

Communication

Subscriber access provided by ORTA DOGU TEKNIK UNIVERSITESI KUTUPHANESI

Metal-free CH–CH-type cross coupling of arenes and alkynes di-rected by a multi-functional sulfoxide group

José A. Fernández-Salas, Andrew J. Eberhart, and David J. Procter

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.5b12579 • Publication Date (Web): 08 Jan 2016

Downloaded from http://pubs.acs.org on January 11, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Metal-free CH–CH-type cross coupling of arenes and alkynes directed by a multi-functional sulfoxide group

José A. Fernández-Salas, Andrew J. Eberhart, David J. Procter*

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

ABSTRACT: A metal-free CH–CH-type coupling of arenes and alkynes, mediated by a multi-functional sulfoxide directing group, exploits non-prefunctionalized coupling partners, proceeds under mild conditions, is operationally simple, and exhibits high functional group tolerance. The products of the CH–CH coupling are highly versatile and the metal-free process can be used for the construction and late-stage modification of important molecular scaffolds.

Carbon-carbon bond formation is a challenging objective that is essential in almost any synthetic endeavor that involves the construction or manipulation of molecular architecture.^{1,2} In particular, metal-catalyzed C-H functionalization has become an established and more atom-economical way to construct C-C bonds with a wide selection of directing groups available to control processes involving C-H bonds on aromatic rings (Scheme 1A).³ Furthermore, CH–CH-type cross coupling, so called cross-dehydrogenative coupling (CDC), has been developed that obviates the need for prefunctionalization of either coupling partner,⁴ although issues of chemo- and regioselectivity, and a dependence on harsh conditions and stoichiometric oxidants remain issues that limit the broad take-up of such technology (Scheme 1B).⁴ The majority of C–H cross coupling processes are mediated by platinum group metals and this leads to potential issues of supply risk⁵ and metal contamination of products.^{2a-c,6,7} Thus, despite remarkable recent advances in C-H cross coupling, the development of complementary, metal-free CH-CH-type cross coupling processes that use readily available nonprefunctionalized starting materials and that operate under mild conditions, is an outstanding challenge.

Here we report a metal-free CH–CH-type strategy that allows the selective coupling of aromatic centers to propargylic centers in alkynes at the expense of two C–H bonds – $CAr(sp^2)$ –H and $C(sp^3)$ –H bonds. A sulfoxide directing group in the arene plays a multi-functional role in the metal-free cross coupling, capturing, activating and delivering⁸ the pronucleophilic alkyne partner, controlling the regiochemical outcome of the coupling, and ensuring that no over reaction takes place to give byproducts (Scheme 1B).^{9,10} Key to successful coupling is the proposed formation and rearrangement of alkenyl sulfonium salt intermediates I.¹¹ The products of cross coupling are challenging targets for current metalmediated methods.

Scheme 1. A. Metal-catalyzed C–H and CH–CH cross coupling. B. Metal-free, CH–CH-type cross coupling of arenes and alkynes mediated by a sulfoxide directing group (DG). X–X = electrophilic activator of sulfoxide.

Our study began by investigating the cross coupling reaction between arene sulfoxide **1a** and butyne **2a** (See Supporting Information for optimization studies). Aiming to develop an operationally simple protocol, we explored the use of commercially available Tf₂O (1,1,1-trifluoromethanesulfonic anhydride) and 2,6-lutidine to mediate the proposed metal-free cross coupling.^{8a} Unfortunately, in both MeCN and CH₂Cl₂, only traces of the desired product **3a** were observed. The role of the base and the temperature at which the activating agent was added were then investigated. Interestingly, if Tf₂O was added at -78 °C in the presence of K₂CO₃, the desired

process was observed and a 65% isolated yield of the product of CH–CH-type coupling **3a** was obtained. When 2,6-lutidine was used as base and added at 0 °C after 45 min, the cross coupling proceeded, delivering **3a** in good isolated yield (ca. 75%) after 16 h at 65 °C (or 3 h with microwave heating).

