

Carbohydrate Research 337 (2002) 473-483

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

Human milk oligosaccharides: an enzymatic protection step simplifies the synthesis of 3'- and 6'-O-sialyllactose and their analogues

Anna Rencurosi,^a Laura Poletti,^a Marco Guerrini,^b Giovanni Russo,^a Luigi Lay^{a,*}

^aDepartment of Organic and Industrial Chemistry, University of Milan, via G. Venezian, I-21-20133 Milan, Italy ^bInstitute of Chemistry and Biochemistry 'G. Ronzoni', via Colombo, I-81-20131, Milan, Italy

Received 6 November 2001; accepted 7 January 2002

Abstract

We describe a chemo-enzymatic synthesis of 3'- and 6'-O-sialyllactose, two trisaccharides occurring in the 'acidic fraction' of the human milk oligosaccharides and endowed with potential antiadhesive activity. The key step is the highly regioselective 6'-O-acylation of benzyllactoside, which gave access to suitably protected lactose building blocks to be used as acceptors in the sialylation reaction. Moreover, the synthesis of the carboxymethyl and sulfo analogues of the title compounds is reported. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Human milk oligosaccharides; Enzymatic 6'-O-acylation; Benzyllactoside

1. Introduction

The oligosaccharide fraction is the third most abundant solid constituent (between 12 and 20 g/L) of human milk and consists of more than one hundred different structures. Despite many investigations¹⁻³ that have been reported on the subject, the physiological role of these compounds is not completely understood. The fact that human milk oligosaccharides bear structural homology to cell-surface glycoconjugates used as receptors by pathogens may suggest their implication in protecting breast-fed infants from infections. Concerning this issue, evidence has emerged that these oligosaccharides are able to inhibit the adhesion of Streptococcus pneumoniae and Haemophilus influenzae to human pharingeal or buccal epithelial cells.² Moreover, the fucosylated fraction of small human milk oligosaccharides inhibits the Escherichia coli adhesion to uroepithelial cells.³

* Corresponding author. Fax: + 39-02-58354061.

In this study, we turned our attention to sialylated human milk oligosaccharides. It has been recently demonstrated⁴ that whey glycoproteins, containing Nacetylneuraminic acid, exert a potential inhibitory effect on S-fimbriae mediated adhesion of *E. coli*.

In order to assess the antiadhesive properties of selected oligosaccharides present in human milk, we describe herein the synthesis of 3'- and 6'-O-sialyllactoses and their corresponding simplified analogues where the sialic acid unit is replaced by a negatively charged group such as a sulfate and a carboxymethyl group. Sulfate groups may serve as an effective substituent for sialic acid⁵ in some biological systems and 3'-O-sulfo-lactose has recently been found as an oligosaccharide present in dog milk.⁶ Moreover the carboxymethyl group in analogues of sialyl Lewis X was shown to be useful for mimicking the negative charge of sialic acid.7 In previous papers, we reported on the use of lipase catalysed acylation as a tool to prepare useful building blocks for oligosaccharide synthesis.⁸⁻¹¹ In the present paper, the enzymatically catalysed 6'-O-acylation of lactose has been exploited for designing a versatile chemo-enzymatically protected lactose building block useful for the synthesis of both 3'- and 6'-O-sialyllactoses.

E-mail address: llay@mailserver.unimi.it (L. Lay).

Scheme 1. Reagents and conditions: (a) trifluoroethyl levulinate, *C. antarctica* lipase, THF, 40 °C, 4 days, 83%; (b) acetone, CSA, Sikkon, refl, 4 h, 78%; (c) BzCl, Py, DMAP, CH₂Cl₂, 0 °C \rightarrow rt, 48 h, 80%; (d) TFA (60%), CH₂Cl₂, 0 °C \rightarrow rt, 1 h, 85%; (e) AcONH₂NH₃, EtOH–Et₂O, rt, 20 min, 97%; (f) BzCN, TEA, THF, -25 °C, 17 h, 50%; (g) TFA (60%), CH₂Cl₂, 0 °C \rightarrow rt, 1.5 h, 92%.

2. Results and discussion

The selective protection of the 6'-OH position of benzyllactoside 1^{12} with a levulinoyl group was achieved in high yield through an enzymatic acylation¹¹ catalysed by *Candida antarctica* lipase in THF (Scheme 1). The subsequent protection of 3',4'-positions of **2** as isopropylidene acetal afforded compound **3**. Full benzoylation of **3** gave the versatile building block **4** useful for the synthesis of the target compounds. In fact, orthogonal deprotection of **5** and **6**, respectively (Scheme 1), which were separately submitted to sialylation using sialyl phospite 9^{13} as a donor (Scheme 2).

Glycosylation of acceptor **6** in acetonitrile at -40 °C with trimethylsilyltrifluoromethansulfonate (TMSOTf) as a promoter, afforded the 6'-O-sialyllactoside **10a/b**

as a 2:1 α/β mixture in 58% overall yield (Scheme 2). Even though selectivity was not high, the two isomers were completely separated by MP chromatography. Anomeric configuration of the newly formed glycosidic linkage for **10a** and **10b** was determined by comparison of NMR data of the two compounds. In accordance with the known ¹H NMR empirical rules,^{14–16} δ H-3"eq (α) = 2.73 > δ H-3"eq (β) = 2.61, δ H-4" (α) = 4.52 < δ H-4" (β) = 5.49, $J_{7",8"}$ (α) = 7.9 Hz > $J_{7",8"}$ (β) = 3.1 Hz.

Disappointingly, sialylation of acceptor **5** resulted in a complex mixture of products from which most of the acceptor was recovered unreacted and the supposed 3'-O-sialyllactose derivative was isolated in a very poor yield. These poor results might be due to the steric hindrance and to the presence of electron withdrawing groups close to the reactive centre. Therefore, a new and more reactive acceptor **8** was synthesised through selective benzoylation¹⁷ of **3** followed by acidic hydrolysis of the isopropylidene acetal (Scheme 1).

Sialylation of this new acceptor in acetonitrile-THF at -44 °C in the presence of TMSOTf as a promoter, afforded the 3'-O-sialyllactoside 12 in 51% yield (Scheme 2). This result is in line with that reported by Lönn et al.,¹⁸ who used a very similar acceptor employing a glycosyl xanthate as the donor. The $(2'' \rightarrow 3')$ glycosylation regiochemistry was ascertained from the observation of COSY cross-peaks between OH-2' (δ 3.17) and H-2' (δ 3.75) and OH-4' (δ 2.38) and H-4' (δ 3.63). Moreover, the HMBC¹⁹ experiment showed the presence of the expected cross-peak between H-3' (δ 4.09) and the quaternary carbon C-2" (δ 97.6). The α configuration of the newly formed glycosidic linkage was determined on the basis of the occurrence of the Neu5Ac H-4 signal at δ 4.97, as well as the $J_{7'',8''} = 8.4$ Hz; these data are in accordance with the reported trend for similar compounds.^{18,20}

The synthesis of 6'-O- and 3'-O-sulfated analogues of the corresponding sialyllactoses was based on two different strategies. Lactoside **15** was obtained in three

Scheme 2. Reagents and conditions: (a) **9** (1.7 equiv), TMSOTF, CH₃CN, -40 °C, 1 h, 58%, α/β 2:1; (b) TFA (60%), CH₂Cl₂; (c) MeOH, MeONa; (d) NaOH, water, (e) H₂, Pd/C, H₂O; (f) **9** (2 equiv), TMSOTF, CH₃CN-THF, -44 °C, 2 h, 51%.

Scheme 3. Reagents and conditions: (a) trifluoroethyl levulinate, *C. antarctica* lipase, THF, 40 °C, 4 days, 83%; (b) Ac₂O, Py, 80%; (c) AcONH₂NH₃, EtOH–Et₂O, rt, 2 h, 98%; (d) SO₃NMe₃ 1.5 equiv, DMF, 60 °C, 2 days; (e) MeONa, MeOH, rt, 81%; (f) Bu₂SnO (1.1 equiv), MeOH, refl, 16 h; (g) SO₃NMe₃ (2 equiv), DMF, rt, 2 days, 75%; (h) H₂, Pd/C, MeOH–water, rt.

steps from benzyllactoside 1 through enzymatic 6'-O-levulinoylation, followed by acetylation (\rightarrow 14) and removal of the levulinoyl group with hydrazinium acetate (Scheme 3). The sulfation of 15 (SO₃NMe₃ complex), followed by deacetylation, provided the 6'-O-sulfated lactoside 16. The 3'-O-sulfated lactoside 18 was obtained in a one pot procedure,²¹ by treatment of benzyllactoside 1 with Bu₂SnO and SO₃NMe₃ complex (Scheme 3).

The same approach was applied to the synthesis of 3'-O-(alkoxycarbonyl) methyllactoside (Scheme 4). In this case, the alkylation of the stannylene acetal obtained from benzyllactoside 1 produced compound 20 and the corresponding lactone 21. This mixture was treated without separation with sodium methoxide (\rightarrow 22), followed by acetylation to afford pure compound 23 in good yield. The acetylation step was required in order to better purify the compound. The introduction

of the (alkoxycarbonyl) methyl group at 6'-position was first attempted by treatment of **15** with ethyl bromoacetate in the presence of Ag₂O and TBAI. Disappointingly, a complex mixture of products was obtained, probably derived from acyl migration and/or hydrolysis. Much better results were achieved on the benzylated compound **26**,²² which was synthesised in three steps from benzyllactoside **1** through regioselective 6'-O-silylation,²³ which afforded compound **25**, followed by full benzylation and final 6'-O-desilylation. Thus, alkylation of **26** with *tert*-butyl-bromoacetate²⁴ afforded compound **27** in almost quantitative yield (Scheme 4).

