Stereoselective and regioselective synthesis of azepane and azepine derivatives *via* piperidine ring expansion

Hyun-soon Chong,^{*a*} Bishwajit Ganguly,^{*b*} Grant A. Broker,^{*c*} Robin D. Rogers ^{*c*} and Martin W. Brechbiel *^{*a*}

- ^a Chemistry Section, Radiation Oncology Branch, National Cancer Institute, Building 10, Rm B3B69, NIH, Bethesda, MD 20892, USA. E-mail: martinwb@mail.nih.gov; Fax: +1 301 402-1923
- ^b Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavagar-364002, Gujarat, India
- ^c Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA

Received (in Cambridge, UK) 14th May 2002, Accepted 12th July 2002 First published as an Advance Article on the web 15th August 2002

Diastereomerically pure azepane derivatives **5**, **13** were prepared by piperidine ring expansion with exclusive stereoselectivity and regioselectivity and in excellent yield. The structure and stereochemistry of **5** were confirmed *via* X-ray crystallographic analysis. The ring expansion strategy was applied to the construction of an azepine backbone **22** of a potential biologically active compound. The regiochemistry and stereochemistry of the piperidine ring expansion process were investigated by semiempirical molecular orbital calculations.

Introduction

Natural and synthetic compounds containing a chiral azepine ring display a range of potential or proven biological activities including gastroprokinetic action and protein kinase C inhibitory effect.¹ Numerous reports on synthetic approaches towards these compounds have been published.² However, their synthesis still remains a challenge due to the difficulty in constructing an asymmetric, seven-membered azepine backbone.

Recently, we reported the synthesis of an azepane-backboned chelating agent as a potential gadolinium contrast agent in magnetic resonance imaging (MRI), which displays a comparable relaxivity to commercially used MR contrast agents and excellent in vitro stability.3 As reported therein, the synthesis of this chelating agent was based on a piperidine ring expansion, which leads to an azepane-backboned diazide with exclusive regioselectivity and diastereoselectivity. The possibility that the piperidine ring expansion might be a useful methodology for the construction of stereochemically pure azepine backbones in biologically active compounds prompted us to further investigate this rearrangement using either mono- or di-substituted piperidine substrates. Herein, we report the synthesis of a series of azepane and azepine derivatives via piperidine ring expansion. The stereo- and regio-selectivity observed during ring expansion have been investigated using computational methods.

Results and discussion

Previously, we reported that reaction of dichloride 1 with NaN₃ in DMSO provided the ring-expanded diazide 5 rather than the desired diazide 3 (Scheme 1). Interestingly, the ring-expanded diazide 5 was obtained only as a diastereomerically pure *cis*isomer and in 92% yield. The structure of diazide 5 was solved *via* ¹H and ¹³C NMR, and HRMS as reported previously.³ Ultimately, the viscous diazide 5 was converted to bissulfonamide 6^3 to confirm the structure and stereochemistry *via* X-ray analysis. The synthesis and X-ray crystal structure⁴ of the derivative 6 are shown in Scheme 2. The X-ray crystal structure of 6 proves the stereochemistry of absolute configuration in cis-5. The seven-membered azepane ring in 6 is found to be planar with the ring atoms within 0.43 Å from the plane. The torsion angles between the azepane ring and the cis substituents are C2-C3-N3-S2 (133.3°) and C6-C1-C7-N1 (67.9°). It seems likely that ring expansion leading to diazide 5 proceeds via an aziridinium intermediate, which further undergoes regiospecific nucleophilic attack of azide anion at the methine carbon (Scheme 1).⁵ As shown in Scheme 1, two possible diastereomeric ring-expanded products can be formed when the nucleophilic attack is on the stereogenic methine carbon in the intermediate 2. Interestingly, the reaction provided only cis-5. The obtained exclusive diastereoselectivity and the absolute configuration in 5 suggest that the nucleophilic attack of the azide ion at the methine carbon proceeds with a backside $S_N 2$ mechanism.

Considering that the protecting groups of the piperidine amine might influence the formation of the aziridinium ion, we planned to prepare compounds 10 and 11³ whose nitrogens were protected with more electron-withdrawing groups, i.e., either benzyloxycarbonyl (CBz) or tosyl (Ts). The synthesis of compounds 10 and 11 is shown in Scheme 3. N-Benzyloxycarbonyl protected diol 8 was prepared by reduction of 7 by following the previously reported procedure.⁶ Diol 8 was reacted with TsCl to afford N-CBz protected ditosylate 10 in 68% yield. Compounds 10 and 11 were each reacted with NaN₃ under the same reaction conditions used for the preparation of 5. The results of the substitution reactions are summarized in Table 1. Interestingly, even when the piperidine amine was protected with a CBz group, the reaction again provided the ring-expanded diazide 13 in high yield (90%). The ¹H and ¹³C NMR spectra of crude 13 taken after work-up display only signals corresponding to the rearranged diazide 13, confirming the absence of the symmetric piperidine diazide. As expected, the substitution reaction when the piperidine amine was protected with a tosyl group did not afford any rearranged diazide contrary to 1 or 10 protected by a benzyl group or a CBz group.3

2080 J. Chem. Soc., Perkin Trans. 1, 2002, 2080–2086

Scheme 2 Synthesis and X-ray crystal structure of 6.