Table 1. Alkyne substrate scope in the metal-free CH–CH-type cross coupling of alkynes with arenes bearing a sulfoxide directing group.^a

^aTf₂O (1.3 equiv.) was added to a mixture of **1** (0.15 mmol) and **2** (1.3 equiv.) in CH₂Cl₂ (0.2 M) at -78 °C. After 15 min at the same temperature, the mixture was stirred at 0 °C for 30 min. 2,6-Lutidine (3 equiv.) was then added. The reaction mixture was heated at 65 °C for 16 h.

Having optimized the reaction conditions, we next investigated the scope of the metal-free CH–CH-type cross coupling with regard to the alkyne partner. A range of readily available, simple and functionalized alkyne partners **2a–k** were employed in the study (Table 1). Arene sulfoxide **1a** underwent efficient coupling with sterically demanding 4,4-dimethylpent-2-yne **2b** and benzyl-substituted alkyne **2c** to give good isolated yields of the desired products **3b** and **3c**, respectively. Similarly, silyl-substituted alkynes **2f** and **2g** underwent efficient cross coupling to give versatile alkyne products **3f** and **3g**. Attractively, protected alkyne coupling products allow access to a range of products via deprotection and derivatization. Important bromide and CF₃ substituents in the alkyne were also compatible with the metal-free

coupling (preparation of **3j** and **3k**). Pleasingly, challenging metal-free couplings involving secondary sp³-propargylic C–H bonds were possible and resulted in new C–C bonds despite significant steric congestion: alkynes **2d**, **2e**, **2h** and **2i** underwent coupling to give branched coupling products **3d**, **3e'**, **3h**, **3i**, **3o** and **3p** in moderate to high yield. Finally, an arene bearing a methyl sulfinyl directing group could also be used in the cross coupling: treatment of **1b** with alkynes **2b**, **2f**, **2g**, **2h** and **2i** gave the desired coupling products **3l-p**, respectively (Table 1).

Cross coupling proceeded efficiently between a range of readily available starting arenes bearing a variety of substituents and alkynes 2a, 2f and 2g. Arenes bearing electron-donating methoxy groups showed lower reactivity, leading to coupled products 3q and 3r in moderate yield. Less electron releasing methyl substituents on the arene were tolerated and **3v** was obtained in 60% yield. Electron-withdrawing groups on the arene partner were well tolerated in the metal-free CH-CH type cross coupling. For example, arene substrates bearing CF₃ groups in ortho, meta and para positions led to coupled products in excellent yield (3s-3u). Arenes containing bromide and chloride substituents also underwent coupling with high efficiency (3v, 3w and 3x). It is important to note that the presence of halides is often incompatible with metal-mediated cross coupling procedures.

 Table 2. Study of arene substrate scope in the metal-free

 CH–CH-type cross coupling of arenes with alkynes.^a

^aSee Table 1 for conditions. Isolated yields. ^bRatio in brackets refers to regioselectivity. Alkylation away from the *meta* substituent gives the major product.

Nitro and sulfone substituents were also tolerated and arenes bearing these groups underwent successful coupling to give **3z** and **3aa**. The metal-free CH–CH-type cross coupling also proceeded in the presence of unprotected ketones and aldehydes: adducts **3ab**, **3ac**, **3af** and **3ag** were obtained in 61-82% yield. Substitution in the aryl unit of the sulfoxide-directing group was also toler1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 ated with coupling taking place selectively on the more electron-rich ring (formation of **3ad**). Finally, heterocyclic coupling partners also underwent coupling with alkynes to give **3ae**, **3af**, **3ag** and **3ah** in moderate to good yield thus illustrating the potential of the process for the manipulation of heteroarene platforms (Table 2).