Finally, compounds 10a, 12, 16, 18, 23 and 27 were conventionally deprotected to afford the title compounds 11, 13, 17, 19, 24, and 28, respectively. Full deprotection of compound 10a was achieved by acidic hydrolysis of the isopropylidene group, followed by Zemplén deacylation, saponification of the methylester with NaOH, and hydrogenolysis of the anomeric benzyl group, affording the 6'-O-sialyllactose 11 (Scheme 2). NMR data for 11 are in agreement with those previously reported for the natural compound.²⁵ Compound 12 was converted into the known compound 13 by Zemplén deacylation, saponification with NaOH, and hydrogenolysis of the anomeric benzyl ether. NMR data for 13 are consistent with those reported for the natural compound²⁵ and by Ogawa.²⁰ Sulfated lactose derivatives 17 and 19 were quantitatively obtained from 16 and 18 by hydrogenolysis of the anomeric benzyl ether. Zemplén deacylation of 23, followed by one-pot saponification with NaOH and hydrogenolysis, afforded compound 24, whereas 28 was obtained from 27 by acidic hydrolysis of the tert-butyl ester followed by hydrogenolysis of the remaining benzyl groups. Final desalting of the deprotected compounds was performed by gel permeation chromatography through a Sephadex G10 column, followed by freeze-drying.

Scheme 4. Reagents and conditions: (a) Bu₂SnO 1.1 equiv, MeOH, refl, 16 h; (b) BrCH₂COOEt 5 equiv, TBAI, DMF, 40 °C, 48 h; (c) MeONa, MeOH, rt, 24 h; (d) Ac₂O, Py, rt, 24 h, 56% from 1; (e) MeONa, MeOH, rt, 16 h, then water, 20 h; (f) H₂, Pd/C, 91% from 23; (g) Bu₂SnO 1.1 equiv, MeOH, refl, 16 h; (h) TDSCI 1.1 equiv, THF, rt, 18 h, 76%; (i) BnBr, NaH, DMF, rt, 16 h; (l) TBAF, THF, 0 °C \rightarrow rt, 6 h, 66% from 25; (m) BrCH₂COOtBu, NaOH, (Bu)₄NHSO₄, CH₂Cl₂, 4 h, 96%; (n) TFA (10%), CH₂Cl₂, 30 min; (o) H₂, Pd(OH)₂/C, 72 h, 95%.

Results of antiadhesion tests and BIACORE analysis will be reported elsewhere.

3. Experimental

General methods.—¹H and ¹³C NMR spectra were recorded on Varian Gemini 200, Bruker AC 300, Bruker Avance 400, Bruker Am 500 and Bruker 600 DRX spectrometers. The HMBC spectra were acquired using 128 scans per series in $1K \times 256W$ data points and optimised for the ${}^{3}J_{C-H}$ of 8 and 4 Hz. Melting points were determined with a Büchi apparatus and are not corrected. Optical rotations were measured at rt with a Perkin-Elmer 241 polarimeter. TLC was carried out on E. Merck Silica-Gel 60 F₂₅₄ plates (0.25 mm thickness), and spots were visualised by spraying with a solution containing H₂SO₄ (31 mL), ammonium molybdate (21 g) and Ce(SO₄)₂ (1 g) in 500 mL water, followed by heating at 110 °C for 5 min. Column chromatography was performed by the flash procedure using E. Merck Silica-Gel 60 (230-400 mesh). Elemental analyses were performed using the Carlo-Erba elemental analyser 1108. In the description of the ^{13}C spectra, signals corresponding to aromatic carbons were omitted. Lipase from C. antarctica was purchased from Roche Diagnostic (Chirazyme® L-2, c.f. C2 lyo). Solvents were dried by standard procedures.

Benzyl 6-O-levulinoyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranoside (2).—Benzyl β -D-lactoside (1)¹² (700 mg, 1.62 mmol) was suspended in dry THF (70 mL). Trifluoroethyl levulinate⁸ (22 g, 113 mmol) and *C.* antarctica lipase (2.1 g) were added, the suspension was shaken for 4 days at 40 °C and monitored by TLC (8:1.5:0.5 EtOAc-MeOH-water). The enzyme was filtered, and the solvent was removed under diminished pressure. Purification by flash chromatography (10:1 EtOAc-MeOH) afforded compound 2 as a white foam (713 mg, 83%). Optical rotation value and NMR data are in agreement with those reported by us in a previous publication.⁸

Benzyl 3,4-O-isopropylidene-6-O-levulinoyl- β -Dgalactopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranoside (3).-Compound 2 (53 mg, 0.1 mmol) was dissolved in acetone (3 mL) in an inert atmosphere, sikkon (180 mg) was added and the mixture was stirred for 30 min. Then a catalytic amount of camphorsulfonic acid (CSA) was added and the suspension was refluxed for 4 h while monitoring the reaction by TLC (9.5:0.5 EtOAc-MeOH). After cooling to rt, the mixture was neutralised with TEA, sikkon was filtered off and the solvent was removed under diminished pressure. Purification by flash chromatography (9:1 EtOAc-MeOH) afforded compound 3 as a white foam (44 mg, 78%): $[\alpha]_{D}^{20}$ + 9.8° (c 1.7, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.35–7.20 (m, 5 H, H_{Ar}), 4.87 (d, 1 H, J 11.8

Hz, CHHPh), 4.64 (d, 1 H, CHHPh), 4.42 (d, 1 H, J_{1.2} 7.7 Hz, H-1), 4.37 (dd, 1 H, J_{6'a,6'b} 12.0, J_{6'a,5'} 3.2 Hz, H-6'a), 4.33 (d, 1 H, J_{1',2'} 8.1 Hz, H-1'), 4.26 (dd, 1 H, J_{6'b.5'} 8.6 Hz, H-6'b), 4.12-4.05 (m, 3 H, H-4', H-3', H-3), 3.85 (m, 2 H, H-6a, H-6b), 3.64-3.38 (m, 5 H, H-2, H-4, H-5, H-2', H-5'), 2.77-2.73 (m, 2 H, CH₂) lev.), 2.62–2.58 (m, 2 H, CH₂ lev.), 2.20 (s, 3 H, CH₃ lev.), 1.49 (s, 3 H, CH₃ isoprop.), 1.30 (s, 3 H, CH₃ isoprop.); ¹³C NMR (CDCl₃, 75.44 MHz): δ 207.0 (CO lev.), 172.6 (COO lev.), 110.6 (Cq isoprop.), 103.0, 101.8 (C-1, C-1'), 81.7, 79.3, 74.9, 74.3, 73.7, 73.2, 73.1, 71.5 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 71.3 (CH₂Ph), 63.4, 62.2 (C-6, C-6'), 37.8 (CH₂COCH₃ lev.), 28.0 (CH₃ lev.), 27.9 (CH₂COO lev.), 26.2 (2 CH₃ isoprop.). Anal. Calcd for C₂₇H₃₈O₁₃ (570.583): C, 56.83, H, 6.71. Found: C, 56.95 H, 6.67.

Benzyl 2-O-benzoyl-3,4-O-isopropylidene-6-O-levuli $noyl-\beta$ -D-galactopyranosyl- $(1 \rightarrow 4)$ -2,3,6-tri-O-benzoyl- β -D-glucopyranoside (4).—Compound 3 (272 mg, 0.48 mmol) was dissolved in dry CH₂Cl₂ (5 mL) under N₂ atmosphere, then pyridine (410 µL, 5.1 mmol), DMAP (cat) and benzoyl chloride (360 µL, 3.1 mmol) were added at 0 °C and the reaction mixture was stirred 48 h at rt. The reaction was quenched with MeOH and the solution was concentrated under diminished pressure. chromatography Purification by flash (6.5:3.5)petroleum ether-EtOAc) afforded 4 as white foam (378 mg, 80%): $[\alpha]_{D}^{20} + 24.4^{\circ}$ (c 1.3, CHCl₃); ¹H NMR $(CDCl_3, 300 \text{ MHz}): \delta 8.10-7.08 \text{ (m, 25 H, H}_{Ar}), 5.63 \text{ (t,}$ 1 H, $J_{3,2} = J_{3,4}$ 9.3 Hz, H-3), 5.44 (t, 1 H, H-2), 5.09 (t, 1 H, $J_{1',2'} = J_{2',3'}$ 7.4 Hz, H-2'), 4.80 (d, 1 H, J 12.6 Hz, CHHPh), 4.68 (d, 1 H, J_{1,2} 7.8 Hz, H-1), 4.64 (dd, 1 H, J_{6a,5} 2.8 Hz, H-6a), 4.62 (d, 1 H, J_{1',2'} 7.6 Hz, H-1'), 4.57 (d, 1 H, CHHPh), 4.50 (dd, 1 H, J_{6a,6b} 11.8, J_{6b,5} 4.8 Hz, H-6b), 4.24-4.18 (m, 2 H, H-4, H-3'), 4.05 (dd, 1 H, J_{4',5'} 1.7, J_{4',3'} 5.8 Hz, H-4'), 3.95 (dd, 1 H, J_{6'a,6'b} 11.5, J_{6'a.5'} 4.9 Hz, H-6'a), 3.82–3.73 (m, 2 H, H-5, H-5'), 3.64 (dd, 1 H, J_{6'b 5'} 7.0 Hz, H-6'b), 2.77–2.73 (m, 2 H, CH₂ lev.), 2.56–2.51 (m, 2 H, CH₂ lev.), 2.20 (s, 3 H, CH₃ lev.), 1.48 (s, 3 H, CH₃ isoprop.), 1.22 (s, 3 H, CH₃ isoprop.); ¹³C NMR (CDCl₃, 50.29 MHz): δ 206.3 (CO lev.), 172.2 (COO lev.), 165.9, 165.4, 165.1, 164.8 (COOBz), 110.7 (Cq isoprop.), 100.2, 99.1 (C-1, C-1'), 76.9, 75.5, 73.6, 73.2, 73.0, 72.7, 72.0, 70.9 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 70.3 (CH₂Ph), 62.7 (C-6, C-6'), 37.9 (CH₂COCH₃ lev.), 29.7 (CH₃CO lev.), 27.9 (CH₂COO lev.), 27.3, 26.0 (2 CH₃ isoprop.); Anal. Calcd for C₅₅H₅₄O₁₇ (987.007): C, 66.93; H, 5.51. Found: C, 66.99; H, 5.55.

