DOI: 10.1002/chem.201102333

Asymmetric Synthesis of Tetrahydroquinolines with Quaternary Stereocenters through the Povarov Reaction

Mingsheng Xie, Xiaohua Liu, Yin Zhu, Xiaohu Zhao, Yong Xia, Lili Lin, and Xiaoming Feng^{*[a]}

Abstract: The asymmetric Povarov reaction with α -alkyl styrenes as dienophiles was catalyzed by an *N*,*N'*-dioxide **L4**–Sc(OTf)₃ complex. Enantiopure tetrahydroquinoline derivatives with a quaternary stereocenter at the C4 position were synthesized for the first time. A wide variety of α -alkyl styrenes and *N*-aryl aldimines were tolerated in the

reaction, to give excellent diastereo-(up to 99:1 d.r.) and enantioselectivities (92 to >99% ee). In addition, the reaction could be performed on the

Keywords: asymmetric catalysis • dioxides • Povarov reaction • scandium • tetrahydroquinolines gram scale without any loss of yield, diastereoselectivity, or enantioselectivity. An intermolecular hydrogen-shift reaction was found to be a side reaction, which offered a method to synthesize the corresponding quinoline derivatives with chiral quaternary sterocenters.

Introduction

The asymmetric construction of molecules with quaternary carbon stereocenters represents a highly challenging area in organic synthesis.^[1] Tetrahydroquinoline derivatives bearing a quaternary carbon center at the C4 position exhibit potential biological activities. Representative examples^[2] are shown in Scheme 1. The Povarov reaction,^[3] an inverse elec-

Scheme 1. Examples of biologically active tetrahydroquinoline derivatives bearing a quaternary carbon center at the C4 position.

tron-demand aza Diels–Alder reaction^[4–7] of *N*-aryl imines (2-azadienes) with electron-rich alkenes (dienophiles), is one of the most efficient routes to construct this kind of privileged backbone. In 1996, Ishitani and Kobayashi developed the first catalytic asymmetric Povarov reaction with cyclopentadiene and vinyl ethers as dienophiles by using chiral

[a] M. S. Xie, Prof. Dr. X. H. Liu, Y. Zhu, X. H. Zhao, Y. Xia, Dr. L. L. Lin, Prof. Dr. X. M. Feng Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu 610064 (P. R. China) Fax: (+86)28-8541-8249 E-mail: xmfeng@scu.edu.cn

deavors have been devoted toward asymmetric Povarov reactions with various dienophiles.^[9] In 2006, Akiyama and coworkers reported the reaction with vinyl ethers as dienophiles promoted by a chiral phosphoric acid.^[9b] Later, enecarbamates and vinvlindoles were used as dienophiles in reactions with chiral phosphoric acids as catalysts by Zhu and Masson's group^[9c] and Bernardi and Ricci's group,^[9d] respectively. In 2010, Jacobsen's group reported the Povarov reaction with vinyl ethers, enecarbamates and enamides as dienophiles through cooperative catalysis of strong Brønsted acids with chiral ureas.^[9e] Very recently, Jørgensen and coworkers developed an intramolecular Povarov reaction catalyzed by a prolinol silyl ether.^[9h] However, the previous studies could only afford chiral tetrahydroquinolines with a tertiary stereocenter at the C4 position, and the construction of chiral tetrahydroquinolines with a quaternary stereocenter at the C4 position remains unreported.^[10]

binaphthol-ytterbium complexes.^[8] Subsequently, great en-

With α -alkyl styrenes as dienophiles, the corresponding tetrahydroquinoline adducts can be oxidized into quinoline-3-one derivatives with the quaternary carbon center maintained;^[11] comparatively, tetrahydroquinolines with the C4 position as a tertiary stereocenter would be converted into quinolines^[12] (Scheme 2). With the consideration that tetrahydroquinolines with the C4 position as a quaternary stereocenter potentially exhibit biological activities, an effective catalyst for this Povarov reaction is highly desirable. As excellent chiral scaffolds, N,N'-dioxide ligands^[13] can coordinate with various metals and have shown strong asymmetryinducing capability for many reactions, including the Povarov reaction of cyclopentadiene.^[9f] In an effort to develop a practical approach toward the structural class of tetrahydroquinolines, we have expanded the scope of the asymmetric Povarov reaction of α -alkyl styrenes. Herein, we report the asymmetric synthesis of optically active tetrahydroquinoline

13800

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201102333.

FULL PAPER

EDG = electron-donating group, Ox. = oxidation reaction

Scheme 2. The Povarov reaction and the oxidation of the products.

derivatives with a quaternary stereocenter catalyzed by an N,N'-dioxide–Sc(OTf)₃ complex^[14] in good yields and with excellent diastereoselectivities (up to 99:1 d.r.) and enantio-selectivities (92 to >99% *ee*). The side reactions occurring in the process were also studied in detail.