Scheme 3

purpose, the experimental results obtained from ditosylate 15 having the same leaving groups as 10 and 11 were required. As a typical synthetic method for tosylation, diol 9 was reacted with TsCl in the presence of Et_3N for 18 h (Scheme 4). However, this attempted reaction failed to provide ditosylate 15. Instead, both piperidine dichloride (1) and rearranged dichloride (16) were

For a better understanding of the influence of *N*-protecting groups on the aziridinium intermediate formation, we were interesting in performing electronic calculations. For this

Table 1 Reactions with NaN₃ in DMSO at 90 °C

^{*a*} Yield as a mixture of **17** and **18** in a ratio of 1 : 1 determined by ¹³C NMR. ^{*b*} Yield as a mixture of **22** and **23** in a ratio of 1.6 : 1 determined by ¹³C NMR.

obtained as an inseparable mixture in a 3:1 ratio as determined by ¹³C NMR. Mass spectra, ¹H, and ¹³C NMR spectra of 1 obtained from the reaction were the same as that of authentic 1.³ The structure of the ring-expanded dichloride 16 obtained as an inseparable mixture along with 1 was confirmed via mass spectra, ¹H, and ¹³C NMR spectra. The ¹H and ¹³C NMR spectra taken after work-up did not contain any signals corresponding to either the target ditosylate 15 or starting material 9. At this point, the mechanism of the reaction is not clear. However, 15 formed by reaction of 9 with TsCl appears to proceed to the aziridinium intermediate, which then undergoes nucleophilic attack by the chloride displaced from TsCl. In an attempt to demonstrate that the chloride can act as a nucleophile, the same substrate dichloride 1 in CH₂Cl₂ was stirred at room temperature for 18 h in the absence of TsCl and triethylamine. ¹³C NMR spectra taken after evaporation of the solvent display both 1 and 16 at a ratio of 2.6 : 1. Dichloride 1 also was stirred in DMSO at 90 °C, the same conditions used for preparation of 5. This time, the ratio of 1:16 was 2.3:1 as determined by NMR analysis (Scheme 4).

As shown in Table 2, it seems likely that neither solvent (CH₃CN or DMSO) nor reaction time (4 h or 0.5 h) had a significant influence on stereoselectivity and regioselectivity in the course of the ring expansion leading to diazide 5. As another substrate, dibromide 12 was prepared by bromination of diol 9 in 68% yield (Scheme 3) and was reacted with NaN₃ under the same conditions used for preparation of 5. The results in Table 2 show that the presence of bromide as a leaving group made little difference to the exclusive formation of 5. However, when dichloride 1 was reacted with sodium cyanide using the same conditions as for the preparation of 5, the dinitriles 17, 18 were obtained as a mixture of rearranged and desired products in a 1 : 1 ratio as determined by ¹³C NMR. The formation of the normal substitution product 17 seems likely attributable to the use of cyanide, a stronger nucleophile than azide successfully competing with the rearrangement pathway.

In an effort to demonstrate the utility of this regioselective

and stereoselective ring expansion toward synthesis of chiral azepine rings, synthesis of 3-azido-1-benzylhexahydro-1Hazepine 22, a common backbone of several potential biologically active compounds^{1c,d} was attempted (Scheme 5). A commercially available starting material, piperidine-2-methanol 19, was reacted with benzyl bromide in the presence of K₂CO₃ to provide N-benzyl-2-hydroxymethylpiperidine $20,^7$ which was further reacted with SOCl₂. The latter reaction provided 2chloromethylpiperidine 218 in 91% yield. However, reaction of 21 with NaN₃ provided both 22 and 23 in 96% yield as a 1.6 : 1 mixture based on ¹³C NMR analysis. This result was somewhat surprising in the light of this being the same reaction conditions employed for the preparation of diazide 5. In fact, Morie and co-workers synthesized the isomers 22 and 23, as an inseparable mixture, which were characterized after being converted to the respective acetylamino derivatives of the isomers through several steps.9 Contrary to this report, however, we were in fact successful in separating the isomers 22 and 23 chromatographically and fully characterized the isomers via ¹H, ¹³C NMR, mass spectra, and CH analysis (see Experimental section). In the NMR spectrum of azepine 22, an overlapping AB spin system corresponding to the benzylic protons was observed. The ¹H NMR spectrum of 23 contains a pair of doublets (δ 3.32 and 4.01) corresponding to the benzylic protons. Although the formation yield of 22 was somewhat decreased as compared to that of the disubstituted azepanes, this result demonstrates that this piperidine ring expansion strategy might be extended to the synthesis of a variety of enantiomerically pure azepine backbones in biologically active compounds such as (-)-balanol, a potent protein kinase C inhibitor.

