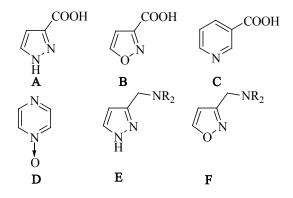
ISSN 1070-4280, Russian Journal of Organic Chemistry, 2011, Vol. 47, No. 8, pp. 1199–1203. © Pleiades Publishing, Ltd., 2011. Original Russian Text © D.M. Musatov, E.V. Starodubtseva, A.K. Rakishev, O.V. Turova, M.G. Vinogradov, 2011, published in Zhurnal Organicheskoi Khimii, 2011, Vol. 47, No. 8, pp. 1181–1185.

Synthesis of 3-Aminomethyl-Substituted Pyrazoles and Isoxazoles

D. M. Musatov, E. V. Starodubtseva, A. K. Rakishev, O. V. Turova, and M.G. Vinogradov

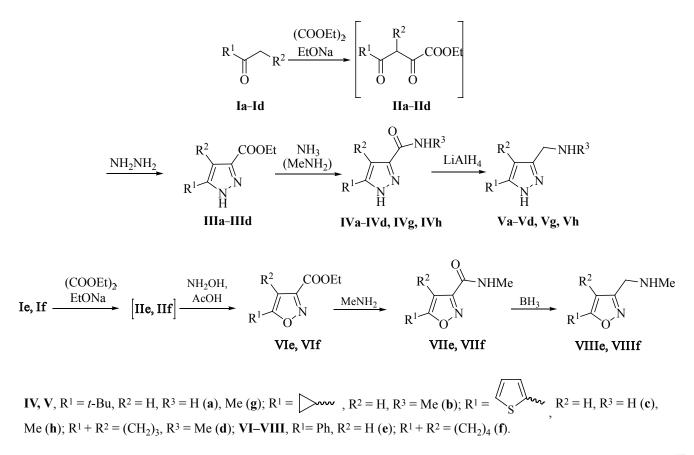
Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia e-mail: turova@ioc.ac.ru


Received October 22, 2010

Abstract—A series of new 3-(aminomethyl)pyrazoles and 3-(aminomethyl)isoxazoles was synthesized along a route involving the formation as key intermediates of esters of 5-substituted 1*H*-pyrazole-3-carboxylic and 1*H*-isoxazole-3-carboxylic acids. All compounds obtained were characterized by physicochemical constants, IR,

¹H, ¹³C NMR, and mass spectra.

DOI: 10.1134/S1070428011080136


Many functionally substituted pyrazoles and isoxazoles possess a wide range of pharmacologic activity [1–3]. For instance, 3-pyrazole- and 3-isoxazolecarboxylic acids **A** and **B** having alkyl or aryl substituents in the positions 4 and (or) 5 are antagonists of niacinic receptors and analogs of nicotinic acid **C** (niacin) and of acipimox **D** used in the medical praxis in the atherosclerosis treatment [4–6].

Pyrazoles and isoxazoles with substituent of the basic character of \mathbf{E} and \mathbf{F} type are far less understood. They underlie the synthesis of selective inhibitors of enzymes, like factor Xa, and blood anticoagulants [7]. At the same time the known procedures for the preparation of compounds of \mathbf{E} and \mathbf{F} type apply difficultly available reagents [3, 8] or unstable compounds like azides [9] or organometallic derivatives [7]. Therefore the search for more convenient synthetic methods for their preparation is urgent.

In this study we performed the synthesis of aminomethyl derivatives of heterocycles of **E** and **F** type along a scheme involving the condensation of various ketons **I** with diethyl oxalate (Claisen reaction) followed by the cyclocondensation of the intermediate α , γ -diketone **II** with hydrazine or hydroxylamine [1–6].