Benzyl 2-O-benzoyl-6-O-levulinoyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2,3,6-tri-O-benzoyl- β -D-glucopyranoside (5).—Compound 4 (400 mg, 0.41 mmol), was dissolved in CH₂Cl₂ (20 mL) and cooled to 0 °C. A 60% aq CF₃COOH (4 mL) was added under vigorous stirring (TLC 1:1 petroleum ether–EtOAc). After 30 min at 0 °C and 30 min at rt, the reaction mixture was diluted

477

with CH₂Cl₂, neutralised with NaHCO₃ and partitioned between water and CH₂Cl₂. The organic phase was dried over Na₂SO₄, filtered and concentrated under diminished pressure. Purification by flash chromatography (1:4 petroleum ether-EtOAc), afforded 6 (325 mg, 85%) as an amorphous white solid: $[\alpha]_{D}^{20} + 19.7^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 8.09–7.08 (m, 25 H, H_{Ar}), 5.56 (t, 1 H, $J_{2,3} = J_{3,4}$ 9.5 Hz, H-3), 5.46 (dd, 1 H, $J_{1,2}$ 7.4 Hz, H-2), 5.31 (t, 1 H, $J_{1',2'} = J_{2',3'}$ 8.5 Hz, H-2'), 4.80 (d, 1 H, J 12.5 Hz, CHHPh), 4.65 (d, 1 H, J_{1.2} 7.5 Hz, H-1), 4.60–4.47 (m, 4 H, H-6a, H-6b, H-1', CHHPh), 4.13 (t, 1 H, $J_{3,4} = J_{4,5}$ 9.4 Hz, H-4), 3.82-3.35 (2 m, 8 H, H-5, H-3', H-4', H-5', H-6'a, H-6'b, 2 OH), 2.74–2.67 (m, 2 H, CH₂ lev.), 2.51–2.43 (m, 2 H, CH₂ lev.), 2.16 (s, 3 H, CH₃ lev.); ¹³C NMR $(CDCl_3, 300 \text{ MHz}): \delta 206.7 \text{ (CO lev.)}, 172.4 \text{ (COO)}$ lev.), 166.1, 166.0, 165.3 (COOBz), 101.1, 98.8 (C-1, C-1'), 76.4, 75.5, 73.5, 73.1, 72.4, 72.3, 71.7, 68.6 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 70.3 (CH₂Ph), 62.8, 61.8 (C-6, C-6'), 37.9 (CH₂COCH₃ lev.), 29.8 (CH₃CO lev.), 27.7 (CH₂COO lev.). Anal. Calcd for C₅₂H₅₀O₁₇ (946.943): C, 65.96; H, 5.32. Found: C, 65.92; H, 5.34.

Benzyl 2-O-benzoyl-3,4-O-isopropylidene-β-D-galactopyranosyl- $(1 \rightarrow 4)$ -2,3,6-tri-O-benzoyl- β -D-glucopyranoside (6).—Compound 4 (356 mg, 0.36 mmol) was dissolved in 1:1 EtOH-Et₂O (8 mL), then a 1 M solution of AcONH₃NH₂ in EtOH (0.4 mL) was dropped at rt. After 20 min, the solvents were removed under diminished pressure and purification by flash chromatography (3:1 toluene-EtOAc) afforded compound 5 as a white solid (309 mg, 97%): mp 202-203 °C; $[\alpha]_{D}^{20}$ + 26.7° (c 1.0, CHCl₃); ¹H NMR (CDCl₃) 200 MHz): δ 8.05–7.15 (m, 25 H, H_{Ar}), 5.62 (t, 1 H, $J_{3,4} = J_{2,3}$ 8.8 Hz, H-3), 5.49 (dd, 1 H, $J_{1,2}$ 7.3 Hz, H-2), 5.14 (t, 1 H, J_{2',3'} 7.3 Hz, H-2'), 4.81 (d, 1 H, J 12.5 Hz, CHHPh), 4.71 (d, 1 H, H-1), 4.64 (dd, 1 H, J_{6a.6b} 12.2, $J_{6a,5}$ 2.2 Hz, H-6a), 4.61 (d, 1 H, $J_{1',2'}$ 7.5 Hz, H-1'), 4.58 (d, 1 H, CHHPh), 4.47 (dd, 1 H, J_{6b,5} 4.7 Hz, H-6b), 4.25-4.16 (m, 2 H, H-4, H-3'), 4.00 (dd, 1 H, J_{4'3'} 5.65, J_{4' 5'} 2.01 Hz, H-4'), 3.8 (ddd, 1 H, H-5), 3.56 (m, 1 H, H-5'), 3.43-3.17 (m, 2 H, H-6'a, H-6'b), 1.51 (s, 3 H, CH₃ isoprop.), 1.28 (s, 3 H, CH₃ isoprop.); ¹³C NMR (CDCl₃ 50.29 MHz): δ 165.9, 165.5, 165.2, 164.9 (COOBz), 110.7 (Cq isoprop.), 100.5, 99.0 (C-1, C-1'), 77.0, 75.8, 73.9, 73.4, 73.3, 73.0, 71.8 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 70.3 (CH₂Ph), 62.8, 61.8 (C-6, C-6'), 27.4, 26.1 (2 CH₃ isoprop.). Anal. Calcd for C₅₀H₄₈O₁₅ (888.907): C, 67.56; H, 5.44. Found: C, 67.62; H, 5.51.

Benzyl 3,4-O-isopropylidene-6-O-levulinoyl- β -Dgalactopyranosyl- $(1 \rightarrow 4)$ -2,6-di-O-benzoyl- β -D-glucopyranoside (7).—To a solution of **3** (300 mg, 0.53 mmol) in dry THF (7.5 mL), TEA (0.37 mL, 2.65 mmol) was added under Ar atmosphere. The reaction mixture was cooled to -25 °C, and a solution of BzCN (204 mg, 1.56 mmol) in THF (2.5 mL) was added dropwise. The reaction mixture was stirred for 17 h (TLC 1:9 MeOH-EtOAc), diluted with EtOAc, quenched with MeOH (0.3 mL) and allowed to warm at rt. After concentration under diminished pressure, sequential purification by flash and MP chromatography (8:1.5 toluene-acetone) afforded 7 (203 mg, 50%), as a white foam. $[\alpha]_{D}^{20} - 15.4^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 8.11–7.15 (m, 15 H, H_{Ar}), 5.21 (dd, 1 H, J_{2,3} 9.4 Hz, H-2), 4.87 (2d overlapped, 2 H, H-6a, CHHPh), 4.70 (d, 1 H, J 12.6 Hz, CHHPh), 4.60 (d, 1 H, J_{1,2} 8.1 Hz, H-1), 4.55 (dd, 1 H, J_{6a,6b} 12.0, J_{6b,5} 5.2 Hz, H-6b), 4.39 (dd, 1 H, J_{6'a,6'b} 12.1, J_{6'a,5'} 2.8 Hz, H-6'a), 4.30 (d, 1 H, $J_{1',2'}$ 8.3 Hz, H-1'), 4.25 (dd, 1 H, J_{6'b.5'} 9.4 Hz, H-6'b), 4.10-4.06 (m, 3 H, H-3', H-4', H-5'), 3.87 (t, 1 H, J_{3.4} 9.2 Hz, H-3), 3.69 (br dd, 1 H, J_{4.5} 10.0 Hz, H-5), 3.63 (br dd, 1 H, J_{2.3} 6.3 Hz, H-2'), 3.61 (t, 1 H, H-4), 2.54–2.35 (m, 4 H, 2 CH₂ lev.), 2.02 (s, 3 H, CH₃ lev.), 1.51 (s, 3 H, CH₃ isoprop.), 1.32 (s, 3 H, CH₃ isoprop.); ¹³C NMR (CDCl₃, 150.86 MHz): δ 206.8 (CO lev.), 171.6, 166.8, 165.3 (CO lev., Bz), 110.7 (Cq isoprop.), 103.4 (C-1'), 98.9 (C-1), 82.2 (C-4), 79.1 (C-3' or C-4'), 73.7 (C-3), 73.6 (C-5), 73.4 (C-2'), 73.1 (C-2), 73.0 (C-3' or C-4'), 71.5 (C-5'), 70.3 (CH₂Ph), 63.9 (C-6), 63.2 (C-6'), 37.6 (CH₃ lev.), 29.6, 28.0 (2 CH₂ lev.), 27.8, 26.2 (2 CH₃ isoprop.). Anal. Calcd for C₄₁H₄₆O₁₅ (778.795): C, 63.23; H, 5.95. Found: C, 63.20; H, 5.89.

Benzyl 6-O-levulinoyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2,6-di-O-benzoyl- β -D-glucopyranoside (8).—Compound 7 (564 mg, 0.72 mmol) was submitted to the same conditions described for the preparation of 5. Purification by flash chromatography (EtOAc) afforded 8 (490 mg, 92%) as an amorphous glassy solid: $[\alpha]_{D}^{20}$ -37.0° (c 1.1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 8.15-7.11 (m, 15 H, H_{Ar}), 5.19 (t, 1 H, J_{2,3} 8.7 Hz, H-2), 4.85 (d, 1 H, H-6a), 4.81 (d, 1 H, CHHPh), 4.62 (d, 1 H, J_{1,2} 7.2 Hz, H-1), 4.59 (d, 1 H, J 11.3 Hz, CHHPh), 4.54 (dd, 1 H, J_{6b.5} 5.6, J_{6a.6b} 11.9 Hz, H-6b), 4.44 (br s, 1 H, OH), 4.34 (d, 1 H, J_{1.2} 7.8 Hz, H-1'), 4.28 (dd, 1 H, J_{6'a,5'} 3.3 Hz, H-6'a), 4.24 (dd, 1 H, J_{6'b,5'} 4.4, J_{6'a.6'b} 11.8 Hz, H-6'b), 4.01 (br s, 1 H, OH), 3.90-3.63 (m, 7 H, H-3, H-4, H-2', H-3', H-4', H-5', OH), 3.54 (m, 1 H, H-5), 3.31 (br s, 1 H, OH), 2.57–2.40 (m, 4 H, 2 CH₂ lev.), 2.03 (s, 3 H, CH₃ lev.); ¹³C NMR (CDCl₃, 50.29 MHz, 50 °C): δ 207.2 (CO lev.), 173.0, 167.1, 165.7 (COO lev., Bz), 104.3 (C-1'), 99.5 (C-1), 81.8, 73.8, 73.3, 71.3, 68.7 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 70.6 (CH₂Ph), 64.2, 63.6 (C-6, C-6'), 37.9 (CH₂COCH₃ lev.), 29.2 (CH₃ lev.), 28.1 (CH₂COO lev.). Anal. Calcd for C₃₈H₄₂O₁₅ (738.731): C, 61.68; H, 5.73. Found: C, 61.63; H, 5.77.

Benzyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero- α -D-galacto-non-2-ulopyranosylonate)-(2 \rightarrow 6)-2-O-benzoyl-3,4-O-isopropylidene- β -Dgalactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzoyl- β -D-glucopyranoside (10a) and its isomer (10b).—Compound 5 (390 mg, 0.44 mmol) and phosphite donor 9^{13} (468 mg, 0.76 mmol) were dissolved in dry CH₃CN (4 mL), and cooled to -40 °C. A 0.5 M solution of trimethylsilyltrifluoromethansulfonate (TMSOTf) in CH₃CN (150 µL, 0.075 mmol), was dropped under vigorous stirring. After 1 h, the reaction mixture was neutralised with TEA and concentrated. Flash chromatography purification (95:5 toluene-EtOH) of the crude afforded a mixture of 10a, 10b and glycal²⁶ which was further purified by MP chromatography to give 10a (236 mg, 39%) and 10b (115 mg, 19%) as white amorphous solids: 10a, $[\alpha]_D^{20}$ $+6.8^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (C₆D₆, 500 MHz): δ 8.30-6.91 (2 m, 25 H, H_{Ar}), 5.92 (ddd, 1 H, J_{8".9"b} 7.7 Hz, H-8"), 5.87 (m, 2 H, H-2, H-3), 5.60 (t, 1 H, J_{2',3'} 7.2 Hz, H-2'), 5.44 (dd, 1 H, J_{6",7"} 2.3, J_{7",8"} 7.9 Hz, H-7"), 4.89 (dd, 1 H, J_{6a.6b} 11.8, J_{6a.5} 6.2 Hz, H-6a), 4.80 (m, 3 H, H 6b, H-4", H 1'), 4.70 (dd, 1 H, $J_{8",9"a}$ 2.9, J_{9"a,9"b} 12.2 Hz, H-9"a), 4.63 (d, 1 H, J 12.7 Hz, CHHPh), 4.52 (m, 1 H, H-4), 4.44 (d, 1 H, CHHPh), 4.41 (m, 2 H, H-1, H-5"), 4.29 (dd, 1 H, J_{8",9"b} 7.7 Hz, H-9"b), 4.10 (dd, 1 H, J_{6",7"} 2.3, J_{5",6"} 10.8 Hz, H-6"), 4.01 (dd, 1 H, J_{4',5'} 2.0, J_{3',4'} 5.4 Hz, H-4'), 3.96-3.87 (m, 3 H, H-3', H-6'a, NH), 3.86 (br t, 1 H, H-5'), 3.59 (t, 1 H, $J_{6'a,6'b}$ 9.4, $J_{6'b,5'}$ 8.3 Hz, H-6'b), 3.42 (s, 3 H, COOCH₃), 3.34 (br t, 1 H, H-5), 2.73, (dd, 1 H, J_{3"eq,3"ax} 12.8, J_{3"eq,4"} 4.7 Hz, H-3"eq), 2.20 (s, 3 H, CH₃Ac), 2.07 (s, 3 H, CH₃Ac), 1.96 (t, 1 H, J_{3"ax,4"} 12.0 Hz, H-3"ax), 1.92 (s, 3 H, CH₃Ac), 1.58 (s, 3 H, CH₃Ac), 1.56 (s, 3 H, NHCOCH₃), 1.54 (s, 3 H, CH₃ isoprop.), 1.40 (s, 3 H, CH₃ isoprop.); ¹³C NMR $(CDCl_3, 100.62 \text{ MHz}): \delta 171.3, 171.1, 170.7, 170.4,$ 170.3, 168.3, 166.4, 165.8, 165.6, 165.4 (COOAc, NHAc, Bz, COOCH₃), 110.7 (Cq isoprop.), 100.2, 99.4, 99.4 (C-1, C-1', C-2''), 77.4, 77.6, 74.3, 73.7, 73.2, 72.6, 71.7, 69.3, 69.0, 68.0 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5', C-4", C-6", C-7", C-8"), 70.7 (CH₂Ph), 63.5, 63.1, 62.9 (C-6, C-6', C-9"), 53.2 (COOCH₃), 49.9 (C-5"), 38.1 (C-3"), 27.9, 26.6 (2 CH₃, isoprop.), 23.6 (NHCOCH₃), 21.4-21.2 (4 CH₃Ac). Anal. Calcd for C₇₀H₇₅NO₂₇ (1362.335): C, 61.71; H, 5.55; N, 1.03. Found: C, 61.66; H, 5.52; N, 0.97. **10b**, $[\alpha]_{D}^{20} + 23.5^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (C₆D₆, 500 MHz): δ 8.19–6.98 (2 m, 25 H, H), 5.98 (t, 1 H, H-3), 5.88 (dd, 1 H, J_{6",7"} 2.0, J_{7".8"} 3.1 Hz, H-7"), 5.83 (t, 1 H, J_{2.3} 8.8 Hz, H-2), 5.63 (t, 1 H, H-2'), 5.60 (ddd, 1 H, H-8"), 5.49 (ddd, 1 H, $J_{4'',5''}$ 10.1 Hz, H-4''), 5.26 (dd, 1 H, $J_{9''a,9''b}$ 12.4, J_{9"a,8"} 2.5 Hz, H-9"a), 4.96 (d, 1 H, J_{5",NH} 9.5 Hz, NH), 4.79 (d, 1 H, J_{1',2'} 7.9 Hz, H-1'), 4.77 (dd, 1 H, J_{6a,5} 2.5, J_{6a,6b} 11.8 Hz, H-6a), 4.74 (dd, 1 H, J_{6b,5} 5.1 Hz, H-6b), 4.69 (d, 1 H, J 12.7 Hz, CHHPh), 4.63 (d, 1 H, J_{1.2} 7.2 Hz, H-1), 4.51 (dd, 1 H, J_{9"b.8"} 8.1 Hz, H-9"b), 4.47-4.43 (m, 3 H, CHHPh, H-6", H-5"), 4.28 (dd, 1 H, J_{3,4} 8.4, J_{4,5} 9.4 Hz, H-4), 4.17 (dd, 1 H, J_{3',4'} 5.5, J_{4',5'} 1.7 Hz, H-4'), 4.07 (m, 1 H, H-6'a), 3.97 (dd, 1 H, $J_{2,3}$ 7.3 Hz, H-3'), 3.88 (m, 2 H, H-5', H-6'b), 3.61 (ddd, 1 H,

H-5), 3.40 (s, 3 H, COOCH₃), 2.61 (dd, 1 H, J_{3"eq,3"ax} 12.9, J_{3"eq,4"} 4.9 Hz, H-3"eq), 1.92 (s, 3 H, CH₃Ac), 1.85 (s, 3 H, CH₃Ac), 1.82 (t, 1 H, J_{3"ax,4"} 11.5 Hz, H-3"ax), 1.71 (s, 3 H, CH₃Ac), 1.65 (s, 3 H, CH₃ isoprop.), 1.59 (s, 3 H, CH₃Ac), 1.55 (s, 3 H, HNCOCH₃), 1.38 (s, 3 H, CH₃ isoprop.); ¹³C NMR (C₆D₆, 125.72 MHz): δ 170.8, 170.4, 170.3, 169.6, 167.3, 166.1, 165.5, 165.2 (COOAc, NHAc, Bz, COOCH₃), 110.9 (Cq isoprop.), 100.7 (C-1'), 99.8 (C-1), 99.19 (C-2"), 77.1 (C-3'), 76.5 (C-4), 73.9 (C-2'), 73.6 (C-3), 73.5 (C-8"), 73.4 (C-4"), 73.3 (C-2) 73.1 (C-5), 72.9 (C-6"), 71.9 (C-5"), 70.4 (CH₂Ph), 69.0 (C-7"), 69.0 (C-4"), 63.6 (C-6), 63.2 (C-9"), 62.5 (C-6"), 52.4 (COOCH₃), 49.9 (C-5"), 38.0 (C-3"), 27.7 (CH₃ isoprop.), 26.7 (CH₃ isoprop.), 22.9 (HNCOCH₃), 20.8, 20.6, 20.48, 20.4 (4 CH₃Ac), Anal. Calcd for C₇₀H₇₅NO₂₇ (1362.335): C, 61.71; H, 5.55; N, 1.03. Found: C, 61.78; H, 5.54; N, 0.96.