A noteworthy aspect was that the reactions of 1 and 10 with NaN₃ gave a rearranged product whereas 11 led to the unrearranged desired product (Table 1). At this juncture, we decided to examine these reactions qualitatively using computational methods. Semi-empirical molecular orbital calculations were performed employing the AM1 method and geometries were

completely optimized at the AM1 level of theory. The geometries have been fully characterized using vibrational analysis.¹⁰ First, we examined the possible conformations of **1**, **10**, and **11**. Di-axial, axial–equatorial and the di-equatorial chair conformations of **1**, **10**, and **11** have been calculated at the AM1 level (Scheme 6). The calculated results suggest that the di-axial

Scheme 6 Relative energies of conformations for 1, 10, and 11.

conformations are the most stable in all the cases and that the di-equatorial conformers are found to be the least stable (Scheme 6). Such results suggest that the formation of an aziridinium ion intermediate would be favorable as the di-axial and axial–equatorial conformations are in the proper orientation for intramolecular $S_N 2$ type attack from the nitrogen lone-pair. Furthermore, the aziridinium ion intermediates for the corresponding 1, 10, and 11 were calculated at the AM1 level (Scheme 7). The aziridinium ion formed from 11 appears

Scheme 7 Charge analysis of aziridinium cations corresponding to 1, 10, and 11.

to possess a lengthened and perhaps weakened N-S bond. The calculated N-S bonds for di-axial, axial-equatorial, diequatorial conformations are 1.638, 1.637, 1.632 Å, respectively (Scheme 6), while the calculated N-S bond in the aziridinium ion is 1.882 Å. This could be attributed to the strain induced by the formation of the aziridinium ion fused with the cyclohexane ring, which results in the dissociation of the N-S bond. Lengthening of the relevant bonds is also observed in the case of 1 and 10, but these changes are within the limits of normal N-C bond lengths (Scheme 7). Additionally, ab initio calculations also have been performed on model systems of 1 and 11 to examine whether such a phenomenon is not an artifact of the AM1 calculations. Interestingly, the lengthening of the N-S bond has been observed at the HF/3-21G* level of theory consistent with our AM1 calculated results. These results indicate that formation of the aziridinium ion is unlikely in the case of 11. The regioselective attack of azide as a nucleophile at the methine carbon of the aziridinium ion can be qualitatively explained via charge analysis. AM1 calculated natural charges for the aziridinium ions corresponding to 1 and 10 clearly indicate that the methine carbon is the more electrophilic site for nucleophilic attack Therefore, the favored attack to the methine carbon leads to the exclusive formation of the ring expanded products 1 and 10. The exclusive formation of a diastereomerically rearranged cis-isomer is another important issue to be addressed. Therefore, we examined the geometry of the aziridinium ion intermediate of compound 1 as obtained from

the most stable diaxial conformations. It is noteworthy that the formation of aziridinium ion induces strain in the parent cyclohexane ring, perturbing the ring conformation and causing the substituents to be in a pseudo-axial and equatorial arrangement. The backside attack of the nucleophile at the methine carbon in the aziridinium ion leads to formation of the *cis*-isomer. In order to obtain a *trans*-isomer, the nucleophile has to make a frontside attack at the methine carbon, which is not a favorable situation for S_N 2-type reactions (Scheme 8).

Scheme 8 Optimized geometry of aziridinium cation 2

In the case of the aziridinium cation corresponding to mono-substituted piperidine **21**, the calculated charges predict preferential formation of ring expanded **22** (Scheme 7). However, both ring expanded azepine **22** and piperidine **23** were experimentally obtained (Scheme 5). Contrary to the exclusive formation of rearranged products from disubstituted **1** and **10**, the formation of both rearranged and unrearranged products from mono-substituted piperidine derivative **21** prompted us to examine the possibility of anchimeric assistance of the neighboring chloride in azepine ring formation. In the case of the di-substituted derivatives, such participation is possible whereas it is not possible with the mono-substituted derivative. The formation of aziridinium ion intermediates from di-axial and axial–equatorial conformations of **1** has been considered here and the AM1 calculated energies are shown in Scheme 9. The

calculated relative energies show that aziridinium ion intermediate **a** is the most stable geometry originating from **1** on a di-axial conformation. Considering the geometries of aziridinium ions, neighboring group assistance appears to be only possible in a, where the chloride is at a closer distance to the primary carbonium ion (3.32 Å). However, the methine carbon is at the furthest distance from chloride in a (4.38 Å). In the case of aziridinium ion intermediate c obtained from 1 on the axialequatorial conformation, the distance between the methine carbon of the aziridinium ion and the chloride is 3.95 Å, at which anchimeric assistance of chloride to the formation of rearranged product is possible. However, the intermediate c is energetically unfavorable compared a and b (Scheme 9). It appears from the AM1 calculated energies and distances that anchimeric assistance does not play a significant role in the formation of ring expanded product. Alternatively, the exclusive formation of rearranged products in the case of di-substituted derivatives 1 and 10 can be argued on the possible increase in interactions between a chloromethyl group and the nitrogen lone-pair leading to an increased formation of aziridinium ion concentration compared to mono-substituted derivatives.