As a result substituted in the ring esters of 3-pyrazoleor 3-isoxazolecarboxylic acids III and IV were obtained. Therewith the cyclocondensation of diketones IIe and IIf with the hydroxylamine proceeded regioslectively. In event of diketones IIa and IIb alongside the 3-ethoxycarbonyl derivatives also 5-ethoxycarbonyl-substituted isoxazoles were obtained in a ratio 9:1. Further compounds III, VI were subjected to ammonolysis or aminolysis with methylamine with the subsequent reduction of amides IV, VII into the corresponding amines V, VIII. Amides IV of the substituted 3-pyrazolecarboxylic acids were reduced with LiAlH₄, and amides VII of the substituted 3-isoxazolecarboxylic acid, with the help of BH₃ obtained in situ from NaBH₄ and BF₃·Et₂O. The latter procedure was required for the reaction of amides VII with LiAlH₄ occurred nonselectively with the formation of a large number of side products. In both cases THF was used as solvent.

All the aminomethylpyrazoles and isoxazoles obtained as far as we know have been synthesized for the first time, and they were characterized by IR, ¹H,¹³C NMR, and mass spectra.

EXPERIMENTAL

IR spectra of compounds synthesized were recorded on a spectrometer Specord M82 from pellets with KBr. The melting points were measured on a Boëtius heating block. High-resolution mass spectra were taken on an instrument MicrOTOF II (Bruker Daltonics) with electrospray ionization. ¹H and ¹³C NMR spectra were registered on a spectrometer Bruker AM-300 at operating frequencies 300.13 and 75.47 MHz respectively, solvent DMSO- d_6 , internal reference TMS.

Ethyl 5-tert-butyl-1*H*-pyrazole-3-carboxylate (IIIa). To a solution of 68.05 g (1 mol) of sodium ethylate in 1 liter of anhydrous ethanol was added gradually 146 g (1 mol) of diethyl oxalate, then 125 ml (1 mol) of ketone Ia was poured thereto. The mixture was stirred at room temperature for 20 H, afterwards 57 ml (1 mol) of glacial acetic acid and 57 ml (1 mol) of 55% hydrazine hydrate were added. The reaction mixture was stirred for 20 h, the solvent was distilled off, by portions 500 ml of saturated solution of NaHCO₃ was added, and the product was extracted into dichloromethane (3×300 ml). The extract was washed with water, dried with MgSO₄, and filtered through a bed of silica gel. The solvent was distilled off, the solid residue was crystallized from ethyl acetate and dried in a vacuum. Yield 167 g (85%), colorless crystals, mp 143–144°C. ¹H NMR spectrum, δ , ppm: 1.27 m [12H, C(CH₃)₃, CH₂CH₃], 4.25 q (2H, CH₂), 6.48 s (1H, H⁴), 13.22 br.s (1H, NH). Found, %: C 61.01; H 8.12; N 14.21. C₁₀H₁₆N₂O₂. Calculated, %: C 61.20; H 8.22; N 14.27.

Esters **IIIb–IIId** were similarly prepared.

Ethyl-5-cyclopropyl-1*H*-pyrazole-3-carboxylate (IIIb) [5]. Yield 146 g (81%), mp 90–92°C. ¹H NMR spectrum, δ , ppm: 0.71 m, 0.92 m (4H, 2CH₂ cyclopropyl), 1.25 t (3H, CH₃), 1.90 m (1H, CH cyclopropyl), 4.22 q (2H, CH₂CH₃), 6.39 s (1H, H⁴), 13.17 br.s (1H, NH). Found, %: C 59.76; H 6.59; N 15.60. C₉H₁₂N₂O₂. Calculated, %: C 59.99; H 6.71; N 15.55.

Ethyl-5-(2-thienyl)-1*H*-pyrazole-3-carboxylate (IIIc. Yield 200 g (90%), mp 136–137°C. ¹H NMR spec-

trum, δ , ppm: 1.31 t (3H, CH₃), 4.32 q (2H, CH₂CH₃), 7.11 m (2H, H⁴, CHCHS), 7.52 m (2H, CHCS, CHS), 13.98 br.s (1H, NH). Found, %: C 53.91; H 4.47; N 12.57. C₁₀H₁₀N₂O₂S. Calculated, %: C 54.04; H 4.53; N 12.60.