A possible mechanism for coupling with but-2-yne **2a** is shown in Scheme 2. The alkyne partner is captured and activated by the triflated sulfoxide **II** at low temperature⁸⁻¹⁰ giving rise to vinyl triflate **IV** (*cf.* **I** in Scheme 1B). In the presence of base, **IV** may be deprotonated to give sulfonium ylide **V** and [3,3]-sigmatropic rearrangement of **V**¹³ at elevated temperature followed by rearomatization delivers CH–CH-type cross coupling product **3**. In support of the above, quenching reactions between sulfoxide-bearing arenes **1a** and **1b** and alkyne **2a** at 0 °C prior to the addition of base, resulted in complete conversion to alkenylsulfonium salts (see Supporting Information).^{11,12}

Scheme 2. Proposed mechanism for the metal-free CH–CH-type cross coupling of but-2-yne 2a with arenes bearing a sulfoxide directing group.

The selective onwards reaction of alkenylsulfonium intermediate IV ($R^1 = Me$) is key to the success of the cross coupling. Alkynes bearing large substituents are particularly effective as they control the regiochemistry of the addition to the activated sulfoxide II and give rise to alkenylsulfonium intermediates IV bearing large R^2 groups.¹⁴ These large R^2 groups block undesired deprotonation and nucleophilic demethylation of the SMe group, and hydrolysis of the triflate in IV.¹¹

The products of cross coupling are versatile building blocks for organic synthesis and are difficult to access selectively using current methods. Focusing on metal-free transformations,¹⁵ deprotection of adduct **3n** delivered **4** or isomerization product **5**, depending on the conditions employed. Notably, arylalkyne **5** is the prod-

uct of a formal metal-free, C–H Sonogashira-type reaction (Scheme 3A).¹⁶

Scheme 3. Sulfoxide-directed metal-free CH–CHtype cross coupling for scaffold construction and latestage modification.

A. Metal-free CH-CH propargylation delivers products of formal alkynylation

Pleasingly, a sulfur atom in a validated drug scaffold can be used to direct the metal-free CH-CH cross coupling. Sulfide scaffold 6 is an intermediate in the synthesis of the topical retinoid Tazarotene (Tazorac \mathbb{R}) 10.¹⁷ Activation of 6 by sulfur oxidation and CH-CH cross coupling with alkyne partner 2g gave 8 in good yield. High yielding deprotection/isomerization then gave alkynylation product 9. Attractively, the metal-free sulfoxide directed CH-CH coupling is orthogonal to the Pdcatalyzed alkynylation of the C-Br bond used in the preparation of the drug (Scheme 3B).^{17,18} Functionalized benzothiophene 11 is a key intermediate in the synthesis of the antipsychotic drug 12: an agonist of the G-protein coupled receptor 52.19 The crucial C-C bond in 11 is typically prepared by stoichiometric metallation of the arene.²⁰ The sulfoxide-directed CH-CH process allows medicinally-relevant benzothiophene 11 to be prepared from 1i in 4 metal-free steps: CH-CH cross coupling, TBAF deprotection, I₂-mediated heterocyclization,²¹ and NaBH₄ reduction of the intermediate benzothiophene aldehvde delivers 11 in 57% overall vield (Scheme 3C).

In summary, we have developed an operationally simple, metal-free CH-CH-type cross coupling of arenes and alkynes that proceeds under mild conditions. The process is mediated by a sulfoxide-directing group that captures and activates the alkyne coupling partner before delivery to the arene and C-C bond formation. The products of cross coupling are difficult to access using current metal-mediated procedures and are rich in synthetic potential. For example, they are readily converted to products of formal metal-free arene C-H alkynylation and to important benzothiophene motifs, as exemplified by the metal-free synthesis of a precursor to an antipsychotic drug. Furthermore, sulfur in a validated heterocyclic drug scaffold can be used to direct metal-free CH-CH cross coupling thus facilitating late-stage scaffold elaboration.

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website. Optimization table, mechanistic studies, experimental details, characterization data and spectra are in the Supplementary Information (PDF).