Results and Discussion

Initially, L-pipecolic acid derived N,N'-dioxide L1 (Scheme 3) was complexed with various metal salts to catalyze the Povarov reaction of N-aryl imine **4a** with α -methyl-

Scheme 3. Chiral ligands employed for the Povarov reaction.

styrene (5a) in CH_2Cl_2 at 30°C. The central metal ion was found to significantly affect the enantioselectivity of the reaction. As shown in Table 1, when $Mg(OTf)_2$ or $Cu(OTf)_2$ were tested, trace amounts of tetrahydroquinoline 6a were obtained (Table 1, entries 1 and 2). Yb(OTf)₃, Y(OTf)₃, and $La(OTf)_3$ gave the racemic tetrahydroquinoline **6a** in poor yields with the cis isomer as the major product (Table 1, entries 3–5). When $Sc(OTf)_3$ was tested as the metal salt, nearly equal amounts of the cis and trans isomers were obtained with 37% yield of the total products 6a and 30% ee for the trans isomer (Table 1, entry 6). In addition, the counterion also affected the reactivity greatly, and Sc(OiPr)₃ gave trace amounts of tetrahydroquinoline 6a (Table 1, entry 7 versus entry 6). Other lanthanide metal salts were also employed, but no better results were obtained (Table 1, entries 8-10). As a result, Sc(OTf)3 was selected as the metal salt for the further examination.

Further optimization of the reaction conditions was aimed at exploring the effect of complexes of other N,N'-dioxide ligands with Sc(OTf)₃ (Table 2). An increase in the steric hindrance of the amide subunits of the N,N'-dioxide, such as in Table 1. Screening of central metal ions in the asymmetric Povarov reaction of *N*-aryl imine **4a** and α -methylstyrene **(5a)**.^[a]

Entry	Metal	Yield	trans/cis ^[c]	ee	
-	salt	[%] ^[b]		[%] ^[c]	
1	$Mg(OTf)_2$	trace			
2	$Cu(OTf)_2$	trace			
3	$Yb(OTf)_3$	5	25/75	0	
4	$Y(OTf)_3$	16	26/74	0	
5	La(OTf) ₃	5	26/74	0	
6	$Sc(OTf)_3$	37	49/51	30	
7	$Sc(OiPr)_3$	trace			
8	Ce(OTf) ₃	20	26/74	0	
9	$Pr(OTf)_3$	6	27/73	0	
10	Nd(OTf) ₃	trace			

[a] Unless otherwise noted, all reactions were carried out with 10 mol% of L1/metal (1/1), 4a (0.2 mmol), and 5a (7.5 equiv, 200 μ L) in CH₂Cl₂ (1.0 mL) under N₂ at 30 °C for 22 h. [b] Yield of isolated product. [c] Determined by chiral HPLC analysis; the *trans* isomer was confirmed by ¹H NMR spectroscopy; the *ee* value refers to the *trans* isomer.

Table 2. Screening of ligand and solvent effects in the asymmetric Povarov reaction of *N*-aryl imine **4a** and α -methylstyrene (**5a**).^[a]

[a] Unless otherwise noted, all reactions were carried out with 10 mol% of $L/Sc(OTf)_3$ (1/1), **4a** (0.2 mmol), and **5a** (7.5 equiv, 200 µL) in solvent (1.0 mL) under N₂ at 30 °C for 22 h. [b] Yield of isolated product. [c] Determined by chiral HPLC analysis; the *trans* isomer was confirmed by ¹H NMR spectroscopy; the *ee* value refers to the *trans* isomer.

L2 with bulkier isopropyl groups, could raise the diastereoselectivity and enantioselectivity of the *trans* product (74:26 d.r. and 80% *ee*; Table 2, entry 2 versus entry 1). Furthermore, the L-ramipril derived *N*,*N*'-dioxide **L4** exhibited superior stereoselectivity (95:5 d.r. and 96% *ee*) compared with the L-proline and L-pipecolic acid derived ones, and it afforded the best results (Table 2, entry 4 versus entries 2 and 3). On the encouraging basis of these initial results, various solvents were tested in the presence of **L4**–Sc(OTf)₃ (Table 2, entries 5–8). Tetrahydrofuran reduced the catalytic activity greatly, and only traces of product **6a** were observed (Table 2, entry 5). When chloroform, 1,2-dichloroethane,

www.chemeurj.org

- 13801

and 1,1,2-trichloroethane were used as solvents, excellent diastereoselectivities and enantioselectivities could also be obtained, but the yields were low (Table 2, entries 6–8). Therefore, CH_2Cl_2 was established as the best solvent for the further optimization.