Ethyl-1,4,5,6-tetrahydrocyclopentapyrazole-3carboxylate (IIId [2]. Yield 142 g (79%), mp 103–105°C (mp 124–125°C [10]). ¹H NMR spectrum, δ, ppm: 1.27 t (3H, CH₃), 2.41 m (2H, CH₂CH₂CH₂), 2.64 m (4H, CH₂CH₂CH₂C), 4.23 q (2H, CH₂CH₃), 13.14 br.s (1H, NH). Found, %: C 59.83; H 6.69; N 15.49. C₉H₁₂N₂O₂. Calculated, %: C 59.99; H 6.71; N 15.55.

5-tert-Butyl-1*H***-pyrazole-3-carboxamide (IVa)**. The ammonolysis of 167 g (0.85 mol) of ester **IIIa** was carried out in 1 liter of a mixture of ethanol with 25% aqueous ammonia, 1:1, at room temperature over 7 days. Then the reaction mixture was boiled for 5 h, ethanol and excess ammonia were removed, 0.5 liter of petroleum ether was added, the white precipitate was filtered off and dried in a vacuum. Yield 129 g (91%), mp 237°C (sublimation). ¹H NMR spectrum, δ, ppm: 1.27 s [9H, C(CH₃)₃], 6.38 s (1H, H⁴), 7.11 br.s (1H, NH amide), 7.37 br.s (1H, NH amide), 12.89 br.s (1H, NH). Found, %: C 57.25; H 7.75; N 25.19. C₈H₁₃N₃O. Calculated, %: C 57.46; H 7.84; N 25.13.

Compound **IVc** was prepared analogously, and by replacement of ammonia by 30% aqueous methylamine compounds **IVb**, **IVd**, **IVg**, **IVh** were obtained.

5-Cyclopropyl-1*H***-pyrazole-3-(***N***-methyl)carboxamide (IVb) was obtained from 146 g (0.81 mol) of ester IIIb. Yield 120 g (90%), mp 176–178°C. ¹H NMR spectrum, δ, ppm: 0.68 m, 0.92 m (4H, 2CH₂ cyclopropyl), 1.89 m (1H, CH cyclopropyl), 2.71 s (3H, CH₃), 6.28 s (1H, CH=), 7.89 br.s (1H, NH amide), 12.87 br.s (1H, NH). Found, %: C 57.97; H 6.60; N 25.50. C₈H₁₁N₃O. Calculated, %: C 58.17; H 6.71; N 25.44.**

5-(2-Thienyl)-1*H***-pyrazole-3-carboxamide (IVc)** was obtained from 200 g (0.90 mol) of ester **IIIc**. Yield 151g (87%), mp 262–263°C. ¹H NMR spectrum, δ , ppm: 7.02 s (1H, H⁴), 7.11 s (1H, C<u>H</u>CHS), 7.39 s (1H, CHCS), 7.46 m (2H, CHS, NH amide), 7.83 br.s (1H, NH amide), 13.51 br.s (1H, NH). Found, %: C 49.49; H 3.58; N 21.70. C₈H₇N₃OS. Calculated, %: C 49.73; H 3.65; N 21.75.

1,4,5,6-Tetrahydrocyclopentapyrazole-3-(*N*-methyl)carboxamide (IVd) was obtained from 142 g (0.79 mol) of ester IIId. Yield 112 g (86%), mp 218–219°C. ¹H NMR spectrum, δ , ppm: 2.42 m (2H, CH₂CH₂CH₂), 2.60–2.81 m (7H, CH₃, CH₂CH₂CH₂CH₂),

7.78 br.s (1H, NH amide), 12.48 br.s (1H, NH). Found, %: C 57.98; H 6.69; N 25.40. C₈H₁₁N₃O. Calculated, %: C 58.17; H 6.71; N 25.44.