Conclusion

The *N*-benzyl or *N*-benzyloxycarbonyl protected azepane derivatives **5**, **13** were prepared by exclusive stereoselective and regioselective piperidine ring expansion in excellent yield. The influence of *N*-protecting groups, leaving groups, and nucleophiles on the formation of ring-expanded products was investigated in a preliminary form. We have demonstrated the potential of this ring expansion reaction as a useful route for the construction of enantiomerically pure azepine backbones of a variety of biologically active compounds *via* synthesis of an azepine ring **22**. The experimental results of the ring expansion reactions were supported by semi-empirical molecular orbital calculations.

Experimental

General

¹H, ¹³C, and APT NMR spectra were obtained using a Varian Gemini 300 instrument. Chemical shifts are reported in δ ppm, and coupling constants *J* are in Hz. Elemental analyses were performed at Galbraith Laboratories, GA. Fast atom bombardment mass spectra (FAB-MS) were obtained on an Extrel 4000 in the positive ion detection mode.

N-Benzyloxycarbonyl-*cis*-2,6-bis(*p*-tolylsulfonyloxymethyl)piperidine (10)

To a solution of 8⁶ (850 mg, 3.0 mmol) and Et₃N (1.3 mL, 9.1 mmol) in CH₂Cl₂ (4 mL) at 0 °C was added dropwise a solution of TsCl (1.73 g, 9.1 mmol) in CH₂Cl₂ (3 mL). The resulting solution was allowed to reach room temperature and stirred for 18 h. The resulting mixture was diluted with CH₂Cl₂ (30 mL) and washed with H_2O (3 × 20 mL). The combined organic layers were dried (MgSO₄) and filtered, and the filtrate was concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with 25% EtOAc-hexane. Pure 10 was thereby obtained as a colorless viscous oil (1.2 g, 68%); δ_H (200 MHz: CDCl₃; Me₃Si) 1.25–1.86 (6 H, m, 3-H, 4-H, and 5-H), 2.48 (6 H, s, ArCH₃), 3.90-4.08 (2 H, m, 2-H and 6-H), 4.42-4.56 (4 H, m, CH2OTS), 5.15 (2 H, s, OCH2Ph), 7.32–7.45 (9 H, m, Ph), 7.83 (4 H, d, J 9.4, ArH); $\delta_{\rm C}$ (200 MHz: CDCl₃; Me₃Si) 13.9 (t, 4-C), 21.3 (q, Me), 24.0 (t, 3-C and 5-C), 48.0 (d, 2-C and 6-C), 67.3 (t, CH₂OSO₂Ar), 69.1 (t, CH₂Ph), 127.5, 127.6, 127.8, 128.2, 129.7 (each d, 5 × Ar-CH), 132.2, 135.8, 144.8 (each s, 3 × Ar-C), 155.2 (C=O). This material was observed to be unstable; accordingly, it was used immediately as obtained in the next step.

N-Benzyl-cis-2,6-bis(bromomethyl)piperidine (12)

To a solution of triphenylphosphine (524 mg, 2 mmol) in dry CH₃CN (25 mL) cooled to 0 °C and under nitrogen was added bromine (0.27 mL, 5.26 mmol) dropwise. After stirring of the mixture for 0.5 h at 0 °C, a solution of 9³ (620 mg, 2.63 mmol) in CH₃CN (5 mL) was added dropwise and the resulting mixture was stirred for 7 days at room temperature. The solvents were evaporated and the residue was dissolved in CHCl₃ (30 mL). The organic phase was washed successively with saturated NaHCO₃ solution (30 mL) and brine (30 mL), dried, filtered, and evaporated. The residue was purified via column chromatography on silica gel eluting with 10% EtOAchexane. Pure 12 was thereby obtained as a colorless viscous oil (290 mg, 51%). The crude product was used directly in the next step. $\delta_{\rm H}$ (200 MHz: CDCl₃; Me₃Si) 1.23–1.80 (6 H, m, 3-H, 4-H, and 5-H), 2.75–2.88 (2 H, m, 2-H and 6-H), 3.04–3.33 (4 H, m, *CH*₂Br), 3.74 (2 H, s, *CH*₂Ph), 7.13–7.28 (5 H, m, Ph); δ_C (200 MHz: CDCl₃; Me₃Si) 17.0 (t, 4-C), 26.3 (t, 3-C and 5-C), 34.1 (t, *CH*₂Br), 55.7 (t, *CH*₂Ph), 59.8 (d, 2-C), 126.8, 127.6, 127.8 (each d, 3 × Ar-CH), 139.8 (s, Ar-C); HRMS (Positive ion FAB) Found: M⁺, 361.9942. C₁₄H₁₉NBr₂ requires M, 361.9937.