With CH_2Cl_2 as the solvent and the L4–Sc(OTf)₃ complex as the catalyst, however, the isolated yield of **6a** is only 39% (Table 3, entry 1) and a large amounts of 2-aminophe-

Table 3. Screening of the effects of additives and the hydroxy group in *N*-aryl imine **4a** in the asymmetric Povarov reaction of *N*-aryl imine **4a** and α -methylstyrene (**5a**).^[a]

Entry	4a	Additive	Yield [%] ^[b]	<i>trans/cis</i> ^[c]	ее [%] ^[c]
1	4a	-	39	95/5	96
2	4 a	PhCHO	58	96/4	97
3 ^[d]	4a	PhCHO, MgSO ₄	62	95/5	97
4 ^[d,e]	4a	PhCHO, MgSO ₄	75	94/6	96
5 ^[d,e,f]	4 a	PhCHO, MgSO ₄	69	94/6	96
$6^{[d,e,g]}$	4 a	PhCHO, MgSO ₄	65	91/9	93
7 ^[d,e,h]	4a	PhCHO, MgSO ₄	65	95/5	97
8 ^[d,e]	4 aa	PhCHO, MgSO ₄	40	21/79	0
9 ^[d,e]	4 ab	PhCHO, MgSO ₄	72	10/90	0

[a] Unless otherwise noted, all reactions were carried out with 10 mol% of L4/Sc(OTf)₃ (1/1), 4 (0.2 mmol), 5a (7.5 equiv, 200 μ L), and PhCHO (0.5 equiv, 11.5 μ L) in CH₂Cl₂ (1.0 mL) under N₂ at 30 °C for 22 h. [b] Yield of isolated product. [c] Determined by chiral HPLC analysis; the *trans* isomer was confirmed by ¹H NMR spectroscopy; the *ee* value refers to the *trans* isomer. [d] MgSO₄ (10.0 mg) was added. [e] CH₂Cl₂ (0.6 mL) was used and the reaction time was 38 h. [f] Imine formed in situ. [g] 5 mol% of the catalyst was used. [h] Reaction was performed under air and moisture.

nol was detected. It is possible that the cause is decomposition of imine 4a in the presence of a Lewis acid. In order to decrease the decomposition of imine 4a, benzaldehyde and MgSO₄ were added, which greatly improved the yield (62%yield; Table 3, entries 2 and 3). Extensive screening of the reaction conditions, including the concentrations in the reaction system, a three-component version, and the catalyst loading, showed that the optimal conditions were $10\,\mathrm{mol}\,\%$ of the L4–Sc(OTf)₃ complex, 0.2 mmol of N-aryl imine 4a, and benzaldehyde and MgSO₄ as additives in 0.6 mL CH₂Cl₂ at 30°C (Table 3, entries 4-6). If the reaction was performed under air and moisture, the diastereo- and enantioselectivity could be maintained, although the yield was slightly decreased (Table 3, entry 7). It is also worth pointing out that only racemic tetrahydroquinolines were obtained if N-aryl imines derived from aniline or 2-methoxyaniline were tested, which indicates the crucial role of the hydroxy group of N-aryl imine 4a in the stereorecognition process (Table 3, entries 8 and 9).

Table 4. The scope of 2-azadienes **4** tolerated in the asymmetric Povarov reactions.^[a]

Entry	\mathbb{R}^1	t	Yield	trans/cis ^[c]	ee
-		[h]	[%] ^[b]		[%] ^[c]
1	Ph	38	75 (6a)	94/6	96
2	2-ClC ₆ H ₄	18	93 (6b)	93/7	92
3	3-ClC ₆ H ₄	44	76 (6 c)	95/5	95
4	$4-ClC_6H_4$	69	82 (6d)	96/4	>99
5	$3,4-Cl_2C_6H_3$	21	84 (6e)	94/6	94
6	$3-BrC_6H_4$	45	88 (6 f)	94/6	94
7 ^[d]	$4-BrC_6H_4$	42	92 (6 g)	96/4	>99
8	$4-FC_6H_4$	42	85 (6h)	95/5	98
9	$4-CF_3C_6H_4$	69	81 (6i)	93/7	99
10	2-MeC ₆ H ₄	69	88 (6 j)	95/5	94
11 ^[e]	$3-MeC_6H_4$	69	66 (6 k)	94/6	97
12	4-MeC ₆ H ₄	69	51 (6l)	95/5	99
13	$4-MeOC_6H_4$	93	22 (6m)	91/9	98
14	2-naphthyl	95	67 (6 n)	96/4	>99
15	2-thienyl	93	35 (60)	89/11	96
16 ^[e,f]	cyclohexyl	46	33 (6p)	61/39	95

[a] Unless otherwise noted, all reactions were carried out with 10 mol% of L4/Sc(OTf)₃ (1/1), 4 (0.2 mmol), 5a (7.5 equiv, 200 μ L), the aldehyde (0.5 equiv) from which the *N*-aryl imine 4 was derived, and MgSO₄ (10.0 mg) in CH₂Cl₂ (0.6 mL) under N₂ at 30 °C. [b] Yield of isolated product. [c] Determined by chiral HPLC analysis; the *trans* isomer was confirmed by ¹H NMR spectroscopy; the *ee* value refers to the *trans* isomer. [d] The absolute configuration of adduct 6g was determined to be (2*S*,4*S*) by X-ray diffraction analysis. [e] The imine was formed in situ from aldehyde (1.5 equiv) and 2-aminophenol (0.2 mmol). [f] 20mol% of L4/Sc(OTf)₃ (2:1) was used at 0°C.