5-acetamido-3,5-dideoxy-D-glycero-a-D-Sodium galacto-non-2-ulopyranosylonate- $(2 \rightarrow 6)$ - β -D-galacto*pyranosyl-(1 \rightarrow 4)-D-glucopyranose* (11).—To a solution of 10a (235 mg, 0.17 mmol) in CH₂Cl₂, a 60% aq soln of CF₃COOH was added at 0 °C, and the reaction mixture was stirred at this temperature for 3 h (TLC 9:1 toluene-EtOH). After dilution with water, neutralisation with Na₂CO₃ and extraction with CH₂Cl₂, the organic phase was separated, dried over Na₂SO₄ and concentrated to dryness. The obtained residue was then dissolved in MeOH (4 mL) and treated with a 0.5 M solution of MeONa in MeOH (110 µL) for 48 h at rt (TLC 3:1:0.25 CHCl₃-MeOH-water). The reaction mixture was neutralised with Amberlite IR-120 resin (H⁺ form), concentrated under diminished pressure, dissolved in water (3 mL) and freeze-dried. The obtained compound was dissolved in water (3 mL), treated with 1 M aq NaOH (180 µL) for 24 h and freeze-dried. The residue was dissolved in 1:4 MeOHwater (6 mL) and submitted to hydrogenolysis in the presence of 10% Pd/C for 24 h (TLC 6:3:1 acetone-BuOH-water); the mixture was filtered through Celite and freeze-dried. The residue was loaded onto a Sephadex G 10 column ($V_0 = 150$ mL, $V_t = 300$ mL) and eluted with 1:9 EtOH-water. The fractions containing the product were collected and freeze-dried giving 11 (82 mg, 74%) as a white foam. ¹H and ¹³C NMR data for this compound are in agreement with those reported in the literature.²⁵

Benzyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero- α -D-galacto-non-2-ulopyranosylonate)-(2 \rightarrow 3)-6-levulinoyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2,6-di-O-benzoyl- β -D-glucopyranoside (12).—Compound 8 (100 mg, 0.13 mmol) and phosphite donor 9¹³ (160 mg, 0.26 mmol) were dissolved in 2:1 CH₃CN– THF (1.5 mL), and cooled to -44 °C. A 0.5 M TMSOTf solution in CH₃CN (50 µL, 0.025 mmol) was dropped under vigorous stirring. After 2 h, the reaction mixture was neutralised with TEA and concentrated. Flash chromatography purification (95:5 CHCl₃-MeOH) of the crude mixture afforded unreacted 8 (22 mg, 22%) and a mixture of 12, glycal²⁶ and other unidentified compounds (presumably isomers of 12), which was further purified by MP chromatography (3:2 toluene-acetone) to give 12 (81 mg, 51%) as a white amorphous solid: $[\alpha]_{D}^{20} - 14.6^{\circ}$ (c 0.7, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 8.09–7.10 (m, 15 H, H_{Ar}), 5.31 (td, 1 H, $J_{7'',8''} = J_{8'',9''a}$ 8.4, $J_{8'',9''b}$ 2.5 Hz, H-8''), 5.27 (br d, 1 H, H-7"), 5.25 (t, 1 H, $J_{1,2} = J_{2,3}$ 9.5 Hz, H-2), 5.22 (d, 1 H, J_{5",NH} 9.6 Hz, NH), 4.97 (td, 1 H, $J_{3''ax,4''} = J_{4'',5''}$ 10.5, $J_{3''eq,4''}$ 4.6 Hz, H-4''), 4.93 (br d, 1 H, J_{6a,6b} 10.7 Hz, H-6a), 4.82 (d, 1 H, J 12.6 Hz, CHHPh), 4.61 (d, 1 H, CHHPh), 4.60 (d, 1 H, J_{1.2} 7.8 Hz, H-1), 4.53 (dd, 1 H, J_{6b.5} 5.6 Hz, H-6b), 4.52 (d, 1 H, J_{1'.2'} 7.9 Hz, H-1'), 4.42 (s, 1 H, OH), 4.30 (dd, 1 H, $J_{9'a,9''b}$ 12.4 Hz, H-9''a), 4.27 (m, 2 H, H-6'a, H-6'b), 4.10 (br d, 1 H, J_{6",5"} 9.2 Hz, H-6"), 4.08 (1 H, dd, J_{2',3'} 9.1, J_{3',4'} 3.4 Hz, H-3'), 3.93 (m, 2 H, H-5", H-9"b), 3.84 (br t, 1 H, $J_{2,3} = J_{3,4}$ 8.8 Hz, H-3), 3.82–3.68 (m, 4 H, H-4, H-5, H-2', H-5'), 3.80 (s, 3 H, COOCH₃), 3.63 (br s, 1 H, H-4'), 3.17 (d, 1 H, J 2.0 Hz, OH), 2.66 (dd, 1 H, J_{3"eq.3"ax} 13.0 Hz, H-3"eq), 2.63–2.43 (m, 4 H, 2 CH₂ lev.), 2.38 (d, 1 H, J_{4',OH} 3.0 Hz, OH), 2.13 (s, 3 H, CH₃ lev.), 2.05 (s, 3 H, CH₃Ac), 2.02 (s, 3 H, CH₃Ac), 2.01 (s, 3 H, CH₃Ac), 2.00 (t, 1 H, H-3"ax), 1.96 (s, 3 H, CH₃Ac), 1.88 (s, 3 H, HNCOCH₃); ¹³C NMR (CDCl₃, 150.86 MHz): δ 206.9 (CO lev.), 172.6, 170.8, 170.5, 170.2, 170.1, 168.1, 166.2, 165.4 (9 COOAc, NHAc, Bz, COOCH₃, lev.), 104.2 (C-1'), 99.0 (C-1), 97.6 (C-2"), 82.3 (C-5), 76.5 (C-3'), 73.6 (C-3), 73.2 (C-7"), 73.0 (C-6"), 72.9 (C-4), 72.4 (C-5'), 70.1 (CH₂Ph), 69.0 (C-2'), 68.8 (C-8"), 68.2 (C-4'), 67.9 (C-4"), 67.0 (C-2), 63.6 (C-6), 63.2 (C-6'), 62.4 (C-9''), 53.3 (COOCH₃), 49.8 (C-5"), 37.7, 37.6 (C-3", CH₂COCH₃ lev.), 30.9 (CH₃ lev.), 27.9 (CH₂COO lev.), 23.1 (HNCOCH₃), 21.1-20.6 (4 CH₃Ac). Anal. Calcd for $C_{58}H_{69}NO_{27}$ (1212.159): C, 57.47; H, 5.74; N, 1.16. Found: C, 57.54; H, 6.64; N, 1.19.

Sodium 5-acetamido-3,5-dideoxy-D-glycero-α-Dgalacto-non-2-ulopyranosylonate- $(2 \rightarrow 3)$ - β -D-galacto*pyranosyl-(1 \rightarrow 4)-D-glucopyranose* (13).—To a solution of 12 (35 mg, 0.029 mmol) in MeOH (2 mL), a 0.5 M solution of MeONa in MeOH (12 µL) was added and the reaction mixture was stirred for 48 h at rt (TLC 3:1:0.35 CHCl₃-MeOH-water). The solution was neutralised by Amberlite IR 120 resin (H⁺ form), filtered, concentrated under diminished pressure and, after dilution in water, freeze-dried. The resulting product was dissolved in water (1 mL), treated with 1 M aq NaOH (80 µL) for 24 h and freeze-dried. The residue was dissolved in 1:4 MeOH-water (3 mL) and hydrogenolysed in the presence of 10% Pd/C for 24 h (TLC 6:3:1 acetone-BuOH-water). The mixture was filtered through Celite and freeze-dried. Finally the residue was loaded onto a Sephadex G 10 column

 $(V_0 = 17 \text{ mL}, V_t = 23 \text{ mL})$ and eluted with 1:9 EtOH– water. The fractions containing the product were collected and freeze-dried giving **13** (16 mg, 84%) as a white powder. ¹H and ¹³C NMR data for this compound are in agreement with those reported in the literature.^{20,25}

Benzyl 2,3,4-tri-O-acetyl-6-O-levulinoyl-β-D-galactopyranosyl- $(1 \rightarrow 4)$ -2,3,6-tri-O-acetyl- β -D-glucopyranoside (14).-To compound 2 (110 mg, 0.21 mmol) in pyridine (4 mL), Ac₂O (2 mL) was added and the mixture was stirred at rt for 24 h. The reaction mixture was quenched with MeOH and concentrated. The residue was diluted with EtOAc and washed with 5% HCl, then with water. The organic layer was dried over Na_2SO_4 , concentrated and purified by flash chromatography (4:1 EtOAc-petroleum ether) affording 14 (130 mg, 80%) as a white foam: $[\alpha]_{D}^{20} - 28.7^{\circ}$ (c 1.1, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.42–7.23 (m, 5 H, H_{Ar}), 5.33 (br d, 1 H, J_{3',4'} 3.0 Hz, H-4'), 5.17 (t, 1 H, $J_{2,3} = J_{3,4}$ 9.2 Hz, H-3), 5.10 (dd, 1 H, $J_{1,2}$ 7.6 Hz, H-2), 4.95 (m, 2 H, H-3', H-4'), 4.85 (d, 1 H, J 12.3 Hz, CHHPh), 4.60 (d, 1 H, CHHPh), 4.49 (m, 3 H, H-1, H-1', H-6a), 4.20-4.03 (m, 3 H, H-6b, H-6'a, H-6'b), 3.84 (m, 2 H, H-4, H-5'), 3.60 (ddd, 1 H, J_{5.6a} 2.0, J_{5.6b} 4.9, J₄₅ 9.8 Hz, H-5), 2.74 (m, 2 H, CH₂ lev.), 2.53 (m, 2 H, CH₂ lev.), 2.21, 2.16, 2.05, 2.00, 1.94 (5 s, 21 H, CH₃Ac, lev.); ¹³C NMR (CDCl₃ 50.29 MHz): δ 206.1 (CO lev.), 172.1, 170.2, 170.0, 169.7, 169.4, 168.9 (6 COOAc), 100.9, 99.0 (C-1, C-1'), 76.1, 72.7, 71.8, 70.9, 70.5, 69.6, 66.7 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 70.6 (CH₂Ph), 62.0, 60.9 (C-6, C-6'), 37.7 (CH₂COCH₃ lev.), 29.5 (CH₃ lev.), 27.7 (CH₂COO lev.), 20.7–20.5 (6 CH₃Ac). Anal. Calcd for $C_{36}H_{46}O_{19}$ (782.739): C, 55.24; H, 5.92. Found: C, 55.29; H, 5.96.