General procedure of NaN₃ reactions in DMSO

A mixture of either 1,³ 10, 11,³ 12, or 21 (5 mmol) and NaN₃ (15 mmol) in DMSO (20 mL) was heated to 90 °C for 0.5 h or 4 h. The resulting mixture was poured into ice–water and extracted with Et₂O (2 × 100 mL). The combined organic layers were washed with H₂O (3 × 30 mL), dried (MgSO₄), and filtered. The filtrate was concentrated in *vacuo*.

cis-6-Azido-2-azidomethyl-1-benzylazepane (5)

A mixture of **12** (273 mg, 1 mmol) and NaN₃ (195 mg, 3 mmol) in DMSO (5 mL) was heated to 90 °C for 4 h. After work-up, pure **5** was obtained in 94% yield. The ¹H and ¹³C NMR spectra of **5** are essentially identical to data reported previously.³

cis-6-Azido-2-azidomethyl-1-benzyloxycarbonylazepane (13)

A mixture of **10** (1.37 g, 5 mmol) and NaN₃ (15 mmol) in DMSO (20 mL) was heated to 90 °C for 4 h. After work-up, the residue was purified *via* column chromatography on basic alumina eluting with 10% EtOAc–hexane. Pure **13** was thereby obtained as a colorless viscous oil (1.40 g, 90%): $\delta_{\rm H}$ (200 MHz: CDCl₃; Me₃Si) 1.20–2.03 (6 H, m, 3-H, 4-H and 5-H), 3.20–3.32 (1 H, m, 2-H), 3.49–3.63 (1 H, m, 6-H), 3.93 (1 H, m, *CH*₂N₃), 3.98–4.13 (2 H, m, 7-H), 4.36 (3 H, m, *CH*₂N₃ and *CH*₂Ph), 7.28–7.45 (5 H, m, Ph); $\delta_{\rm C}$ (200 MHz: CDCl₃; Me₃Si) 22.7 (t, 4-C), 28.6 (t, 3-C), 29.1 (t, 5-C), 51.6 (t, *CH*₂N₃), 54.7 (t, 7-C), 55.4 (d, 2-C), 57.1 (d, 6-C), 67.6 (t, *CH*₂Ph), 128.3, 128.4, 128.6 (each d, 3 × Ar-CH), 135.5 (s, Ar-C), 156.9 (C=O). *m/z* (positive ion FAB) 330 (M⁺), 197(M⁺ – 135).

3-Azido-1-benzylhexahydro-1*H*-azepine (22) and *N*-benzyl-2azidomethylpiperidine (23)

A mixture of 21 (2 g, 8.94 mmol) and NaN₃ (1.74 g, 26.8 mmol) in DMSO (20 mL) was heated to 90 °C for 4 h. The mixture of 22 and 23 (1.98 g, 96%) after work-up was separated via column chromatography on silica gel eluting with pentane to 5% EtOAc in hexanes to afford 22 (1.06 g, 52%). $\delta_{\rm H}$ (200 MHz: CDCl₃; Me₃Si) 1.30-1.80-2.19 (6 H, m, 4-H, 5-H, and 6-H), 2.61-2.91 (4 H, m, 2-H and 7-H), 3.46–3.54 (1 H, m, 3-H), 3.68 (2 H, dd, J 15 and 15, CH2Ph), 6.90–7.10 (5 H, m, Ph); $\delta_{\rm C}$ (200 MHz: CDCl₃; Me₃Si) 22.1 (t, 5-C), 29.0 (t, 6-C), 32.9 (t, 4-C), 55.9 (t, 7-C), 59.0 (t, 2-C), 61.3 (d, 3-C), 63.1 (t, CH₂Ph), 126.9, 128.2, 128.6 (each d, 3 × Ar-CH), 139.7 (s, Ar-C). Found: C, 68.00; H, 8.16. Calc. for C₁₃H₁₈N₄: C, 67.80; H, 7.88%. Continued elution with 8% EtOAc in hexanes provided 23 (605 mg, 29%). $\delta_{\rm H}$ (200 MHz: CDCl₃; Me₃Si) 1.26–1.76 (6 H, m, 3-H, 4-H, and 5-H), 2.01-2.12 (1 H, m, 6-H), 2.46-2.52 (1 H, m, 2-H), 2.73-2.80 (1 H, m, 6-H), 3.32 (1 H, d, J 16, CH₂Ph), 3.45-3.50 (2 H, m, CH₂N₃), 4.01 (1 H, d, J 16, CH₂Ph), 7.22–7.35 (5 H, m, Ph); $\delta_{\rm C}$ (200 MHz: CDCl₃; Me₃Si) 23.1 (t, 4-C), 24.9 (t, 3-C), 29.3 (t, 5-C), 51.4 (t, 6-C), 53.0 (t, CH_2N_3), 58.5 (t, CH_2Ph), 60.2 (d, 2-C), 126.8, 128.2, 128.7 (each d, 3 × Ar-CH), 139.0 (s, Ar-C). Found: C, 67.71; H, 8.08. Calc. for C13H18N4: C, 67.80; H, 7.88%. Chromatographic elution also provided fractions containing a mixture of 22 and 23 (120 mg, 6%). Structures of 22 and 23 also are confirmed by HPLC retention time data reported previously.9