Under the optimized conditions (Table 3, entry 4), the substrate scope of 2-azadienes in the Povarov reaction was examined (Table 4). Regardless of the steric hindrance of the substituents on the electron-deficient imines, tetrahydroquinolines with a quaternary stereocenter were obtained in high yields with excellent diastereo- and enantioselectivities (92 to > 99% ee; Table 4, entries 1–9). It would appear that the electron-donating substituent on the aromatic imine enriches the electron density and thus decreases the reactivity. In the case of imines derived from methyl-substituted benzaldehydes, moderate to good yields with excellent diastereo- and enantioselectivities (94-99% ee) could also be obtained (Table 4, entries 10–12). When an electron-donating 4-methoxy-substituted imine was used, excellent enantioselectivity (98% ee) was observed, but the yield was substantially reduced (Table 4, entry 13). In addition, the 2-naphthaldehyde-derived imine served as a good 2-azadiene component to form the tetrahydroquinoline 6n with >99% ee (Table 4, entry 14). Meanwhile, imines derived from heteroaromatic and aliphatic aldehydes were also suitable substrates to afford the desired adducts with high enantioselectivities (95-96% ee) but low yields (Table 4, entries 15 and 16). The absolute configuration of tetrahydroquinoline 6g

FULL PAPER

Figure 1. The structure of (2S,4S)-6g determined by X-ray analysis.

was unambiguously determined to be (2S,4S) by single-crystal X-ray diffraction analysis (Figure 1).^[15]

Subsequently, the substrate scope of the α -alkyl styrenes was tested. Both electron-rich and electron-poor dienophiles were applied and resulted in excellent diastereoselectivities and enantioselectivities (93/7–99/1 *trans/cis*, 93–98% *ee*; Table 5, entries 1–6). Comparatively, an electron-deficient

Table 5. The scope of dienophiles ${\bf 5}$ tolerated in the asymmetric Povarov reactions. $^{[a]}$

[a] Reaction conditions: 10 mol% of L4/Sc(OTf)₃ (1/1), 4a (0.2 mmol), 5 (200 μ L or 7.5 equiv for solid), PhCHO (0.5 equiv), and MgSO₄ (10.0 mg) in CH₂Cl₂ (0.6 mL) under N₂ at 30 °C. [b] Yield of isolated product. [c] Determined by chiral HPLC analysis; the *trans* isomer was confirmed by ¹H NMR spectroscopy; the *ee* value refers to the *trans* isomer.

styrene gave a slightly lower yield than the others (Table 5, entry 6 versus entries 1–4). In addition, 2-(2-naphthyl)-propene was tolerated well to give the adduct **6v** with excellent results (Table 5, entry 7). The reactions with α -ethylstyrene and styrene as dienophiles also afforded the desired tetrahydroquinolines with 96 and 95% *ee* values, respectively (Table 5, entries 8 and 9).

For the purpose of examining the utility of the catalytic system, gram scale quantities of 2-azadiene 4a were treated with 5a under the optimized reaction conditions. The tetrahydroquinoline 6a was obtained without any loss of yield, diastereoselectivity, or enantioselectivity (Scheme 4).

In some cases shown in Tables 4 and 5, the low yield of the product is a partial consequence of the generation of by-products.^[16] Under the catalytic reaction conditions, aniline

Scheme 4. The gram scale synthesis of tetrahydroquinoline 6a.

4ac was generated from the reduction of the substrate imine **4a**. Comparative experiments were performed to investigate the real reductive reagent. Equivalent amounts of pure tetrahydroquinoline **6a** and imine **4a** in the presence of $Sc(OTf)_3$ under an N₂ atmosphere yielded quinoline derivative **7a** and aniline **4ac** with the same yield (Scheme 5). No-

Scheme 5. The intermolecular hydrogen-shift reaction and the crystal structure of **8a** determined by X-ray analysis.

tably, quinoline derivative **7a** could be easily oxidized into the quinoline-3-one under air. The quaternary carbon center was maintained in product **8a**, which was confirmed by single-crystal X-ray diffraction analysis (Scheme 5).^[15] It is reasonable to conclude that $Sc(OTf)_3$ could promote hydrogen transfer from the tetrahydroquinoline to the imine, which offers a method to synthesize the corresponding quinoline derivatives with quaternary stereocenters.^[17]

Conclusion

In summary, we have developed an efficient asymmetric Povarov reaction with α -alkyl styrenes as the dienophiles catalyzed by an *N*,*N'*-dioxide **L4**–Sc(OTf)₃ complex. A wide variety of tetrahydroquinolines with a quaternary stereocenter at the C4 position were obtained with excellent diastereoand enantioselectivities (up to >99:1 d.r. and 92 to >99% *ee*). In addition, the reaction could be performed on the gram scale without any loss of yield, diastereoselectivity, or enantioselectivity. The intermolecular hydrogen-shift re-

www.chemeurj.org

action was found to be a side reaction, which offers a method to synthesize the corresponding quinoline derivatives with quaternary stereocenters. Further studies about the intermolecular hydrogen-shift reaction and the application of the catalyst to other reactions are underway.