5-*tert*-**Butyl**-1*H*-**pyrazole**-**3**-(**N**-**methyl**) **carboxamide (IVg)** was obtained from 167 g (0.85 mol) of ester IIIa. Yield 137 g (89%), mp 193–194°C. ¹H NMR spectrum, δ , ppm: 1.27 s [9H, C(CH₃)₃], 2.75 m (3H, NHC<u>H₃</u>), 6.38 s (1H, H⁴), 8.03 br.s (1H, NH amide), 12.89 br.s (1H, NH). Found, %: C 59.60; H 8.29; N 23.22. C₉H₁₅N₃O. Calculated, %: C 59.64; H 8.34; N 23.19.

5-(2-Thienyl)-1*H*-pyrazole-3-(N-methyl) carboxamide (IVh) was obtained from 200 g (0.90 mol) of ester IIIc. Yield 167 g (90%), mp 199–201°C. ¹H NMR spectrum, δ, ppm: 2.77 s (3H, CH₃), 6.96 m (1H, H⁴), 7.12 m (1H, C<u>H</u>CHS), 7.38 m (1H, CHCS), 7.50 m (1H, CHS), 8.31 br.s (1H, NH amide), 13.54 br.s (1H, NH). Found, %: C 51.94; H 4.31; N 20.31. C₉H₉N₃OS. Calculated, %: C 52.16; H 4.38; N 20.27.

3-Aminomethyl-5-tert-butyl-1H-pyrazole dihydrochloride (Va). To a dispersion of 44 g (1.16 mol) of LiAlH₄ in 1 liter of anhydrous THF at 35–40°C was cautiously added by portions 129 g (0.77 mol) of amide IVa. The reaction mixture was boiled for 8 h, cooled, the excess of LiAlH₄ was quenched with 100 ml of 40%KOH, then the mixture was boiled for 2 h more. Salts were filtered off, the solution was passed through a bed of celite, the solvent was distilled off. The residue was dissolved in 1 liter of a mixture ethyl acetate-ethanol, 2 : 1, ~100 ml of 6 M HCl solution in dioxane was added, the mixture was boiled for 3 h and cooled. The separated crystals of the dihydrochloride were filtered off, washed with ether, and dried in a vacuum. Yield 143 g (82%), mp 188–190°C. IR spectrum, v, cm⁻¹: 3124, 2196, 1608, 1600, 1492, 1484. ¹H NMR spectrum, δ, ppm: 1.27 s [9H, C(CH₃)₃], 3.95 m (2H, CH₂), 6.31 m (1H, CH), 6.80–7.90 br.s (2H, NH·HCl), 8.60 br.s (3H, NH₂·HCl). ¹³C NMR spectrum, δ , ppm: 29.94 [C(<u>CH</u>₃)₃], 30.83 [C(CH₃)₃], 35.65 (CH₂), 101.18 (CH), 142.90 (CNH), 155.09 (C=N). Mass spectrum: *m*/*z* 154.1338 [*M* + H]⁺. C₈H₁₅N₃·2HCl. *M* 153.2249.

3-(N-Methylaminomethyl)-5-cyclopropyl-1*H***pyrazole (Vb)** was obtained from 120 g (0.73 mol) of compound **IVb**. Yield 86 g (78%), bp 155°C (1 mm Hg). IR spectrum, v, cm⁻¹: 3584, 3188, 1584, 1448. ¹H NMR spectrum, δ , ppm: 0.60 m, 0.83 m (4H, 2CH₂ cyclopropyl), 1.82 m (1H, CH cyclopropyl), 2.23 s (3H, CH₃), 3.01 br.s (1H, NH), 3.51 s (2H, C<u>H</u>₂NH), 5.78 s (1H, CH=), 11.50–12.30 br.s (1H, NH). ¹³C NMR

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 8 2011

spectrum, δ, ppm: 7.58 (2CH₂ cyclopropyl), 29.15 (CH cyclopropyl), 35.60 (CH₃), 47.23 (CH₂), 99.41 (<u>C</u>=CNH), 157.74 (CNH), 162.50 (C=N). Mass spectrum: m/z 152.1181 [M + H]⁺. C₈H₁₃N₃. M 151.2090.

