m	20.2	5′	3.25 m	76.4	
7	1.63 m, 1.35 m	39.1	6′	3.85 m, 3.65 m	61.5	
8		45.4	Rha			
9	1.10 m	51.8	1''	5.36 d (1.5)	100.6	
10		35.6	2''	4.23 m	70.2	
11	1.35 m, 1.20 m	20.2	3''	3.72 m	70.9	
12	1.98 m, 1.66 m	26.2	4''	3.38 m	72.7	
13	2.15 br s	41.4	5''	3.96 m	68.7	
14	1.91 m, 1.63 m	29.3	6''	1.21 d (6.5)	16.8	
15	5.37 s	134.2	GlcA			
16		147.4	1'''	4.35 d (8.0)	100.7	
17	4.84 s	71.2	2'''	3.26 m	75.2	
18	1.06 s	27.2	3'''	3.43 m	77.7	
19	0.90 s	15.9	4'''	3.38 m	73.2	
20	0.88 s	13.5	5'''	3.64 m	76.4	
			6'''		173.7	

Table 2 ¹H- (500 MHz) and

 ¹³C-NMR (125 MHz) data (δ value,

 in Hz) of **1** in CD₃OD.

2.41 (1H, m, H-4), 2.22 (1H, ddd, J = 1.5, 9.5, 14.5 Hz, H-6_{exo}), 2.16 (1H, ddd, J = 2.0, 4.5, 19.0 Hz, H-3_{exo}) 1.41 (1H, dd, J = 4.0, 14.5 Hz H-6_{endo}), 1.05 (3H, s, H-8), 0.87 (3H, s, H-10), 0.85 (3H, s, H-9); ¹³C-NMR (125 MHz, CD₃OD): $\delta = 220.2$ (C-2), 101.6 (C-1'), 76.9 (C-5'), 76.8 (C-3'), 75.7 (C-2'), 73.9 (C-5), 70.5 (C-4'), 61.6 (C-6'), 58.5 (C-1), 46.9 (C-4), 46.0 (C-7), 38.9 (C-6), 34.9 (C-3), 19.3 (C-9), 18.3 (C-8), 8.3 (C-10).

Enzymatic hydrolysis of 1-3

A solution of each sample in H_2O (3 mL) was individually hydrolyzed with crude hesperidinase (30 mg, from *Aspergillus niger*; Sigma-Aldrich) at 37 °C for 72 h. Each reaction mixture was extracted with CHCl₃ (3 × 5 mL) to yield the individual CHCl₃ layer and H_2O phase after removing the solvents. The combined CHCl₃ layer from **1** (3 mg) was chromatographed over a silica gel Waters Sep-Pak Vac 6 cc (CHCl₃-MeOH, 30:1) to give aglycone **1a** (1.5 mg). The aglycone **1a** was identified by ¹H-NMR and MS data [10].

ent-Kaur-15-en-3β,17-*diol* (**1a**): 1.5 mg; colorless gum; $[\alpha]_D^{25}$: -20.3 (*c* 0.08, CHCl₃); FAB-MS: *m/z* = 304 [M]⁺; ¹H-NMR (500 MHz, CDCl₃): δ = 5.28 (1H, s, H-15), 4.15 (1H, br s, H-17), 3.24 (1H, dd, *J* = 6.0, 10.0 Hz, H-3), 1.01 (3H, s, H-18), 0.86 (3H, s, H-19), 0.82 (3H, s, H-20).

The combined CHCl₃ layers from **2** (3 mg) and **3** (3 mg) were purified over a silica gel Waters Sep-Pak Vac 6 cc (CHCl₃-MeOH, 100:1) to give **2a** (1.3 mg) [13] and **3a** (1.4 mg) [13], respectively. The sugar (glucose) from the aqueous layers of **2** and **3** was analyzed by silica gel TLC by comparison with standard sugar (CHCl₃-MeOH-H₂O, 8:5:1; $R_{\rm fr}$ 0.30).

Determination of sugars of 1–3

Compound 1 (2 mg) was heated with 2 N aqueous CF_3 -COOH at 120 °C for 2 h. The reaction mixture was diluted with H_2O and extracted with $CHCl_3$ and H_2O . The sugars from the aqueous phase were identified as glucose, rhamnose, and glucuronic acid by co-TLC comparison with authentic samples. The absolute configuration of sugar residues was analyzed by GC analysis of their chiral derivatives [11, 12]. D-Glucose and L-rhamnose for 1 were detected by co-injection of hydrolysate with standard silylated

samples, giving single peaks at 18.61 min and 13.12 min, respectively. In the same manner, identification of D-glucose was carried out for **2** and **3**, giving a single peak at 18.64 min. The absolute configuration of glucuronic acid for **1** was determined to be D by the measurement of optical rotation after separation from the crude sugar mixture: $[\alpha]_{D}^{25}$: + 10.7 (*c* 0.04, H₂O) [14].