Experimental Section

Typical experimental procedure for the asymmetric Povarov reaction with N-arvl imine 4a and α -alkyl styrene 5a: Sc(OTf)₂ (9.8 mg. 0.02 mmol), N,N'-dioxide ligand L4 (14.0 mg, 0.02 mmol), N-aryl imine 4a (39.4 mg, 0.2 mmol), and dried $MgSO_4$ (10.0 mg) were stirred in CH2Cl2 (0.5 mL) under nitrogen. Subsequently, PhCHO (10.5 µL, 0.1 mmol) and CH₂Cl₂ (0.1 mL) were added, and the reaction was stirred at 30°C. After 0.5 h, $\alpha\text{-methylstyrene}~(\textbf{5a};$ 200 $\mu\text{L})$ was added. The reaction mixture was stirred at 30 °C for 38 h and then directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 8/1) to afford the desired product 6a as a yellow amorphous solid in an inseparable diastereomeric mixture: ¹H NMR (600 MHz, CDCl₃): $\delta = 7.34-7.28$ (m, 5H), 7.25 (m, 2H), 7.18 (t, J=7.2 Hz, 1H), 7.11 (d, J=7.2 Hz, 2H), 7.10-6.10 (m, 3H), 4.59 (s, 1H), 4.48-4.18 (brs, 1H), 4.02 (brs, 1H), 2.27 (m, 1 H), 2.17 (t, J = 12.0 Hz, 1 H), 1.76 ppm (s, 3 H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 150.46$, 128.58, 128.19, 128.01, 127.56, 127.35, 127.16, 126.77, 125.84, 116.28, 48.13, 41.80, 29.76 ppm; HRMS (ESI-TOF): calcd for $C_{22}H_{21}NO [M+H^+]$: 316.1696; found: 316.1696; the ee value was determined by chiral HPLC analysis on an Daicel Chiralcel IB column by comparison with authentic racemates: eluent: n-hexane/2propanol, 90/10; flow rate: 1.0 mLmin⁻¹; $\lambda = 254$ nm; retention times: 5.62 (trans, minor), 6.06 (cis), 6.94 (cis), 7.80 min (trans, major).

Typical experimental procedure for the intermolecular hydrogen-shift reaction of tetrahydroquinoline 6a and *N*-aryl imine 4a: Sc(OTf)₃ (9.8 mg, 0.02 mmol), tetrahydroquinoline 6a (63.0 mg, 0.2 mmol), and *N*-aryl imine 4a (39.4 mg, 0.2 mmol) were stirred under nitrogen, then CH₂Cl₂ (0.6 mL) was added, and the reaction was stirred at 30°C under nitrogen for 65 h. The residue was then purified by flash chromatography on silica gel (petroleum ether/ethyl ether, 100/1) to afford the quinoline derivative 7a as a yellow amorphous solid: ¹H NMR (400 MHz, CDCl₃): δ =7.96–7.93 (m, 2 H), 7.62 (m, 1 H), 7.44–7.38 (m, 3 H), 7.25–7.15 (m, 4 H), 7.10 (t, *J*=7.6 Hz, 1 H), 6.92 (dd, *J*=7.6, 1.2 Hz, 1 H), 6.63 (dd, *J*=7.6, 1.2 Hz, 1 H), 3.41 (d, *J*=16.8 Hz, 1 H), 2.94 (d, *J*=16.4 Hz, 1 H), 1.67 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ =163.44, 152.05, 146.20, 138.22, 135.44, 130.92, 130.69, 128.50, 128.48, 128.20, 126.67, 126.64, 126.50, 116.86, 112.81, 40.79, 40.21, 26.99 ppm.