3-Aminomethyl-5-(2-thienyl)-1*H***-pyrazole dihydrochloride (Vc)** was obtained from 151 g (0.78 mol) of compound IVc. Yield 131g (66%), mp 204– 206°C. IR spectrum, v, cm⁻¹: 3196, 2608, 1672, 1608, 1524. ¹H NMR spectrum, δ , ppm: 4.03 m (2H, CH₂NH₂), 6.15 br.s (2H, NH·HCl), 6.66 s (1H, CHCNH), 7.11 m (1H, CHCHS), 7.42 d (1H, CHCS, *J* 3.2 Hz), 7.51 d (1H, CHS, *J* 5.0 Hz), 8.63 br.s (3H, NH₂·HCl). ¹³C NMR spectrum, δ , ppm: 34.82 (CH₂), 102.23 (CHCNH), 124.18 (CHCHS), 125.47 (CNH), 127.86 (CHCS), 133.54 (CHS), 141.39 (CS), 142.07 (C=N). Mass spectrum: *m*/*z* 180.0590 [*M* + H]⁺. C₈H₉N₃S2·HCl. *M* 179.2433.

3-(N-Methylaminomethyl)-1,4,5,6-tetrahydrocyclopentapyrazole dihydrochloride (Vd) was obtained from 112 g (0.68 mol) of compound **IVd**. Yield 117 g (77%), mp 159–162°C. IR spectrum, v, cm⁻¹: 3000–2400, 2344, 1644, 1600, 1560, 1448. ¹H NMR spectrum, δ , ppm: 2.42 m (2H, CH₂C<u>H</u>₂CH₂), 2.50 s (3H, CH₃), 2.69 m (4H, C<u>H</u>₂CH₂C<u>H</u>₂), 4.08 s (2H, C<u>H</u>₂NH), 9.68 br.s (2H, NH·HCl), 10.80–11.50 br.s (2H, NH·HCl). ¹³C NMR spectrum, δ , ppm: 22.35 (<u>C</u>H₂C=C), 23.50 (<u>C</u>H₂C=N), 30.05 (CH₂<u>C</u>H₂CH₂), 31.84 (CH₃), 41.93 (CH₂NH), 126.05 (<u>C</u>=CNH), 131.99 (C=<u>C</u>NH), 155.18 (C=N). Mass spectrum: *m*/*z* 152.1183 [*M* + H]⁺. C₈H₁₃N₃·2HCl. *M* 151.2090.

3-(N-Methylaminomethyl)-5-*tert***-butyl-1***H***-pyrazole dihydrochloride (Vg)** was obtained from 137 g (0.76 mol) of compound IVg. Yield 139 g (77%), mp 141–144°C. IR spectrum, v, cm⁻¹: 3128, 2464, 1592, 1468. ¹H NMR spectrum, δ , ppm: 1.27 s [9H, C(CH₃)₃], 2.50 m (3H, NHC<u>H₃</u>), 4.03 m (2H, CH₂), 6.34 s (1H, CH), 9.54 br.s (2H, NH·HCl), 10.20–10.60 br.s (2H, NH·HCl). ¹³C NMR spectrum, δ , ppm: 29.87 [C(<u>C</u>H₃)₃], 30.72 [<u>C</u>(CH₃)₃], 31.82 (NHCH₃), 44.24 (CH₂), 101.69 (CH), 141.35 (CNH), 154.79 (C=N). Mass spectrum: *m/z* 168.1490 [*M* + H]⁺. C₉H₁₇N₃·2HCl. *M* 167.2515.

