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ACYLATED 2-OXOGLYCOSYL BROMIDES : EXPLORATION
OF THEIR REACTION POTENTIAL
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Abstract: Acylated glycos-2-ulosyl bromides give a variety of useful ensuing
reactions, preparatively most relevant being their smooth a- and B-selective
glycosidation, their reduction to glucosyl bromides with a free 2-OH, and their
C-homologation to higher-carbon sugars.

Acylated 2-oxoglycosyl bromides of type Il may efficiently be generated from hydroxyglycal esters by
either of two ways, i.e. a high-yield, three-step procedure involving hydroxylominol.ysis]), deoximafionz),
and photobromination™, or, alternately, by a one-step process, simply consisting of exposure of I, in
dichloromethane solution, to NBS or bromine in the presence of mefhonol4). Mechanistically, the direct
conversion [ - II is thought to proceed via initial attack of a brominium ion to a 2-bromobenzoxonium
salt intermediate of type III5°), in which the 2-0-benzoyl group is captured by methanol; the resulting
formation of methyl benzoate leaves ion pair IV that combines to II. The ease with which this con-
version can be effected (30 min, room temperature) is as remarkable as the yields attainable (80-90 %)
and the applicability to disaccharide-derived hydroxyglycal esfersé). Accordingly, glycos-2-ulosyl
bromides of type II are nearly as well accessible from basic monosaccharides as the standard acylated
glycosyl halides, which, in turn, necessitated a detailed exploration of their reaction potential. This is
provided herein, with the 3,4,6-tri-0-benzoyl-a-D-atab.ino-hexosulosyl bromide (1) as the model

compound. R
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Ulosyl bromide 1 is a sfoble, crystalline compound, storable for weeks without decomposition, its com-
paratively low anomeric reactivity — as compared to benzobromoglucose for example — being
demonstrated by its recovery from methanol solution at ambient temperature, methanolysis occuring on

heating only. Exposure of 1 to trimethylsilylcyanide/boron trifluoride gives an instantaneous reaction,
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yet not the anomeric bromine is replaced by cyanide, but the cyanchydrin 27) is generated. The
anomeric bromine even survives saturation of the carbonyl function : acid-catalyzed reduction with
sodium cyanohydridoborate results in exclusive axial attack of the hydride to afford the glycosyl
bromide 3 7) in high yield ), none of the 2-epimeric manno-isomer being detectable (IH NMR) in the
reaction mixture.

Of the several procedures evaluated for a-selective alcoholysis of 1, best if moderate results gave
Lemieux's in situ onomerization procedure, an approximate 4:1 mixture of 4 and 5 being formed on
Et4NBr-promofed reaction with cyclohexanol. In contrast, p-selective glycosidation is most efficiently
achieved under standard Koenigs-Knorr conditions, e.g. with cyclohexanol (1 = 5) or glycol (1 - §),

in the latter case alcoholysis being followed by intramolecular acetalization to the pyrano-dioxane é.
On silver carbonate-induced reaction with ethanethiol,the P-ethylthio glycosidulose 8 is readily formed;
when reacted with thioureq, 1 quantitatively generates a P-thioamidinium bromide (m.p. 174-175 °C,

[a] 20 -4.4°, acetone), which under standard acetylation conditions undergoes cyclization to the pyrano
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Key A : TMSCN/BFa, CH2C12, r.t., 10 min; 87 %
B : NaBH3CN/H' (resin), CH4Cly, rt,, 10 b; 79 %
c C H”OH/Ef4NBr, CHZCIZ, rit., 2 d; 53 %
D : C6H ]OH/A92C03, CH2C12, r.t., 1 h; 79 %
E: glycol/A92C03, CHZClZ' r.t., 1.5 h; 92 %
F Zn/CHZO, THF, -35 = -10°C, 2 h; 29 %
G E-fSH/(MeZN)ZCO, CHZCIZ' r.t., 6 h; 75 %
H thiourea in acetone, r.t., then Ac20/pyr., 0°C; 86 %
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Anomeric C-homologation can be effected by applying Reformatsky conditions : exposure of 1 to
copper-activated zinc in THF smoothly generates zinc enediolate 10, its nucleophilic anomeric center
reacting with aldehydes to a/P-mixtures of hydroxyalkylation products. With formaldehyde the hydroxy-
methyl compounds 11 and 12, i.e. 2,6-anhydro-hept-3-uloses of D-gfuco- and D-manno-configuration, are
formed in neorly equal amounts, of which 12 reacts with another formaldehyde to give the 1,3-0-
methylene-bridged cycloacetal 7, isomeric to 8. Acetaldehyde as the electrophile yields a 2:1-mixture
a- and B- (2-hydroxyethyl)-compounds, i.e. 3,7-anhydro-oct-4-ulose tribenzoates, of which one, after

reduction and benzydilenation could be characterized as a pyrano-dioxane linked ocfitol5b).
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An dlternate approach to anomeric C-extension of ulosyl bromides makes use of their carbonyl-
protected derivatives, as, e.g., the cyanohydrin 2. After acetylation to 13, a silver triflate-promoted
reaction with the trimethylsilyl-enol ether of acetophenone cleanly gives the P-phenacyl derivative 14

(71 %, syrop, [aly20 - 41° cHCly).

Attempts to evoke a radical-induced coupling with acrylates or acrylonitrileunder a variety of condi-
tions failed; the capto-dative radical, generated by Bu3SnH/hv or AIBN is quontitatively trapped by
hydrogen even in acrylonitrile as the solvent, to afford the knownz) 1,5-anhydro-D-fructose tribenzoate
16. Thus, the tributyltin hydride-induced radical coupling of halogenoses with alkenes, which in the
propitious case acetobromoglucose/acrylonitrile gives C-extension and bromine exchange by hydrogen in
a ratio of 2.9 : 1 only”, appears to be limited in its preparative utility as well as scope.

In summary, acylated glycos-2-ulosyl bromides are shown to undergo a variety of synthetically useful
reactions, of which their reduction to glucosyl bromides with a free 2-OH group, their a- and #-
selective glycosidation, their cycloacetalization to pyrano-dioxan systems and their C-homologation to
higher carbon sugars appeor to most important.
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