The quinoline derivative **7a** could be easily oxidized into the quinoline-3one **8a** under air: ¹H NMR (400 MHz, CDCl₃): δ =7.90–7.77 (m, 2H), 7.63 (s, 1H), 7.47–7.34 (m, 3H), 7.32 (t, *J*=8.0 Hz, 1H), 7.29–7.26 (m, 1H), 7.23 (m, 2H), 7.10–6.97 (m, 3H), 6.87 (d, *J*=7.6 Hz, 1H), 1.91 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ =197.53, 155.78, 153.96, 139.21, 137.47, 133.74, 131.12, 130.99, 129.01, 128.74, 128.41, 128.35, 128.02, 127.16, 118.77, 114.43, 55.41, 21.81 ppm; the oxidation reaction of tetrahydroquinoline **7a** under air could be detected with chiral HPLC analysis on a Daicel Chiralcel IA column: *n*-hexane/2-propanol, 95/5; flow rate: 1.0 mLmin⁻¹; λ =254 nm; retention times: 8.28 (**8a**), 11.21 (**7a**), 12.31 (**8a**), 14.10 min (**7a**).

The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 8/1) to afford the reduced aniline **4ac** as a yellow viscous liquid: ¹H NMR (400 MHz, CDCl₃): δ = 7.51–7.36 (m, 5H), 6.99– 6.90 (m, 1H), 6.81 (d, *J* = 7.7 Hz, 1H), 6.77–6.66 (m, 2H), 5.18 (s, 2H), 4.43 ppm (s, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 143.73, 139.46, 137.15, 128.74, 127.74, 127.34, 121.65, 118.13, 114.73, 112.63, 48.69 ppm; HRMS (ESI-TOF): calcd for C₁₃H₁₃NO [*M*+H⁺]: 200.1070; found: 200.1077.

Typical experimental procedure for the scaled-up reaction: $Sc(OTf)_3$ (255.8 mg, 0.52 mmol), *N*,*N*'-dioxide ligand **L4** (364.5 mg, 0.52 mmol), *N*-aryl imine **4a** (1.02 g, 5.2 mmol), and dried MgSO₄ (260 mg) were stirred

in CH₂Cl₂ (13 mL) in a 50 mL dried flask under nitrogen. Subsequently, benzaldehyde (2.6 mmol, 263.5 μ L) and CH₂Cl₂ (2.6 mL) were added, and the reaction was stirred at 30 °C. After 0.5 h, α -methylstyrene (**5a**; 5.2 mL) was added, and the reaction mixture was stirred at 30 °C for 50 h. The residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether, 1/8) to afford **6a** (1.21 g, 74% yield, 95:5 d.r., 98% *ee*).

Acknowledgements

We appreciate the National Natural Science Foundation of China (nos. 20732003, 20872097, and 21021001), and National Basic Research Program of China (973 Program: no. 2010CB833300) for financial support. We also thank Sichuan University Analytical & Testing Center for NMR and X-ray diffraction analysis.

- For reviews on the construction of chiral tetrasubstituted carbon centers, see: a) K. Fuji, Chem. Rev. 1993, 93, 2037–2066; b) E. J. Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 402–415; Angew. Chem. Int. Ed. 1998, 37, 388–401; c) J. Christoffers, A. Mann, Angew. Chem. 2001, 113, 4725–4732; Angew. Chem. Int. Ed. 2001, 40, 4591–4597; d) C. J. Douglas, L. E. Overman, Proc. Natl. Acad. Sci. USA 2004, 101, 5363–5367; e) D. J. Ramón, M. Yus, Curr. Org. Chem. 2004, 8, 149–183; f) J. Christoffers, A. Baro, Adv. Synth. Catal. 2005, 347, 1473–1482; g) B. M. Trost, C. H. Jiang, Synthesis 2006, 369–396; h) P. G. Cozzi, R. Hilgraf, N. Zimmermann, Eur. J. Org. Chem. 2007, 5969–5994; i) O. Riant, J. Hannedouche, Org. Biomol. Chem. 2007, 5, 873–888; j) M. Bella, T. Gasperi, Synthesis 2009, 1583–1614.
- [2] a) H.-H. Hennies, C. Maul, M. Przewosny, B. Sundermann, DE 10236910, 2004; b) R. Uchida, R. Imasato, K. Shiomi, H. Tomoda, S. Ōmura, Org. Lett. 2005, 7, 5701–5704; c) R. Uchida, R. Imasato, Y. Yamaguchi, R. Masuma, K. Shiomi, H. Tomoda, S. Ōmura, J. Antibiot. 2006, 59, 646–651; d) W. F. J. Karstens, P. G. M. Conti, C. M. Timmers, R. Plate, C. J. Van Koppen, WO 2009027482, 2009.
- [3] L. S. Povarov, Russ. Chem. Rev. 1967, 36, 656-670.
- [4] For a recent review of normal-electron-demand aza Diels-Alder reactions, see: K. A. Jørgensen, Angew. Chem. 2000, 112, 3702–3733; Angew. Chem. Int. Ed. 2000, 39, 3558–3588.
- [5] For selected examples of asymmetric normal-electron-demand aza Diels-Alder reactions, see: a) S. Kobayashi, S. Komiyama, H. Ishitani, Angew. Chem. 1998, 110, 1026-1028; Angew. Chem. Int. Ed. 1998, 37, 979-981; b) S. Yao, M. Johannsen, R. G. Hazell, K. A. Jørgensen, Angew. Chem. 1998, 110, 3318-3321; Angew. Chem. Int. Ed. 1998, 37, 3121-3124; c) S. Yao, S. Saaby, R. G. Hazell, K. A. Jørgensen, Chem. Eur. J. 2000, 6, 2435-2448; d) N. S. Josephsohn, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2003, 125, 4018-4019; e) O. G. Mancheño, R. G. Arrayás, J. C. Carretero, J. Am. Chem. Soc. 2004, 126, 456-457; f) H. Sundén, I. Ibrahem, L. Eriksson, A. Córdova, Angew. Chem. 2005, 117, 4955-4958; Angew. Chem. Int. Ed. 2005, 44, 4877-4880; g) J. Itoh, K. Fuchibe, T. Akiyama, Angew. Chem. 2006, 118, 4914-4916; Angew. Chem. Int. Ed. 2006, 45, 4796-4798; h) D. J. Shang, J. G. Xin, Y. L. Liu, X. Zhou, X. H. Liu, X. M. Feng, J. Org. Chem. 2008, 73, 630-637; i) H. Mandai, K. Mandai, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2008, 130, 17961-17969.
- [6] For reviews of inverse-electron-demand aza Diels-Alder reactions, see: a) A. R. Katritzky, S. Rachwal, B. Rachwal, *Tetrahedron* 1996, 52, 15031–15070; b) P. Buonora, J.-C. Olsen, T. Oh, *Tetrahedron* 2001, 57, 6099–6138; c) V. V. Kouznetsov, *Tetrahedron* 2009, 65, 2721–2750.
- [7] For selected racemic examples of inverse-electron-demand aza Diels-Alder reactions, see: a) P. A. Grieco, A. Bahsas, *Tetrahedron Lett.* **1988**, *29*, 5855–5858; b) S. Kobayashi, H. Ishitani, S. Nagayama, *Synthesis* **1995**, 1195–1202; c) S. Kobayashi, H. Ishitani, S. Nagayama, *Chem. Lett.* **1995**, 423–424; d) J. S. Yadav, B. V. Subba Red-