Reactions of 1 or 12 with NaN₃ in CH₃CN

A mixture of either 1 or 12 (5 mmol) and NaN₃ (15 mmol) in CH₃CN (20 mL) was heated to reflux for 0.5 h. The solvent was evaporated to dryness and dissolved in CH₂Cl₂ and washed with water. The organic phase was separated, dried (MgSO₄), and filtered. The filtrate was concentrated in *vacuo*. Pure 5 (>90% yield) was obtained from starting materials 1 or 12. The ¹H NMR, ¹³C NMR spectra of 5 are essentially identical to data reported previously.³

Downloaded by UNIVERSITY OF ALABAMA AT BIRMINGHAM on 11 December 2012 Published on 15 August 2002 on http://pubs.rsc.org | doi:10.1039/B204677F

A mixture of *N*-benzyl-*cis*-2,6-bis(chloromethyl)piperidine (1) and 6-chloro-2-chloromethyl-1-benzylazepane (16)

Method 1. To a solution of 9 (850 mg, 3.0 mmol) and Et₃N (1.3 mL, 9.1 mmol) in CH₂Cl₂ (4 mL) at 0 °C was added dropwise a solution of TsCl (1.73 g, 9.1 mmol) in CH₂Cl₂ (3 mL). The resulting solution was allowed to the room temperature and stirred for 18 h. The resulting mixture was diluted with CH_2Cl_2 (30 mL) and washed with H_2O (3 × 20 mL). The combined organic layers were dried (MgSO₄) and filtered, and the filtrate was concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with 10% EtOAchexane to afford 1 and 16 (310 mg, 38%) as an inseparable mixture in a 3 : 1 ratio. ¹H and ¹³C NMR signals corresponding to 1 are essentially identical to that of authentic 1. Compound 16: $\delta_{\rm H}$ (200 MHz, obtained as a mixture of 16 with 1, CDCl₃; Me₃Si) 1.40-2.40 (6 H, m, 3-H, 4-H, and 5-H), 2.81-4.06 (8 H, m, 2-H, 6-H, 7-H, CH₂Cl, and CH₂Ph), 7.22-7.45 (5 H, m, Ph); $\delta_{\rm C}$ (200 MHz: CDCl₃; Me₃Si) 23.0 (t, 4-C), 31.6 (t, 3-C), 40.0 (t, 5-C), 46.8 (t, CH₂Cl), 55.1 (t, 7-C), 57.7 (d, 6-C), 59.2 (t, CH₂Ph), 62.3 (d, 2-C), 127.19, 128.3, 128.7 (each d, 3 \times Ar-CH), 139.4 (Ar-C).;m/z (positive ion FAB) 272 (M⁺).

Method 2. Dichloride **1** (100 mg, 0.37 mmol) was dissolved in DMSO (5 mL) and the resulting solution was heated to 90 °C for 4 h. The resulting mixture was poured into ice–water and extracted with Et_2O (2 × 30 mL). The combined organic layers was washed with H_2O (3 × 10 mL), dried (MgSO₄), and filtered. The filtrate was concentrated in *vacuo*. Both **1** and **16** were thereby obtained as a mixture in quantitative yield. The ¹H NMR, ¹³C NMR spectra of **1** and **16** obtained as a mixture are essentially identical to data obtained in Method 1.

Method 3. Dichloride 1 (100 mg, 0.38 mmol) was dissolved in CH_2Cl_2 (5 mL) and the resulting solution was stirred at room temperature for 18 h. Evaporation of solvent provided both 1 and 16 as a mixture in quantitative yield. The ¹H NMR, ¹³C NMR spectra of 1 and 16 obtained as a mixture are essentially identical to data obtained from Method 1.