Benzyl 2,3,4-tri-O-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-acetyl- β -D-glucopyranoside (15).—Compound 14 (95 mg, 0.12 mmol) was dissolved in 1:1 EtOH-Et₂O (2 mL) and AcONH₃NH₂ (13 mg, 0.14 mmol) was added at rt. After 2 h, the mixture was concentrated and purified by flash chromatography (9:1) toluene-acetone) affording 15 (81 mg, 98%) as a white foam: $[\alpha]_{D}^{20} - 13.3^{\circ}$ (c 0.8, CHCl₃); ¹H NMR (CDCl₃) 200 MHz): δ 7.35–7.13 (m, 5 H, H_{Ar}), 5.34 (d, 1 H, $J_{3'4'}$ 3.3 Hz, H-4'), 5.17 (t, 1 H, $J_{3,4} = J_{2,3}$ 9.2 Hz, H-3), 5.14 (dd, 1 H, J_{1',2'} 7.6, J_{2',3'} 10.4 Hz, H-2'), 4.98 (dd, 1 H, H-3'), 4.96 (dd, 1 H, J_{1,2} 7.4 Hz, H-2), 4.86 (d, 1 H, J 12.2 Hz, CHHPh), 4.62-4.51 (m, 4 H, H-1, H-1', H-6a, CHHPh), 4.09 (dd, 1 H, J_{6a,6b} 11.9, J_{6b,5} 5.2 Hz, H-6b), 3.86 (br t, 1 H, $J_{4.5}$ 9.6 Hz, H-4), 3.70–3.48 (m, 4 H, H-5, H-5', H-6'a, H-6'b), 2.17-1.95 (6 s, 18 H, CH₃Ac); ¹³C NMR (CDCl₃, 75.44 MHz): δ 170.9, 170.4, 170.1, 169.9, 169.6, 169.1 (6 COOAc), 101.1, 99.0 (C-1, C-1'), 76.2, 74.1, 73.5, 72.6, 71.7, 71.0, 69.5, 67.7 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 70.0 (CH₂Ph), 62.1, 60.8 (C-6, C-6'), 20.9-20.7 (6 CH₃Ac). Anal. Calcd for C₃₁H₄₀O₁₇ (684.639): C, 54.38; H, 5.89. Found: C, 54.36; H, 5.82.

Benzyl 6-O-sulfo- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -Dglucopyranoside sodium salt (16).—Compound 15 (186 mg, 0.27 mmol), was dissolved in dry DMF (3 mL) in Ar atmosphere, the SO₃NMe₃ complex (56 mg, 0.40 mmol) was added and the reaction mixture was stirred at 60 °C (TLC 4:1 CH₂Cl₂-MeOH). After 48 h, the reaction was quenched with a few drops of MeOH and concentrated. Flash chromatography purification (CHCl₃, then 10:1 CHCl₃-MeOH, and 5:1 CHCl₃-MeOH) afforded a white amorphous solid (203 mg). The resulting product was dissolved in dry MeOH (8 mL) under nitrogen; after cooling to 0 °C a 1 M solution of MeONa in MeOH (400 µL) was added and the reaction mixture was stirred at rt for 7 h. The solution was percolated on a column $(1 \times 10 \text{ cm})$ filled with Dowex 50 WX8 (H^+ form) resin and the eluate was concentrated and purified by flash chromatography (5:8:0.7 MeOH-CHCl₃-water). The fractions containing the product were concentrated to a volume of 3 mL and percolated on a Dowex 50 WX8 (Na⁺ form) column (1×10 cm). The resulting eluate was finally concentrated to dryness affording 16 (117 mg, 81%), as a white amorphous solid: $[\alpha]_D^{20} - 11.5^\circ$ (c 0.6, water); ¹H NMR (D₂O 500 MHz): δ 7.51–7.42 (m, 5 H, H_{Ar}), 4.94 (d, 1 H, J 11.7 Hz, CHHPh), 4.77 (d, 1 H, CHHPh), 4.57 (d, 1 H, J_{1.2} 8.1 Hz, H-1), 4.48 (d, 1 H, J_{1',2'} 7.4 Hz, H-1'), 4.21 (appearing as a d, 2 H, J 6.2 Hz, H-6'a, H-6'b), 4.00 (dd, 1 H, $J_{4',5'} < 2$ Hz, H-4'), 3.99-3.98 (m, 2 H, H-6a, H-5'), 3.81 (dd, 1 H, J_{5.6b} 5.1, $J_{6a.6b}$ 12.4 Hz, H-6b), 3.69 (dd, 1 H, $J_{2',3'}$ 10.0, $J_{3',4'}$ 3.5 Hz, H-3'), 3.64 (m, 3 H, H-3, H-4, H-5), 3.56 (dd, 1 H, H-2'), 3.38 (t, 1 H, $J_{2,3}$ 9.4 Hz, H-2); ¹³C NMR (D₂O) 125.72 MHz): δ 105.9 (C-1'), 103.9 (C-1), 82.3 (C-4), 77.5 (C-5), 77.3 (C-3), 75.6 (C-2), 75.7 (C-5'), 75.2 (C-3'), 74.3 (CH₂Ph), 73.5 (C-2'), 71.1 (C-4'), 70.0 (C-6'), 63.1 (C-6). Anal. Calcd for C₁₉H₂₇NaO₁₄S (534.465): C, 42.70; H, 5.09. Found: C, 42.75; H, 5.17.

6-O-Sulfo- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -D-glucopyranose sodium salt (17).—A solution of 16 (25 mg, 0.046 mmol) in 3:1 MeOH-water (4 mL) was hydrogenolysed in the presence of 10% Pd/C for 16 h, (TLC 6:3:1 acetone-BuOH-water). The mixture was filtered through Celite and freeze-dried. The residue was loaded onto a Sephadex G 10 column ($V_0 = 17$ mL, $V_{\rm t} = 23$ mL) and eluted with 1:9 EtOH-water. The fraction containing the product were collected and freeze-dried affording 17 (18 mg, 88%) as a white powder: $[\alpha]_{D}^{20} + 29.4^{\circ}$ (c 1.0, water); ¹H NMR (D₂O, 200 MHz): δ 5.28 (d, 0.28 H, $J_{1d,2d}$ 3.4 Hz, H-1 α), 4.72 (d, 0.7 H, J_{1e,2e} 7.9 Hz, H-1β), 4.57 (d, 1 H, J_{1',2'} 7.7 Hz, H-1'), 4.27 (appearing as a d, 2 H, H-6'a, H-6'b), 4.06-3.56 (m, 9.3 H, H-2α, H-3, H-4, H-5, H-6a, H-6b, H-2', H-3', H-4', H-5'), 3.36 (br t, 0.7 H, J 2.3 9.1 Hz, H-2β); ¹³C NMR (CDCl₃, 75.44 MHz): 103.9 (C-1'), 96.5 (C-1\beta), 92.6 (C-1\alpha), 80.4, 80.2, 75.5, 75.2, 74.6, 73.7, 73.2, 72.3, 72.0, 71.6, 70.9, 69.1, 68.2 (C-6'), 61.1

(C-6 α), 61.0 (C-6 β). Anal. Calcd for C₁₂H₂₁NaO₁₄S (444.342): C, 32.44; H, 4.76. Found: C, 32.49; H, 4.72.

Benzyl $(3-\text{O-sulfo}-\beta-\text{D-galactopyranosyl})-(1 \rightarrow 4)-\beta$ -D-glucopyranoside sodium salt (18).—Compound 1 (218 mg, 0.50 mmol) and Bu₂SnO (135 mg, 0.54 mmol) were stirred in refluxing dry MeOH (4 mL) for 2 h under nitrogen. The reaction mixture was concentrated to dryness and the dry dibutylstannylene intermediate was treated with SO₃NMe₃ complex (144 mg, 1.0 mmol) in dry dioxane (4 mL) at rt. After 48 h, the reaction was diluted with MeOH (3 mL), filtered and concentrated. The residue was then purified by flash chromatography (5:8:1 MeOH–CHCl₃–water); the fractions containing the product were concentrated, dissolved in MeOH and percolated into a cation exchange resin column (Dowex 50 WX8, H⁺ form, 1×10 cm). The eluate was concentrated and percolated on a Dowex 50 column (Na⁺ form, 1×10 cm) affording, after removal of the solvents, 18 (200 mg, 75%) as a white amorphous solid: $[\alpha]_{D}^{20} - 17.2^{\circ}$ (c 1.0, MeOH); ¹H NMR (D₂O, 500 MHz): δ 4.95 (d, 1 H, J 11.4 Hz, CHHPh), 4.78 (d, 1 H, CHHPh), 4.58 (d, 1 H, J_{1',2'} 7.9 Hz, H-1'), 4.57 (d, 1 H, J_{1,2} 8.0 Hz, H-1), 4.34 (dd, 1 H, J_{2',3'} 9.8, J_{3',4'} 3.3 Hz, H-3'), 4.30 (d, 1 H, $J_{4',5'} < 1$ Hz, H-4'), 4.01 (dd, 1 H, $J_{5,6a}$ 2.3, $J_{6a,6b}$ 12.4 Hz, H-6a), 3.84 (dd, 1 H, $J_{5,6b}$ 5.2 Hz, H-6b), 3.78 (m, 1 H, H-5'), 3.75 (m, 2 H, H-6'a, H-6'b), 3.70 (t, 1 H, J_{4.5} 9.7 Hz, H-4), 3.70 (t, 1 H, H-2'), 3.64 (t, 1 H, J_{3,4} 8.9 Hz, H-3), 3.59 (ddd, 1 H, H-5), 3.37 (t, 1 H, J_{2,3} 9.2 Hz, H-2); ¹³C NMR (D₂O, 125.72 MHz): δ 105.4 (C-1'), 103.9 (C-1), 82.9 (C-3'), 81.3 (C-4), 77.7 (C-5'), 77.6 (C-5), 77.2 (C-3), 75.8 (C-2), 74.3 (CH₂Ph), 71.9 (C-2'), 69.6 (C-4'), 63.7 (C-6'), 62.9 (C-6). Anal. Calcd for $C_{19}H_{27}NaO_{14}S$ (534.465): C, 42.70; H, 5.09. Found: C, 42.77; H, 5.12.

