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Abstract: A catalytic enantioselective phospha-Mi-
chael reaction of diphenyl phosphonate to nitroole-
fins was achieved by utilizing a 1,3-diamine-teth-
ered guanidinium/bisthiourea organocatalyst. The
procedure is applicable to nitroolefins having vari-
ous aromatic and aliphatic substituents, and enables
an efficient access to phospha-Michael products
with 90–98% ee. Monomeric or oligomeric active
species of the catalyst can be utilized, depending on
the presence or absence of water.
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Hydrogen-bonding catalysis has recently emerged as
an important strategy in asymmetric organocataly-
sis.[1,2] Although many H-bonding catalysts have been
designed based on inspiration drawn from molecular
recognition processes in enzyme-catalyzed reactions,[3]

in general, their stereoselection processes are gov-
erned by a fundamentally different principle.[4] Since
enzymes are conformationally flexible, their selectivi-
ties are controlled by the kinetically favored confor-
mation, which affords substantial rate acceleration
relative to competing reaction pathways via other
conformations.[3] In sharp contrast, the vast majority
of the H-bonding catalysts reported to date are predi-
cated on the use of rigid chiral templates in order to
reduce the number of distinct possible diastereomeric
transiton states that can be involved.[1,2] In this con-

text, our attention has been directed to the develop-
ment of a catalytic system enabling the construction
of versatile chiral environments by using a conforma-
tionally flexible organocatalyst, 1 or 2 (Figure 1).[5–8]

We have successfully developed unique catalytic pro-
cesses, such as retro-free,[5a,9] enantiodivergent[10] and
entropy-controlled organocatalysis,[11] by exploiting
the conformational flexibility of our catalysts.

Given the encouraging catalytic activity of 1,3-di-ACHTUNGTRENNUNGamine-tethered guanidine/bisthiourea organocatalyst
2,[12–14] which can selectively promote the Michael re-
action of phenol enolates to nitroolefins,[11] we plan-
ned to extend this strategy to the asymmetric forma-
tion of phosphorus-carbon (P�C) bonds. The conju-
gate addition of phosphonates to nitroolefins (phos-
pha-Michael reactions)[15–19] is a useful P�C bond-
forming reaction that provides b-nitrophosphonates,
which are precursors for the preparation of b-amino-
phosphonic acids.[20] However, only a few organocata-
lytic approaches to the phospha-Michael reaction, in-
volving the use of conformationally constrained orga-
nocatalysts (i.e., quinines,[16a] axially chiral guani-ACHTUNGTRENNUNGdines[16b] and squaramides that have chiral cyclohex-

Figure 1. Structures of 1 and 2.
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ACHTUNGTRENNUNGanediamine[16c,d]), have been reported. Considering
the diverse biological activities of P�C compounds,[20]

additional studies to develop organocatalytic phos-
pha-Michael reactions are desirable. Herein, we show
that the conformationally flexible guanidinium/bis-
thiourea organocatalyst 2a·HCl permits a highly enan-
tioselective phospha-Michael reaction of diphenyl
phosphonate with nitroolefins in 77–95% yield with
90–98% ee. The assembly-state tunability of the cata-
lyst[21] by water in the reaction solution is also pre-
sented as a new aspect of guanidinium/bisthiourea or-
ganocatalysts.

Because the conformationally flexible organocata-
lyst can potentially provide many different diastereo-
meric transition states,[10] it is important to kinetically
control the stereoselectivity of bond formation
through the ideal transition state of the catalyst in
order to attain the maximum enantioselectivity with
conformationally flexible organocatalysts. According-
ly, efforts directed at exploring the phospha-Michael
reaction by utilizing conformationally flexible organo-
catalyst 2a·HCl[22] were first focused on the solvent
effect on the conjugate addition of diphenyl phospho-
nate (3) with b-nitrostyrene (4a). As shown in
Table 1, the cooperative procedure using 2a·HCl and
potassium carbonate[23] promoted the smooth phos-
pha-Michael reaction, giving the corresponding phos-
pha-Michael adduct 5a in 85–99% yield. A feature of
this catalytic system is that (R)-5a predominates re-
gardless of the solvent used (entries 1–6); these re-
sults contrast with the solvent-dependent enantio-ACHTUNGTRENNUNGswitching in previously developed Mannich-type reac-
tions[10] and Friedel–Crafts alkylations.[11,24] In compar-
ison with polar solvents (entries 1–3: 7–42% ee), non-
polar solvents (entries 4–6: 88–89% ee) gave better
enantioselectivities. Among the solvents tested, tolu-
ene gave the best enantioselectivity (entry 6, 89% ee).
A significant improvement of the enantioselectivity
was seen upon addition of water, and the ee value was
increased to 95% ee (entry 7). The reaction proceeded
with as little as 1 mol% of 2a·HCl to give 5a without
loss of reactivity and enantioselectivity (entry 8, 99%
yield, 95% ee). As shown in entry 9, the developed
catalytic enantioselective phospha-Michael reaction
was successfully performed on a 5-mmol scale with
1 mol% catalyst, giving the product 5a in 99% yield
with 95% ee. A single recrystallization of 5a (95% ee)
provided the optically pure compound in 91% yield
by vapor diffusion of hexane into dichloromethane so-
lution at 4 8C