13804 -

dy, R. Srinivas, C. Madhuri, T. Ramalingam, *Synlett* **2001**, 0240–0242; e) A. A. Kudale, J. Kendall, D. O. Miller, J. L. Collins, G. J. Bodwell, *J. Org. Chem.* **2008**, *73*, 8437–8447.

- [8] H. Ishitani, S. Kobayashi, Tetrahedron Lett. 1996, 37, 7357-7360.
- [9] a) G. Sundararajan, N. Prabagaran, B. Varghese, Org. Lett. 2001, 3, 1973–1976; b) T. Akiyama, H. Morita, K. Fuchibe, J. Am. Chem. Soc. 2006, 128, 13070–13071; c) H. Liu, G. Dagousset, G. Masson, P. Retailleau, J. P. Zhu, J. Am. Chem. Soc. 2009, 131, 4598–4599; d) G. Bergonzini, L. Gramigna, A. Mazzanti, M. Fochi, L. Bernardi, A. Ricci, Chem. Commun. 2010, 46, 327–329; e) H. Xu, S. J. Zuend, M. G. Woll, Y. Tao, E. N. Jacobsen, Science 2010, 327, 986–990; f) M. S. Xie, X. H. Chen, Y. Zhu, B. Gao, L. L. Lin, X. H. Liu, X. M. Feng, Angew. Chem. 2010, 122, 3887–3890; Angew. Chem. Int. Ed. 2010, 49, 3799–3802; g) L. Bernardi, M. Comes-Franchini, M. Fochi, V. Leo, A. Mazzanti, A. Ricci, Adv. Synth. Catal. 2010, 352, 3399–3406; h) G. Dickmeiss, K. L. Jensen, D. Worgull, P. T. Franke, K. A. Jørgensen, Angew. Chem. 2011, 123, 1618–1621; Angew. Chem. Int. Ed. 2011, 50, 1580–1583.
- [10] For selected racemic examples with styrene or α-methylstyrene as dienophiles: a) T. Kametani, H. Takeda, Y. Suzuki, T. Honda, *Heterocycles* 1984, 22, 275–276; b) J. M. Mellor, G. D. Merriman, *Tetrahedron* 1995, 51, 6115–6132; c) S. Kobayashi, S. Nagayama, J. Am. Chem. Soc. 1996, 118, 8977–8978; d) F. Linkert, S. Laschat, S. Kotila, T. Fox, *Tetrahedron* 1996, 52, 955–970; e) W. Zhang, X. D. Jia, L. Yang, Z.-L. Liu, *Tetrahedron Lett.* 2002, 43, 9433–9436; f) X. D. Jia, H. C. Lin, C. D. Huo, W. Zhang, J. M. Lü, L. Yang, G. Y. Zhao, Z.-L. Liu, *Synlett* 2003, 1707–1709.
- [11] H. Miyamura, K. Maehata, S. Kobayashi, Chem. Commun. 2010, 46, 8052–8054.
- [12] a) B. Crousse, J.-P. Bégué, D. Bonnet-Delpon, J. Org. Chem. 2000, 65, 5009–5013; b) V. V. Kouznetsov, C. Ochoa Puentes, A. R. Romero Bohórquez, S. A. Zacchino, M. Sortino, M. Gupta, Y. Vázquez, A. Bahsas, J. Amaro-Luis, Lett. Org. Chem. 2006, 3, 300–304; c) V. V. Kouznetsov, C. M. Meléndez Gómez, J. H. Bermúdez Jaimes, J. Heterocycl. Chem. 2010, 47, 1148–1152.
- [13] For a recent review on chiral N,N'-dioxides as ligands and organocatalysts in catalytic asymmetric reactions, see: a) X. H. Liu, L. L. Lin, X. M. Feng, Acc. Chem. Res., 2011, 44, 547–587; for recent examples, see: b) Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie, X. M. Feng, Angew. Chem. 2008, 120, 1328–1331; Angew. Chem. Int. Ed. 2008, 47, 1308–1311; c) K. Zheng, J. Shi, X. H. Liu, X. M. Feng, J. Am.