3-O-Sulfo- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -D-glucopyranose sodium salt (19).—Compound 18 (40 mg, 0.075 mmol) was submitted to the same procedure described for 17, affording 19 (32 mg, 96%) as a white powder: $[\alpha]_{D}^{20} + 40.7^{\circ}$ (*c* 1.1, water). ¹H and ¹³C NMR data are in agreement with those reported in the literature for the natural compound.⁶

2,4,6-O-tri-O-acetyl-3-O-methoxycarbonyl-Benzyl methyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2,3,6-tri-O-ace $tyl-\beta$ -D-glucopyranoside (23).—Compound 1 (200 mg, 0.46 mmol) and Bu₂SnO (125 mg, 0.50 mmol) were stirred in refluxing dry MeOH (4 mL) under N₂ for 16 h. The reaction mixture was concentrated to dryness and the dibutylstannylene intermediate, after coevaporation with toluene, was dissolved in dry DMF (4 mL) under Ar and treated with ethyl bromoacetate (255 µL, 2.3 mmol) and TBAI (cat.) at 40 °C for 48 h (TLC 8:1.5 CH₂Cl₂-MeOH). The reaction mixture was concentrated under diminished pressure and chromatographed to give a pale yellow syrup (181 mg) containing two compounds, namely the expected product 20 and the corresponding lactone derivative 21. The mixture of these compounds was dissolved in dry MeOH (4 mL) and treated with a 1 M solution of MeONa (30 µL) in MeOH. After the complete conversion of the faster moving compound into the second (TLC 4:1 CH₂Cl₂-MeOH), the mixture was neutralised with Amberlite IR 120 (H⁺ form) and concentrated leading to crude compound 22. The residue was dissolved in pyridine (4 mL) and treated with Ac₂O (2 mL). After one night, the reaction mixture was concentrated, diluted with CH₂Cl₂ and washed with water. The organic layer was separated, dried over Na₂SO₄ and concentrated. Purification by flash chromatography (1:1 EtOAc-petroleum ether) afforded 23 as a white foam (193 mg, 56% from 1): $[\alpha]_{D}^{20}$ -9.6° (c 1.1, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.40–7.21 (m, 5 H, H_{Ar}), 5.39 (br d, 1 H, $J_{3',4'}$ 3.1 Hz, H-4'), 5.15 (t, 1 H, $J_{3,4} = J_{2,3}$ 9.0 Hz, H-3), 5.00 (t, 1 H, J_{2',3'} 7.9 Hz, H-2'), 4.95 (t, 1 H, J_{2,3} 7.8 Hz, H-2), 4.86 (d, 1 H, J 12.3 Hz, CHHPh), 4.59 (d, 1 H, CHHPh), 4.54 (dd overlapping signal, 1 H, H-6a), 4.52 (d, 1 H, $J_{1,2}$ 8.0 Hz, H-1), 4.46 (d, 1 H, $J_{1',2'}$ 8.1 Hz, H-1'), 4.19-4.08 (m, 5 H, H-6b, H-6a', H-6b', OCH₂COO), 3.80 (t, 1 H, $J_{3,4} = J_{4,5}$ 9.8 Hz, H-4), 3.75 (br t, 1 H, $J_{4',5'} = J_{5',6'}$ 7.0 Hz, H-5'), 3.72 (s, 3 H, COOCH₃), 3.63-3.58 (m, 2 H, H-5, H-3'), 2.13 (s, 9 H, 3 CH₃Ac), 2.08, 2.04, 1.98 (3 s, 9 H, 3 CH₃Ac); ¹³C NMR (CDCl₃, 50.29 MHz): δ 170.3, 170.2, 170.0, 169.6 (6 COOAc, 2 overlapping signals), 101.0, 98.9 (C-1, C-1'), 78.3, 76.2, 72.9, 72.7, 71.7, 70.6, 70.5, 65.2 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 70.6 (CH₂Ph), 66.0, 62.1, 61.2 (C-6, C-6', OCH₂COO), 51.7 (COOCH₃), 20.70-20.59 (CH₃Ac). Anal. Calcd for C₃₄H₄₄O₁₉ (756.702): C, 53.97; H, 5.86, Found: C, 54.01; H, 5.81.

3-O-Carboxymethyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -Dglucopyranose sodium salt (24).-To a solution of compound 23 (20 mg, 0.026 mmol) in MeOH (3 mL), a 0.5 M solution of MeONa in MeOH (30 µL) was added and the reaction mixture was stirred at rt for 16 h. Then water (2 mL) and 0.5 M solution of MeONa in MeOH (30 µL) were added, the mixture was stirred for additional 20 h at rt, then concentrated under diminished pressure. The residue was dissolved in 1:1 MeOH-water and hydrogenolysed in the presence of 10% Pd/C for 16 h, (TLC 6:3:1 acetone-BuOH-water). The mixture was filtered through Celite and freeze-dried. The residue was dissolved in 0.1 M NaOH (0.5 mL), loaded onto a Sephadex G 10 column ($V_0 = 17 \text{ mL}$, $V_t = 23 \text{ mL}$) and eluted with 1:9 EtOH-water. The fraction containing the product were collected and freeze-dried giving 24 (9 mg, 91%) as a white powder: $[\alpha]_{D}^{20} + 59.1^{\circ}$ (c 0.5, water); ¹H NMR (D₂O, 300 MHz): δ 5.26 (d, H 0.3, $J_{1\alpha,2}$ 3.8 Hz, H-1 α), 4.70 (d, H 0.7, $J_{1\beta,2}$ 7.9 Hz, H-1 β), 4.52 (d, 1 H, $J_{1',2'}$ 7.8 Hz, H-1'), 4.11 (br s, 3 H), 4.06-3.56 (m, 10.3 H), 3.32 (bt, 0.70 H, J 8.3 Hz, H-2β); ¹³C NMR (D₂O, 75.44 MHz): 179.2 (COO⁻), 103.6 (C-1'), 96.6 (C-1\beta), 92.6 (C-1\alpha), 82.7, 79.1, 79.0, 75.9, 75.6, 75.1, 74.6, 73.5, 72.2, 72.0, 70.9, 70.7, 66.2

(C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5' α and β), 69.3 (OCH₂COO⁻), 61.1 (C-6'), 60.9 (C-6 β), 60.8 (C-6 α). Anal. Calcd for C₁₄H₂₃NaO₁₃ (422.314): C, 39.82; H, 5.49. Found: C, 39.80; H, 5.57.

Benzyl 6-O-thexyldimethylsilyl-β-D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranoside (25).—Compound 1 (200 mg, 0.46 mmol) and Bu₂SnO (125 mg, 0.50 mmol) were stirred in refluxing dry MeOH (4 mL) for 16 h. The reaction mixture was concentrated to dryness and the dibutylstannylene intermediate was dissolved in dry THF (3 mL) and treated with TDSCl (102 µL, 0.52 mmol) at rt for 18 h. After adding some drops of TEA, the solution was concentrated under diminished pressure. Purification by flash chromatography (95:5 then 9:1 CH₂Cl₂-MeOH) afforded 25 (201 mg, 76%). In order to allow an unambiguous identification of the product, a portion of 25 (50 mg) was submitted to standard acetylation (Ac₂O, Py) and characterised. $[\alpha]_{D}^{20}$ -29.4° (c 1.3, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.38-7.22 (m, 5 H, H_{Ar}), 5.39 (br d, 1 H, J_{3',4'} 3.1 Hz, H-4'), 5.14 (t, 1 H, $J_{3,4} = J_{2,3}$ 9.3 Hz, H-3), 5.08–4.91 (m, 3 H, H-2, H-2', H-3'), 4.85 (d, 1 H, J 12.3 Hz, CHHPh), 4.59 (d, 1 H, CHHPh), 4.53–4.45 (m, 3 H, H-1, H-1', H-6a), 4.10 (dd, 1 H, J_{6a,6b} 11.8, J_{5,6b} 4.8 Hz, H-6b), 3.82 (t, 1 H, $J_{3,4} = J_{4,5}$ 9.5 Hz, H-4), 3.70–3.50 (m, 4 H, H-5, H-5', H-6'a, H-6'b), 2.12, 2.11, 2.03, 2.02, 1.99, 1.95 (6 s, 18 H, 6 CH₃Ac), 1.60 (dq, 1 H, H TDS), 0.91-0.79 (m, 12 H, 4 CH₃, TDS), 0.07, 0.04 (2 s, 6 H, 2 CH₃Si TDS).

Benzyl 2,3,4-tri-O-benzyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (26).—To a solution of 25 (165 mg, 0.29 mmol) in dry DMF (2 mL), BnBr (415 µL, 3.49 mmol) and NaH (60% suspension in mineral oil 104 mg, 2.60 mmol) were added, and the reaction mixture was stirred at rt overnight (TLC 1:9 EtOAc-petroleum ether). After quenching the excess of NaH with MeOH, the reaction mixture was concentrated, the residue was diluted with CH₂Cl₂ and the organic phase was washed with water. The organic layer was separated, dried over Na2SO4 and concentrated. The residue was purified by flash chromatography (0.6:10 EtOAc-petroleum ether) affording a colourless syrup (300 mg). The resulting compound was dissolved in THF (10 mL) and, after cooling the solution to -12 °C, treated with a 1 M TBAF solution (540 µL, 0.54 mmol). The reaction mixture was stirred at rt for 6 h (TLC 2:3 EtOAc-petroleum ether), then the solution was diluted with EtOAc, and washed with satd NH₄Cl. The organic layer was separated, dried over Na₂SO₄, filtered and concentrated. The crude compound was purified by flash chromatography (3:7 then 2:3 EtOAc-petroleum ether) affording 26 (185 mg, 66%) as a white foam: $[\alpha]_{D}^{20} - 12.6^{\circ}$ (c 1, CHCl₃), lit.²² -14° (c 1.29, CHCl₃). NMR data for this compound are in agreement with those reported in the literature.²²