3-(N-Methylaminomethyl)-5-(2-thienyl)-1*H***pyrazole (Vh) was obtained from 167 g (0.81 mol) of compound IVh. Yield 137 g (88%), mp 114–116°C. IR spectrum, ν, cm⁻¹: 3756, 3268, 1580, 1476, 1448. ¹H NMR spectrum, δ, ppm: 2.28 s (3H, CH₃), 3.05 br.s (1H, NH), 3.66 s (2H, C<u>H</u>₂NH), 6.43 s (1H, C<u>H</u>CNH), 7.06 m (1H, C<u>H</u>CHS), 7.33 d (1H, CHCS,** *J* **3.0 Hz),** 7.41 d (1H, CHS, *J* 4.8 Hz), 12.10–12.80 br.s (1H, NH). ¹³C NMR spectrum, δ , ppm: 35.42 (CH₃), 45.98 (CH₂), 100.68 (<u>C</u>HCNH), 123.20 (<u>C</u>HCHS), 124.33 (CNH), 127.49 (<u>C</u>HCS), 134.37 (CHS), 141.69 (CS), 144.26 (C=N). Mass spectrum: *m/z* 194.0748 [*M* + H]⁺. C₉H₁₁N₃S. *M* 193.2699.

Ethyl-5-phenylisoxazole-3-carboxylate (VIe) [11]. To a solution of 68 g (1 mol) of sodium ethylate in 1 liter of anhydrous ethanol was added by portions 146 g (1 mol) of diethyl oxalate and afterwards 117 ml (1 mol) of acetophenone Ie. The mixture was stirred at room temperature for 20 h, 57 ml (1 mol) of glacial acetic acid and a solution of 64.5 g (1mol) of NH₂OH·HCl in 300 ml of water were added. After 20 h of stirring the reaction mixture was extracted with dichloromethane $(3 \times 300 \text{ ml})$. The extract was washed with water, dried with MgSO₄, the solvent was distilled off. The residue was dissolved in 1 liter of anhydrous ethanol, catalytic quantity of TsOH was added, and the solution was boiled for 2 h. Then the solvent was distilled off, the residue was dissolved in dichloromethane, the solution was washed with water, dried with MgSO₄, the solvent was distilled off. The reaction product was crystallized from ethyl acetate. Yield 161 g (74%), mp 50–51°C (mp 49°C [11]). ¹H NMR spectrum, δ, ppm: 1.35 t (3H, CH₃), 4.49 q (2H, C<u>H</u>₂CH₃), 7.47 s $(1H, H^4)$, 7.54 m $(3H, H_{Ar})$, 7.94 m $(2H, H_{Ar})$. Found, %: C 66.11; H 5.08; N 6.47. C₁₂H₁₁NO₃. Calculated, %: C 66.35; H 5.10; N 6.45.

Ethyl-4,5,6,7-tetrahydrobenzo[*d*]isoxazole-3carboxylate (VIf) was obtained similarly from 104 ml (1 mol) of cyclohexanone If. Yield 137 g (70%), bp 120–122°C (5 mm Hg). ¹H NMR spectrum, δ, ppm: 1.31 t (3H, CH₃), 1.72 m [4H, CH₂(CH₂)₂CH₂], 2.72 m [4H, CH₂(CH₂)₂CH₂], 4.49 q (2H, CH₂CH₃). Found, %: C 61.41; H 6.65; N 7.12. C₁₀H₁₃NO₃. Calculated, %: C 61.53; H 6.71; N 7.18.