AUTHOR INFORMATION

Corresponding Author

david.j.procter@manchester.ac.uk

ACKNOWLEDGMENT

EPSRC (Established Career Fellowship to D. J. P.; Postdoctoral Fellowship to J. A. F-S.; Doctoral Prize to A. J. E.) and The Leverhulme Trust (Fellowship to D. J. P.).

REFERENCES

(1) Corey, E. J., Cheng, X. M. *The logic of chemical synthesis*; John Wiley & Sons: New York, 1989.

(2) (a) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177. (b) Magano, J., Dunetz, J. R. Transition Metal-Catalyzed Couplings in Process Chemistry: Case Studies From the Pharmaceutical Industry; Wiley: 2013. (c) Roughley, S. D; Jordan, A. M. J. Med. Chem. 2011, 54, 3451. (d) Crabtree, R. H. The Organometallic Chemistry of Transition Metals; Wiley Interscience: New York, 2005. (e) Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis; Wiley: Chichester, 2002. (f) de Vries, J. In Organometallics as Catalysts in the Fine Chemical Industry; Beller, M., Blaser, H. -U., Eds.; Springer Berlin Heidelberg: 2012; Vol. 42, p 1. (g) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062. (h) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442. (i) Corbet, J. – P.; Mignani, G. Chem. Rev. 2006, 106, 2651.

(3) (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Organic Chemistry Frontiers 2015, 2, 1107. (b) Wencel-Delord, J.; Glorius, F. Nature Chem. 2013, 5, 369. (c) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (d) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. (e) Chen, X.; Engle, K. M.; Wang, D. -H.; Yu, J. -Q. Angew. Chem. Int. Ed. 2009, 48, 5094. (f) Godula, K.; Sames, D. Science 2006, 312, 67. (g) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (h) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (i) Engle, K. M.; Mei, T. -S.; Wasa, M.; Yu, J. -Q. Acc. Chem. Res. 2012, 45, 788. (j) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (k) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (l) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. *Chem. Rev.* **2012**, *112*, 5879. (m) Daugulis, O.; Do, H.-Q.; Shabashov, D. *Acc. Chem. Res.* **2009**, *42*, 1074. (n) Daugulis, O.; Roane, J.; Tran, L. D. *Acc. Chem. Res.* **2015**, *48*, 1053.

(4) (a) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236. (b) Li, C. -J. Acc. Chem. Res. 2009, 42, 335. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (c) Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886. (d) Narayan, R.; Matcha, K.; Antonchick, A. P. Chem. Eur. J. 2015, 21, 14678.

(5) (a) The Risk list. British Geological Survey (2012); https://www.bgs.ac.uk/news/NEWS/Risk_List_2012_Press_Release.p df. (b) Sun, C. -L.; Shi, Z. -J. Chem. Rev. 2014, 114, 9219.

(6) International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Guideline for Elemental Impurities Q3D (2014); http://www.fda.gov/downloads/drugs/ guidancecomplianceregulatoryinformation/guidances/ ucm371025.pdf.

(7) Usluer, Ö.; Abbas, M.; Wantz, G.; Vignau, L.; Hirsch, L.; Grana, E.; Brochon, C.; Cloutet, E.; Hadziioannou, G., *ACS Macro Lett.* **2014**, *3*, 1134.

(8) For reviews of Pummerer processes and selected recent applications, see: (a) Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter, D. J. Angew. Chem. Int. Ed. 2010, 49, 5832. (b) Akai, S.; Kita, Y. Top. Curr. Chem. 2007, 274, 35. (c) Bur, S. K.; Padwa, A. Chem. Rev. 2004, 104, 2401. (d) Murakami, K.; Yorimitsu, H.; Osuka, A. Angew. Chem. Int. Ed. 2014, 53, 7510. (e) Huang, X.; Patil, M.; Farès, C.; Thiel, W.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 7312. (f) Huang, X.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 7312. (f) Huang, X.; Wakamiya, A.; Yorimitsu, H.; Osuka, A. Chem. Eur. J. 2012, 18, 12690. (g) Kobatake, T.; Fujino, D.; Yoshida, S.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2010, 132, 11838. (h) Kobatake, T.; Yoshida, S.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2010, 49, 2340.