A mixture of 2,6-bis(cyanomethyl)piperidine (17) and 6-cyano-2cyanomethyl-1-benzylazepane (18)

A mixture of 1 (150 mg, 0.55 mmol) and NaCN (81 mg, 1.65 mmol) in DMSO (2 mL) was heated to 90 °C for 4 h. The resulting mixture was poured into ice-water and extracted with Et₂O (2 \times 50 mL). The combined organic layers were washed with $H_2O(3 \times 30 \text{ mL})$, dried (MgSO₄), and filtered. The filtrate was concentrated in vacuo. The residue was purified via column chromatography on basic alumina eluting with 10% EtOAchexane. A fraction containing the mixture of 17 and 18 was obtained (368 mg, 88%). The 17: 18 ratio (1:1) was determined by ¹H NMR: $\delta_{\rm H}$ (200 MHz, obtained as a mixture of 17 with 18, CDCl₃; Me₃Si) 1.10-1.73 (m, 4 H), 1.87-2.61 (m, 8 H), 2.70-3.23 (m, 3 H), 3.80–3.96 (m, 2 H), 7.18–7.45 (10 H, m, Ph); $\delta_{\rm C}$ (200 MHz: CDCl₃; Me₃Si) 21.2 (t), 21.9 (t), 23.4 (t), 24.0 (t), 30.0 (d), 30.2 (t), 33.0 (t), 33.6 (t), 49.2 (t), 56.9 (t), 58.6 (d), 58.7 (t), 59.0 (d), 117.8 and 118.4 (2 \times CN), 126.4, 126.8, 127.1, 127.6, 128.4, and 128.6 (each d, 6 × Ar-CH), 138.0, 139.4 (each s, $2 \times \text{Ar-C}$; *m*/*z* (Positive ion FAB) 253 (M⁺).

N-Benzyl-2-hydroxymethylpiperidine (20).⁷

To a solution of **19** (2.3 g, 20 mmol) in ethanol (40 mL) and water (6 mL) was added benzyl bromide (3.58 g, 20 mmol) and potassium carbonate (8.28 g, 60 mmol). The resulting mixture was stirred at 80 °C for 12 h. Solvent was removed from the reaction mixture and the residue was dissolved in EtOAc and washed with H_2O (3 × 30 mL), dried (MgSO₄), and filtered. The filtrate was concentrated *in vacuo*. The residue was purified *via*

column chromatography on silica gel eluting with 50% EtOAchexane. Pure **20** was thereby obtained as a colorless viscous oil (3.8 g, 93%). $\delta_{\rm H}$ (200 MHz: CDCl₃; Me₃Si) 1.33–1.71 (6 H, m, 3-H, 4-H, and 5-H), 2.10–2.19 (1 H, m, 6-H), 2.43–2.47 (1 H, m, 6-H), 2.70 (1 H, br s, OH), 2.73–2.89 (1 H, m, 2-H), 3.31 (1 H, d, J 10, CH₂OH), 3.52 (1 H, dd, J 5 and 4, CH₂Ph), 3.84 (1 H, dd, J 5 and 4, CH₂Ph), 4.05 (2 H, d, J 10, CH₂OH), 7.23–7.35 (m, 5 H); $\delta_{\rm C}$ (200 MHz: CDCl₃; Me₃Si) 23.9 (t, 4-C), 25.6 (t, 5-C), 27.9 (t, 3-C), 45.9 (t, CH₂Ph), 57.7 (d, 2-C), 65.2 (t, CH₂OH), 126.7, 128.0, 128.6 (each d, 3 × Ar–CH), 138.8 (s, Ar–C). Found: C, 75.83; H, 9.59. Calc. for C₁₃H₁₉NO: C, 76.06; H, 9.33%.

N-Benzyl-2-chloromethylpiperidine (21).8

A solution of 20 (2.8 g, 13.6 mmol) in dry benzene (30 mL) was saturated with HCl (g) at 0 °C. After addition of thionyl chloride (5 mL), the mixture was heated at 60 °C for 3 h. The cooled reaction mixture was concentrated and neutralized with 5% Na₂CO₃ solution. The resulting mixture was extracted with CH_2Cl_2 (3 × 50 mL) and the combined organic layers were dried (MgSO₄) and filtered, and the filtrate was concentrated in vacuo to afford crude **21** (2.76 g, 91%). $\delta_{\rm H}$ (200 MHz: CDCl₃; Me₃Si) 1.33-1.79 (6 H, 3-H, 4-H, and 5-H), 2.15-2.25 (1 H, m, 6-H), 2.64-2.82 (2 H, m, 2-H and 6-H), 3.40 (1 H, d, J 7, CH₂Ph), 3.68 (2 H, d, J 10, CH₂Cl), 4.04 (1 H, d, J 7, CH₂Ph), 7.26–7.39 (5 H, m, Ph); δ_C (200 MHz: CDCl₃; Me₃Si) 22.7 (t, 4-C), 25.1 (t, 5-C), 28.9 (t, 3-C), 45.6 (t, CH₂Cl), 51.1 (t, 6-C), 58.2 (t, *CH*₂Ph), 61.4 (d, 2-C), 126.9, 128.2, 128.9 (each d, 3 × Ar–CH), 139.5 (s, Ar-C). The ¹H NMR, ¹³C NMR spectra of 21 as an acidic salt are essentially identical to data reported previously.8