-FULL PAPER

Chem. Soc. 2008, 130, 15770-15771; d) M. Kokubo, C. Ogawa, S. Kobayashi, Angew. Chem. 2008, 120, 7015-7017; Angew. Chem. Int. Ed. 2008, 47, 6909-6911; e) Y. L. Liu, D. J. Shang, X. Zhou, X. H. Liu, X. M. Feng, Chem. Eur. J. 2009, 15, 2055-2058; f) Y. Zhu, X. H. Chen, M. S. Xie, S. X. Dong, Z. Qiao, L. L. Lin, X. H. Liu, X. M. Feng, Chem. Eur. J. 2010, 16, 11963-11968; g) Y. F. Cai, X. H. Liu, Y. H. Hui, J. Jiang, W. T. Wang, W. L. Chen, L. L. Lin, X. M. Feng, Angew. Chem. 2010, 122, 6296-6300; Angew. Chem. Int. Ed. 2010, 49, 6160-6164; h) W. Li, J. Wang, X. L. Hu, K. Shen, W. T. Wang, Y. Y. Chu, L. L. Lin, X. H. Liu, X. M. Feng, J. Am. Chem. Soc. 2010, 132, 8532-8533; i) Y. Zhu, M. S. Xie, S. X. Dong, X. H. Zhao, L. L. Lin, X. H. Liu, X. M. Feng, Chem. Eur. J. 2011, 17, 8202-8208; j) W. D. Cao, X. H. Liu, W. T. Wang, L. L. Lin, X. M. Feng, Org. Lett. 2011, 13, 600-603; k) K. Zheng, C. K. Yin, X. H. Liu, L. L. Lin, X. M. Feng, Angew. Chem. 2011, 123, 2621-2625; Angew. Chem. Int. Ed. 2011, 50, 2573-2577; l) K. Shen, X. H. Liu, G. Wang, L. L. Lin, X. M. Feng, Angew. Chem. 2011, 123, 4780-4784; Angew. Chem. Int. Ed. 2011, 50, 4684-4688; m) Z. Wang, Z. G. Yang, D. H. Chen, X. H. Liu, L. L. Lin, X. M. Feng, Angew. Chem. 2011, 123, 5030-5034; Angew. Chem. Int. Ed. 2011, 50, 4928-4932; n) Y. F. Cai, X. H. Liu, J. Jiang, W. L. Chen, L. L. Lin, X. M. Feng, J. Am. Chem. Soc. 2011, 133, 5636-5639.

- [14] For a recent review on chiral scandium complexes in catalytic asymmetric reactions, see: X. M. Feng, X. H. Liu in *Scandium: Compounds, Productions and Applications* (Ed.: V. A. Greene), Nova Science, New York, **2011**, pp. 1–48.
- [15] CCDC-807702 (6g) and 825022 (8a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [16] A trace amount of byproduct was observed with an HRMS signal of 719.3610; for more details, see the Supporting Information.
- [17] For a cascade Povarov/hydrogen-transfer reaction providing quinolines, see: a) R. Leardini, D. Nanni, A. Tundo, G. Zanardi, F. Ruggieri, *J. Org. Chem.* **1992**, *57*, 1842–1848; b) N. Shindoh, H. Tokuyama, K. Takasu, *Tetrahedron Lett.* **2007**, *48*, 4749–4753; c) N. Shindoh, H. Tokuyama, Y. Takemoto, K. Takasu, *J. Org. Chem.* **2008**, *73*, 7451–7456.

Received: July 28, 2011 Published online: November 14, 2011