5-Phenylisoxazole-3-(*N*-methyl)carboxamide (VIId) was obtained by aminolysis of 161 g (0.74 mol) of ester VIe with 30% aqueous methylamine. Yield 132 g (88%), mp 190–192°C (198–199°C [11]). ¹H NMR spectrum, δ , ppm: 2.80 s (3H, CH₃), 7.33 s (1H, H⁴), 7.54 m (3H, H_{Ar}), 7.92 m (2H, H_{Ar}), 8.72 br.s (1H, NH). Found, %: C 65.02; H 4.92; N 13.88. C₁₁H₁₀N₂O₂. Calculated, %: C 65.34; H 4.98; N 13.85.

4,5,6,7-Tetrahydrobenzo[*d*]isoxazole-3-(*N*-methyl) carboxamide (VIIf) was obtained by aminolysis of 137 g (0.70 mol) of ester VIf with 30% aqueous methylamine. Yield 111 g (89%), mp 135–137°C. ¹H NMR spectrum,

δ, ppm: 1.70 m (4H, 2CH₂), 2.72 m (7H, 2CH₂, CH₃), 8.63 br.s (1H, NH). Found, %: C 59.77; H 6.65; N 15.48. C₉H₁₂N₂O₂. Calculated, %: C 59.99; H 6.71; N 15.55.

3-(N-Methylaminomethyl)-5-phenylisoxazole hydrochloride (VIIIe). To a dispersion of 30 g (0.8 mol) of NaBH₄ in 1 liter of anhydrous THF under argon was added dropwise 70 ml (0.26 mol) of 48% BF₃·Et₂O solution in anhydrous ether, and the mixture was stirred for 0.5 h at room temperature. To the prepared BH₃ solution was gradually added 61 g (0.3 mol) of amide VIIe, the mixture was boiled for 4 h, then it was cooled and treated with ~100 ml of saturated NaHCO₃ solution adding it by small portions, and the resulting mixture was stirred for 1 h. After adding 0.5 l of water and 0.5 l of ethyl acetate the organic layer was separated, and the water layer was additionally extracted with ethyl acetate (2×200 ml). The combined extracts were dried with MgSO₄ and filtered through a celite bed. After the neutralization of the alkaline solution with 6 N HCl solution in dioxane till weak acidic reaction (~100 ml) the solvents were distilled off, the residue was crystallized from a mixture ethyl ether-ethanol, 2:1. Yield 37 g (54%), mp 229-232°C. IR spectrum, v, cm⁻¹: 2368, 1596, 1452. ¹H NMR spectrum, δ, ppm: 2.63 s (3H, CH₃), 4.32 s (2H, C<u>H</u>₂NH), 7.26 s (1H, CH), 7.56 m (3H, H_{Ar}), 7.85 m (2H, H_{Ar}), 9.86 br.s (2H, NH·HCl). ¹³C NMR spectrum, δ, ppm: 32.31 (CH₃), 42.51 (CH₂), 100.57 (CH), 125.57, 126.28, 129.36, 130.77 (C_{Ar}) , 157.57 (C=N), 169.74 (CO). Mass spectrum: m/z189.1025 $[M + H]^+$. C₁₁H₁₂N₂O·HCl. *M* 188.2259.

3-(N-Methylaminomethyl)-4,5,6,7-tetrahydrobenzo[*d*]isoxazole hydrochloride (VIIIf) was similarly obtained from 66.2 g (0.4mol) of amide VIIf by the action of BH₃ formed from 39.6 g (1.05 mol) of NaBH₄ and 93 ml (0.35mol) 48% BF₃·Et₂O in 1 liter of solution anhydrous THF. Yield 46 g (57%), mp 147–149°C. IR spectrum, v, cm⁻¹: 2952, 2712, 1644, 1580, 1452, 1412. ¹H NMR spectrum, δ , ppm: 1.68 m [4H, CH₂(CH₂)₂CH₂], 2.52 s (3H, CH₃), 2.60 t (2H, CH₂CO, *J* 5.9 Hz), 2.67 t (2H, CH₂CCN, *J* 5.6 Hz), 4.24 s (2H, CH₂NH), 9.78 br.s (2H, NH·HCl). ¹³C NMR spectrum, δ , ppm: 18.12 (CH₂CO), 20.83 (CH₂CH₂CO), 21.52 (CH₂CH₂CCN), 21.60 (CH₂CCN), 32.13 (CH₃), 40.31 (CH₂NH), 115.59 (<u>C</u>CO), 156.73 (C=N), 160.81 (CO). Mass spectrum: m/z167.1178 $[M + H]^+$. C₉H₁₄N₂O·HCl. *M* 166.2203.