X-Ray crystal structure determination of compound 6

Crystals for structure and stereochemistry determination were obtained by recrystallization of **6** from CH₂Cl₂-hexanes. C₂₉H₃₇Cl₂N₃O₄S₂, M = 626.64, triclinic, a = 10.245(8), b = 10.338(8), c = 15.970(12) Å, a = 79.037(13), $\beta = 88.444(13)$, $\gamma = 65.605(11)^\circ$, U = 1509.7(19) Å, ³ T = 173(2) K, space group $P\overline{I}$, Z = 2, μ (Mo-K α) = 0.393 mm⁻¹, 6844 reflections collected, independent/observed reflections 4307 ($R_{int} = 0.0198$), $R_1 = 0.0412$, $wR_2 = 0.1096$ [$I > 2\sigma(I)$].

Acknowledgements

We thank the structural Mass Spectra Group (Dr L. Pannell, NIDDK, Bethesda, MD) for obtaining the mass spectra. Dr B. Ganguly thanks Dr P. K. Ghosh, Director, CSMCRI for his support.

References

- P. Kulanthaivel, Y. F. Hallock, C. Boros, S. M. Hamilton, W. P. Janzen, L. M. Ballas, C. R. Loomis, J. B. Jiang, B. Katz, J. R. Steniner and J. Clardy, *J. Am. Chem. Soc.*, 1993, **115**, 6452;
 (b) S. Ohsima, M. Yanagisawa, A. Katoh, T. Fujii, T. Sano, S. Matsukuma, T. Furumai, M. Fujiu, W. Kimihiro, Y. Kazuteru, M. Arisawa and T. J. Okuda, *Antibiotics*, 1993, **47**, 639; (c) T. Morie, S. Kato, H. Harada, N. Yoshida, I. Fujiwara and J-I. Matsumoto, *Chem. Pharm. Bull.*, 1995, **43**, 1137; (d) W. W. Engel, W. G. Eberlein, G. Mihm, R. Hammer and G. Trummlitz, *J. Med. Chem.*, 1989, **32**, 1718.
- 2 (a) L. Gauzy, Y. L. Merrer and J-C. Depezay, *Tetrahedron Lett.*, 1999, 40, 6005; (b) E. Albertini, A. Barco, S. Benetti, C. De Risi, G. P. Pollini and V. Zanirato, *Synlett*, 1996, 29; (c) D. Riber, R. Hazell and T. Skrydstrup, *J. Org. Chem.*, 2000, 65, 5382; (d) K. C. Nicolaou, M. E. Bunnage and K. Koide, *J. Am Chem. Soc.*, 1994, 116, 8402; (e) J. Armbruster, F. Stelzer, P. Landenberger, C. Wieber, D. Hunkler, M. Keller and H. Prinzbach, *Tetrahedron Lett.*, 2000, 41, 5483; (f) L. Gauzy, Y. L. Merrer, J-C. Depezay, F. Clerc and S. Mignani, *Tetrahedron Lett.*, 1999, 40, 6005; (g) A. Tuch, M. Saniere, Y. Le Merrer and J. Depezay, *Tetrahedron: Asymmetry*, 1996, 7, 2901.

- 3 H. S. Chong, K. Garmestani, L. H. Bryant and M. W. Brechbiel, *J. Org. Chem.*, 2001, **66**, 7745.
- 4 CCDC reference number 177553. See http://www.rsc.org/suppdata/ p1/b2/b204677f/ for crystallographic files in .cif or other electronic format.
- 5 For other examples of ring expansion of the pyrrolidine and piperidine system, see: (a) N. Langlois and O. Calvez, Synth. Commun., 1998, 28, 4471; (b) J. Wilken, M. Kossenjans, W. Saak, D. Haase, S. Pohl and J. Martens, Liebigs Ann., 1997, 573; (c) J. Cossy, O. Mirguet and D. G. Pardo, Synlett, 2001, 1575.
- 6 M. Dickman and R. Chênevert, J. Org. Chem., 1996, 61, 3332.
 7 B. Weber, J. Schwerdtfeger, R. Froehlich, A. Goehrt and D. Hoppe,
- West, J. Sourdenger, M. Freemen, M. Goenre and D. Hoppe, Synthesis, 1999, 11, 1915.
 E. Schipper, W. Boehme, E. S. Graeme and E. Chinery, J. Med. Pharm. Chem., 1961, 4, 79.
- 9 T. Morie, S. Kato, H. Harada, F. Fujiware, K. Watanabe and J-I. Matsumoto, J. Chem. Soc., Perkin Trans. 1, 1994, 2565.
- 10 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.