Cytotoxicity assay

An SRB bioassay was used to determine the cytotoxicity of each compound against four cultured human cancer cell lines [15]. The cell lines (National Cancer Institute, Bethesda, MD, USA) used were A549 (non-small-cell lung adenocarcinoma), SK-OV-3 (ovarian cancer cells), SK-MEL-2 (skin melanoma), and HCT15 (colon cancer cells). Doxorubicin (purity \geq 98%; Sigma) was used as a positive control.

Acknowledgements

The authors would like to thank Mr. Do Kyun Kim, Dr. Eun Jung Bang, and Dr. Jung Ju Seo at Korea Basic Science Institute for the measurements of NMR and MS data.

References

- 1 [*no authors listed*]. Japanese pharmacopoeia, 14th edition. Tokyo: Hirokawa Publishing Co.; 2001: 2627–2628
- 2 *Kitajima J, Ishikawa T.* Water soluble constituents of amomum seed. Chem Pharm Bull 2003; 51: 890–893
- 3 *Zhang S, Lan Y, Qin X.* Gas chromatography analysis of the volatile oil of the imported amomi semen (*Amomum xanthioides* Wall ex Bak.) and adulterants (Hong Ke Sha, Cao Dou Kou, Hong Dou Kou, and Zhu Mu Sha). Yaowu Fenxi Zazhi 1989; 9: 219–222
- 4 Choi JW, Kim KH, Lee IK, Choi SU, Lee KR. Phytochemical constituents of Amomum xanthioides. Nat Prod Sci 2009; 15: 44–49
- 5 Morikawa T, Matsuda H, Sakamoto Y, Ueda K, Yoshikawa M. New farnesane-type sesquiterpenes, hedychiols A and B 8,9-diacetate, and inhibitors of degranulation in RBL-2H3 cells from the rhizome of *Hedychium coronarium*. Chem Pharm Bull 2002; 50: 1045–1049
- 6 Maqua MP, Vines ACG, Caballero E, Grande MC, Medarde M, Bellido IS. Components from Santolina rosmarinifolia, subspecies Rosmarinifolia and Canescens. Phytochemistry 1988; 27: 3664–3667

- 7 Orihara Y, Noguchi T, Furuya T. Biotransformation of (+)-camphor by cultured cells of *Eucalyptus perriniana*. Phytochemistry 1994; 35: 941–945
- 8 *Asakawa Y.* Chemical constituents of *Alnus firma* (Bebulaceae). I. Phenyl propane derivatives isolated from *Alnus firma*. Bull Chem Soc Jpn 1970; 43: 2223–2229
- 9 *Suga T, Ohta S, Aoki T, Hirata T.* An X-ray crystallographic study on the absolute configuration of dihydroyashabushiketol and the solvent-dependence of its optical rotation. Bull Chem Soc Jpn 1983; 56: 3353–3357
- 10 Ratnayake Bandara BM, Wimalasiri WR, Macleod JK. Ent-kauranes and oleananes from Croton lacciferus. Phytochemistry 1988; 27: 869–871
- 11 Elbandy M, Miyamoto T, Delaude C, Lacaille-Dubois MA. Acylated preatroxigenin glycosides from Atroxima congolana. J Nat Prod 2003; 66: 1154–1158
- 12 Haddad M, Miyamoto T, Laurens V, Lacaille-Dubois MA. Two new biologically active triterpenoidal saponins acylated with salicylic acid from *Albizia adianthifolia*. J Nat Prod 2003; 66: 372–377
- 13 *Miyazawa M, Miyamoto Y*. Biotransformation of (1*R*)-(+)- and (1*S*)-(-)-camphor by the larvae of common cutworm (*Spodoptera litura*). J Mol Catal B Enzym 2004; 27: 83–89
- 14 *Tapondjou AL, Miyamoto T, Lacaille-Dubois MA.* Glucuronide triterpene saponins from *Bersama engleriana*. Phytochemistry 2006; 67: 2126–2132
- 15 Skehan P, Stroreng R, Scudiero D, Monks A, Mcmahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990; 82: 1107–1112

 received
 July 23, 2009

 revised
 September 14, 2009

 accepted
 September 16, 2009

Bibliography

DOI 10.1055/s-0029-1186194 Published online October 14, 2009 Planta Med 2010; 76: 461–464 © Georg Thieme Verlag KG Stuttgart · New York · ISSN 0032-0943

Correspondence

Prof. Dr. Kang Ro Lee Natural Products Laboratory College of Pharmacy Sungkyunkwan University 300 Chonchon-dong Jangan-ku Suwon 440–746 Korea Phone: + 823 129077 10 Fax: + 823 129077 30 krlee@skku.ac.kr Copyright of Planta Medica is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.