Benzvl 2,3,4-tri-O-benzyl-6-O-tert-butoxycarboxymethyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2.3.6-tri-O-ben $zyl-\beta$ -D-glucopyranoside (27).—To a solution of compound 26 (120 mg, 0.12 mmol) in CH₂Cl₂ (0.2 mL), tert-butyl bromoacetate (377 µL, 1.47 mmol), Bu₄NHSO₄ (51 mg, 0.16 mmol) and 33% aq NaOH (0.8 mL) were added and the reaction mixture was stirred at rt for 4 h (TLC 2:3 EtOAc-petroleum ether). The reaction mixture was diluted with water and extracted with CH₂Cl₂, the organic layer was separated, dried over Na₂SO₄, filtered and concentrated. The crude compound was purified by flash chromatography (1:9 then 1:4 EtOAc-petroleum ether) affording 27 (129 mg, 96%) as a colourless syrup: $[\alpha]_{D}^{20} + 3.2^{\circ}$ (c 1.1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 5.00 (d, 1 H, J 10.7 Hz, CHHPh), 4.98 (d, 1 H, J 11.8 Hz, CHHPh), 4.94 (d, 1 H, J 12.1 Hz, CHHPh), 4.90 (d, 1 H, J 10.9 Hz, CHHPh), 4.80 (d, 1 H, J 11.2 Hz, CHHPh), 4.75 (d, 1 H, CHHPh), 4.74 (d, 1 H, CHHPh), 4.73 (d, 1 H, J 11.8 Hz, CHHPh), 4.69 (d, 1 H, CHHPh), 4.65 (d, 1 H, CHHPh), 4.63 (d, 1 H, CHHPh), 4.55 (d, 1 H, J 12.1 Hz, CHHPh), 4.48 (d, J 7.3 Hz, H-1 or H-1'), 4.42 (d, J 6.9 Hz, H-1 or H-1'), 4.41 (d, 1 H, CHHPh), 4.15-3.90 (m, 2 H), 3.83–3.70 (m, 4 H), 3.65 (d, 1 H, J 16.4 Hz, OCHHCOO), 3.57–3.29 (m, 8 H), 1.44 (s, 9 H, 3 CH₃*t*-Bu); ¹³C NMR (CDCl₃, 75.44 MHz): δ 169.4 (COOt-Bu), 102.8, 102.5 (C-1, C-1'), 83.0, 82.5, 81.9, 80.0, 76.7, 75.2, 73.5, 73.0 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 75.3, 75.2, 75.0, 64.7, 73.2, 72.6, 70.9, 69.3, 69.0, 68.3 (7 CH₂Ph, C-6, C-6', OCH₂COOt-Bu), 60.3 (Cq t-Bu), 28.1 (CH₃t-Bu). Anal. Calcd for C₆₇H₇₄O₁₃ (1087.297): C, 74.01; H, 6.86. Found: C, 74.09; H, 6.89.

6-O-Carboxymethyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -Dglucopyranose sodium salt (28).—To a solution of 27 (49 mg, 0.045 mmol) in CH₂Cl₂, 10% CF₃COOH in CH₂Cl₂ (mL) was added. The reaction mixture was stirred at rt for 30 min (TLC 3:7 EtOAc-petroleum ether) and concentrated to dryness. The obtained compound was dissolved in 1:1 EtOAc-MeOH and submitted to hydrogenolysis in the presence of 10% Pd(OH)₂/C for 72 h (TLC 6:3:1 acetone-BuOH-water). The mixture was filtered through Celite and freezedried. The residue was dissolved in 0.1 M NaOH (0.5 mL), loaded onto a Sephadex G 10 column ($V_0 = 17$ mL, $V_t = 23$ mL) and eluted with 1:9 EtOH-water. The fraction containing the product were collected and freeze-dried giving 28 (18 mg, 95%) as a white powder: $[\alpha]_{D}^{20}$ + 24.2° (c 0.6, water); ¹H NMR (D₂O, 300 MHz): δ 5.35 (d, 0.3 H, $J_{1\alpha,2}$ 3.8 Hz, H-1α), 4.81 (H-1β), 4.58 (d, 1 H, J_{1',2'} 7.8 Hz, H-1'), 4.17–3.65 (m, 13.3 H), 3.42 $(t, 0.7 \text{ H}, J 8.4 \text{ Hz}, \text{H-}2\beta);^{13}\text{C NMR} (D_2O, 75.44 \text{ MHz}):$ δ 178.7 (COO⁻), 103.8 (C-1'), 96.6 (C-1 β), 92.7 (C-1 α), 79.8, 79.7, 75.7, 75.3, 74.7, 74.2, 72.3, 72.1, 71.8, 69.6 (C-2, C-3, C-4, C-5, C-1', C-2', C-3', C-4', C-5' α and β), 70.9, 70.6 (CH₂COO⁻, C-6'), 61.1 (C-6β), 61.0 (C-6α).

Anal. Calcd for $C_{14}H_{23}NaO_{13}$ (422.314): C, 39.82; H, 5.49. Found: C, 39.88; H, 5.56.

Acknowledgements

A.R. is grateful to Professor R.R. Schmidt for helpful discussion on the sialyllactosides synthesis. This work was supported by EU-NOFA project (grant FAIR CT973142), MURST (Ministero dell'Università e della Ricerca Scientifica e Tecnologica) and CNR (Centro di Studio sulle Sostanze Organiche Naturali).

References

- (a) Gyorgy, P.; Jeanloz, R. W.; von Nicolai, H.; Zilliken, F. Eur. J. Biochem. 1974, 43, 29–33;
 - (b) Carson, S. E. Am. J. Clin. Nutr. 1985, 41, 720-726; (c) Coppa, G. V.; Gabrielli, O.; Pierani, P.; Catassi, C.; Carlucci, A.; Giorgi, P. Pediatrics 1993, 91, 637-641; (d) Kunz, C.; Rudloff, S. Acta Pediatr. 1993, 82, 903-912; (e) Laegreid, A.; Otnaess, A. B. K.; Fuglesang, J. Pediatr. Res. 1986, 20, 416-421; (f) Newburg, D. S.; Pickering, L. K.; McCluer, R. H.; Cleary, T. C. J. Infect. Dis. 1990, 162, 1075-1080; (g) Cravioto, A.; Tello, A.; Villafan, H.; Ruiz, J.; Del Vedovo, S.; Neeser, J.-R. J. Infect. Dis. 1991, 163, 1247-1255; (h) Cervantes, L. E.; Newburg, D. S.; Ruiz-Palacios, G. M. Pediatr. Res. 1995, 37, 171A; (i) Newburg, D. S. J. Mam. Gland Biol. Neoplasia 1996, 1, 271-283; (l) Zopf, D.; Roth, S. Lancet 1996, 347, 1017-1021; (m) Chaturvedi, P.; Warren, C. D.; Altaye, M.; Morrow, A. L.; Ruiz-Palacios, G.; Pickering, L. K.; Newburg, D. S. Glycobiology 2001, 11, 365-372.
- Andersson, B.; Porras, O.; Hanson, L. A.; Lagergard, T.; Svanborg-Eden, C. J. Infect. Dis. 1986, 153, 232–237.
- Coppa, G. V.; Gabrielli, O.; Giorgi, P.; Catassi, C.; Montanari, M. P.; Varaldo, P. E.; Nichols, B. L. *Lancet* 1990, 335, 569–571.
- 4. Schwertmann, A.; Schroten, H.; Hacker, J.; Kunz, C. J. Pediatr. Gastroenterol. Nutr. 1999, 28, 257–263.
- Yuen, C.-T.; Lowson, A. M.; Chai, W.; Larkin, M.; Stoll, M. S.; Stuart, A. C.; Sullivan, F. X.; Ahern, T. J.; Feizi, T. *Biochemistry* 1992, *31*, 9126–9131.
- Bubb, W. A.; Urashima, T.; Kohso, K.; Nakamura, T.; Arai, I.; Saito, T. *Carbohydr. Res.* **1999**, *318*, 123–128.
- Huang, H.; Wong, C.-H. J. Org. Chem. 1995, 60, 3100– 3106.
- Lay, L.; Panza, L.; Riva, S.; Khitri, M.; Tirendi, S. Carbohydr. Res. 1996, 291, 197–204.
- 9. La Ferla, B.; Lay, L.; Poletti, L.; Russo, G.; Panza, L. J. *Carbohydr. Chem.* **2000**, *19*, 331–343.
- 10. La Ferla, B.; Lay, L.; Russo, G.; Panza, L. *Tetrahedron: Asymmetry* **2000**, *11*, 3647–3651.
- Rencurosi, A.; Poletti, L.; Panza, L.; Lay, L. J. Carbohydr. Chem. 2001, 20 (7/8), 761–765.
- 12. Jung, K.-H.; Hoch, M.; Schmidt, R. R. Liebigs Ann. Chem. 1989, 11, 1099–1106.
- Martin, T. J.; Brescello, R.; Toepfer, A.; Schmidt, R. R. Glycoconjugate J. 1993, 10, 16–25.

- 14. Dabrowsky, U.; Friebolin, H.; Brossmer, R.; Supp, M. Tetrahedron Lett. 1979, 48, 4637.
- 15. (a) Van der Vleugel, D. J. M.; van Heeswijk, W. A. R.; Vliegenthart, F. G. *Carbohydr. Res.* **1982**, *102*, 121–130;
 (b) Paulsen, H.; Tietz, H. *Carbohydr. Res.* **1984**, *125*,
 - 47–64.
- Okamoto, K.; Kondo, T.; Goto, T. Bull. Chem. Soc. Jpn. 1987, 60, 637–643.
- 17. Lay, L.; Windmüller, R.; Reinhardt, S.; Schmidt, R. R. *Carbohydr Res.* **1997**, *303*, 39–49.
- 18. Lönn, H.; Stenvall, K. Tetrahedron Lett. 1992, 33, 115-116.
- Summers, M. F.; Marzilli, L. G.; Bax, A. J. Am. Chem. Soc. 1986, 108, 4285–4294.
- 20. Ogawa, T.; Sugimoto, M. Carbohydr. Res. 1985, 135, C5-C9.

- 21. Guilbert, B.; Davis, N. J.; Pearce, M.; Aplin, R. T.; Flitsch, S. L. *Tetrahedron: Asymmetry* **1994**, *11*, 2163–2178.
- 22. Liptàk, A.; Jodàl, I.; Nànàsi, P. Carbohydr. Res. 1976, 52, 17–22.
- 23. Glen, A.; Leigh, D. A.; Martin, R. P.; Smart, J. P.; Truscello, A. M. Carbohydr. Res. **1993**, 248, 365–369.
- 24. Takahashi, A.; Shibasaki, M. J. Org. Chem. 1995, 53, 1227-1231.
- (a) Dorland, L.; Haverkamp, J.; Vliegenthart, J. F. G.; Strecker, G.; Michalski, J.-C.; Fournet, B.; Spik, G.; Montreuil, J. *Eur. J. Biochem.* **1978**, *87*, 323–329;
 (b) Kamerling, J. P.; Dorland, L.; van Halbeek, H.; Vliegenthart, J. F. G. *Carbohydr. Res.* **1982**, *100*, 331–340.
- Okamoto, K.; Kondo, T.; Goto, T. Bull. Chem. Soc. Jpn. 1987, 60, 631–636.