REFERENCES

- Tanaka, A., Terasawa, T., Hagihara, H., Sakuma, Y., Ishibe, N., Sawada, M., Tagasuki, H.S., and, Tanaka, H., *J. Med. Chem.*, 1998, vol. 41, p. 2390.
- Wilson, R.D., Cleator, E., Ashwood, M.S., Bio, M.M., Brands, K.M.J., Davies, A.J., Dolling, U.-H., Emerson, K.M., Gibb, A.D., Hands, D., McKeown, A.E., Oliver, S.F., Reamer, R.A., Sheen, F.J., Stewart, G.W., and Zhou, G.X., Org. Proc. Res. Dev., 2009, vol. 13, p. 543.
- Kano, H., Adachi, I., Kido, R., and Hirose, K., J. Med. Chem., 1967, vol. 10, p. 411.
- Van Herk, T., Brussee, J., van den Nieuwendijk, A.M.C.H., van der Klein, P.A.M., Jzerman, A.P.I., Stannek, C., Burmeister, A., and Lorenzen, A., *J. Med. Chem.*, 2003, vol. 46, p. 3945.
- Skinner, P.J., Cherrier, M.C., Webb, P.J., Shin, Y.-J., Gharbaoui, T., Lindstrom, A., Hong, V., Tamura, S.Y., Dang, H.T., Pride, C.C., Chen, R., Richman, J.G., Connolly, D.T., and Semple, G., *Bioorg. Med. Chem. Lett.*, 2007, vol. 17, p. 5620.
- Gharbaoui, T., Skinner, P.J., Shin, Y.-J., Averbuj, C., Jung, J.-K., Johnson, B.R., Duong, T., Decaire, M., Uy, J., Cherrier, M.C., Webb, P.J., Tamura, S.Y., Zou, N., Rodriguez, N., Boatman, P.D., Sage, C.R., Lindstrom, A., Xu, J., Schrader, T.O., Smith, B.M., Chen, R., Richman, J.G., Connolly, D.T., Colletti, S.L., Tata, J.R., and Semple, G., *Bioorg. Med. Chem. Lett.*, 2007, vol. 17, p. 4914.
- Young, R.J., Borthwick, A.D., Brown, D., Burns-Kurtis, C.L., Campbell, M., Chan, C., Charbaut, M., Convery, M.A., Diallo, H., Hortense, E., Irving, W.R., Kelly, H.A., King, N.P., Kleanthous, S., Mason, A.M., Pateman, A.J., Patikis, A.N., Pinto, I.L., Pollard, D.R., Senger, S., Shah, G.P., Toomey, J.R., Watson, N.S., Weston, H.E., and Zhou, P., *Bioorg. Med. Chem. Lett.*, 2008, vol. 18, p. 28.
- 8. Gainer, J., Howarth, G.A., Hoyle, W., Roberts, S.M., and Sushitzky, H., J. Chem. Soc., Perkin, Trans. I, 1976, p. 994.
- Pei, Y. and Wickham, B.O.S., *Tetrahedron Lett.*, 1993, vol. 34, p. 7509.
- 10. Elguero, J., Guiraud, G., and Jacquier, R., *Bull. Soc. Chim. Fr.*, 1966, p. 619.
- 11. Cecchi, L., De, Sarlo, F., and Machetti, F., *Eur. J. Org. Chem.*, 2006, vol. 21, p. 4852.