(9) For sulfoxide-directed couplings using allylsilanes: (a) Eberhart, A. J.; Cicoira, C.; Procter, D. J. *Org. Lett.* **2013**, *15*, 3994. (b) Eberhart, A. J.; Imbriglio, J. E.; Procter, D. J. *Org. Lett.* **2011**, *13*, 5882.

(10) For sulfoxide-directed couplings using propargylsilanes: (a) Eberhart, A. J.; Procter, D. J. Angew. Chem. Int. Ed. 2013, 52, 4008.
(b) Eberhart, A. J.; Shrives, H. J.; Álvarez, E., Carrër, A.; Zhang, Y.; Procter, D. J. Chem. Eur. J. 2015, 21, 7428. (c) Eberhart, A. J.; Shrives, H.; Zhang, Y.; Carrër, A.; Parry, A. V. S.; Tate, D. J.; Turner, M. L.; Procter, D. J. Chem. Sci. 2015, DOI: 10.1039/C5SC03823E.

(11) Nenajdenko, V. G.; Vertelezkij, P. V.; Balenkova, E. S. Synthesis 1997, 1997, 351.

(12) Nenajdenko, V. G.; Balenkova, E. S. Russ. J. Org. Chem., 2003, 39, 323.

(13) (a) Huang, X.; Klimczyk, S.; Maulide, N. *Synthesis* 2012, 175.
(b) Nyong, A. M.; Rainier, J. D. *J. Org. Chem.* 2005, *70*, 746. (c) Novikov, A. V.; Kennedy, A. R.; Rainier, J. D. *J. Org. Chem.* 2003, 68, 993.

(14) The observed regioselectivity in the formation of **III** may arise from hyperconjugative stabilization of the beta-vinyl cation by the alkyl and trialkylsilyl groups. Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L. *J. Am. Chem. Soc.* **1985**, *107*, 1496.

(15) For low-cost metal-catalyzed cross coupling of organosulfur substrates, see: (a) Baralle, A.; Otsuka, S.; Guérin, V.; Murakami, K.; Yorimitsu, H.; Osuka, A. *Synlett* **2015**, *26*, 327. (b) Pan, F.; Shi, Z. -J. *ACS Catalysis* **2014**, *4*, 280. (c) Dubbaka, S. R.; Vogel, P. *Angew. Chem. Int. Ed.* **2005**, *44*, 7674. See also ref. 9b.

(16) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084.

(17) (a) Chandraratna, R. A. S. U. S. Patent 5,602,130; 1997. (b) Kumar, B. V. S.; Patil, V. D.; Raut, C. N.; Bhirud, S. B.; Chandrasekhar, B. WO 2005/003125 A1, 2005.

(18) Frigoli, S.; Fuganti, C.; Malpezzi, L.; Serra, S. Org. Process Res. Dev. 2005, 9, 646.

(19) Setoh, M.; Ishii, N.; Kono, M.; Miyanohana, Y.; Shiraishi, E.; Harasawa, T.; Ota, H.; Odani, T.; Kanzaki, N.; Aoyama, K.; Hamada, T.; Kori, M., *J. Med. Chem.* **2014**, *57*, 5226.

(20) Agejas-Chicharro, J.; Bueno Melendo, A. B.; Camp, N. P.; Gilmore, J.; Jimenez-Aguado, A. M.; Lamas-Peteira, C.; Marcos-

Page 5 of 6

Llorente, A.; Mazanetz, M. P.; Montero Salgado, C.; Timms, G. H.; Williams, A. C., Pharmaceutical compounds. US 2004/122001, 2004.

- (21) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. *Chem. Eur.*
- *J.* **2012**, *18*, 5460.

ACS Paragon Plus Environment

TOC graphic

sulfoxide-directed metal-free CH–CH-type cross coupling no metals = no prefunctionalized partners = mild conditions = versatile products