Next, the scope of catalytic phospha-Michael reac-
tion with a range of nitroalkenes 4 was examined
(Table 2). For operational convenience, all reactions
were performed with 5 mol% of 2a·HCl under bipha-
sic conditions. Fine-tuning of the reaction conditions
by changing the amount of potassium carbonate or
the reaction temperature in order to control the reac-

tion rate (entries 7–11) led to high enantioselectivity
for the reactions involving both aromatic and aliphat-
ic nitroolefins. For example, p-substituted aromatic ni-
troolefins including an electron-withdrawing or elec-
tron-donating group gave the corresponding phospha-
Michael adducts in 88–90% yield with 90–96% ee (en-
tries 1–3). Disubstituted aromatic nitroolefin 4e was
also available as a substrate, giving the product 5e in
81% yield with 96% ee (entry 4). Naphthyl-, 2-thien-
yl- and 2-furyl-substituted nitroolefins also afforded
the corresponding phospha-Michael adducts in 77–
84% yield with 95–98% ee (entries 5–8). Among the
most challenging substrates reported to date in orga-
nocatalytic phospha-Michael reactions are sterically
bulky aliphatic nitroolefins, which are well known to
be poorly reactive.[16] Indeed, only one organocatalyt-
ic approach has been reported to afford a highly
enantioselective reaction (>90% ee), and it required
20 mol% catalyst loading.[16c] As can be seen in en-
tries 9 and 10, 2a displayed extraordinary high catalyt-
ic activity for 4j and 4k, attaining high enantioselec-
tivities with 5 mol% catalyst loading: 4j : 98% yield,

Table 1. Optimization studies.[a]

[a] Reactions were carried out on a 0.1-mmol scale in
1.0 mL of the solvent.

[b] Isolated yield.
[c] Determined by chiral HPLC analysis.
[d] The absolute configuration of 5a was determined to be

(R) on the basis of its optical rotation.[16]

[e] Reactions were carried out on a 0.1-mmol scale in
1.0 mL of toluene and 0.5 mL H2O.

[f] The reaction was carried out on a 5-mmol scale in 50 mL
of toluene and 25 mL H2O.

[g] The ee value after single recrystallization.
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92% ee (entry 9) and 4k : 95% yield, 92% ee
(entry 10).

To gain insight into the reaction mechanism, we
next investigated the structure/catalytic activity rela-
tionship with respective to possible catalytic sites
(Scheme 1). Use of the structural variants 6 and
7·HCl under the same reaction conditions as em-
ployed in Table 1, entry 6 (conditions A) and entry 7
(conditions B) resulted in a drastic decline of the
enantioselectivity (7–14% ee). These observations
strongly suggest that the stereodiscrimination process
in catalytic phospha-Michael reactions using 2a·HCl is
governed by cooperative activation of the sub-
strates[25] by guanidinium and thiourea in 2a·HCl
under both homogeneous and biphasic conditions. As
regards reactivity, a significant difference between 6
and 7·HCl was observed. For example, the addition of
water drastically decreased the reactivity of 6, in
which the guanidinium group in 2a·HCl is replaced by
a thiourea group (toluene: 87% yield vs. toluene/
H2O=2/1: 16% yield). On the other hand, significant-
ly higher reactivity upon addition of water (toluene:
46% yield vs. toluene/H2O=2/1: 78% yield) was ob-

served in the reaction using guanidinium 7·HCl. Thus,
the guanidinium cation in the catalyst plays a key role
in enhancement of the reaction rate of the phospha-
Michael reaction under biphasic conditions in the
presence of water,[26] suggesting that the P�C bond-
forming reaction might take place through the inter-
action of guanidinium/phosphite at the interfacial
layer.[22]

The unique solvent/water effects described
above,[24,26] along with our wish to explore assembly-
state-tunable organocatalysis, stimulated us to investi-
gate the relationship between the ee of the catalyst
2a·HCl and the ee of the phospha-Michael product 5a
in the presence or absence of water.[27] A linear rela-
tionship between the % ee of 2a·HCl and that of 5a
was obtained for the reaction in the absence of water,
suggesting that the stereoselectivity in this process is
controlled by the inherent structure of monomeric
2a·HCl.[10,11] In contrast, a negative non-linear effect
was observed upon addition of water.[9c] These obser-
vations indicate the importance of catalyst assembly
for the construction of a favorable chiral environment
for attainment of higher ee of (R)-5a in the phospha-
Michael reaction of 3 with 4a (Table 1, entry 6 vs.
entry 7). Thus, the results shown in Figure 2 support
the idea that the assembly state of the 2a·HCl can be
tuned depending on the presence or absence of water.
We believe that assembly-state tunability of the cata-
lyst[21] is a potentially useful strategy for modulation
of the chiral environments of conformationally flexi-
ble guanidinium/bisthiourea organocatalysts. Further
mechanistic studies are ongoing.

Table 2. Catalytic phospha-Michael reactions with various
nitroolefins using 2a·HCl.[a]

[a] Reactions were carried out on a 0.1-mmol scale in
1.0 mL of toluene.

[b] Isolated yield.
[c] Determined by chiral HPLC analysis.
[d] The absolute configuration of 5 was determined to be

(R) on the basis of the optical rotation.[16]

[e] The reactions were carried out in 0.5 mL toluene and
0.25 mL H2O.[f] The reactions were carried out in 0.5 mL
toluene and 0.1 mL H2O.

[g] Ice was formed in the reaction media.

Scheme 1. The phospha-Michael reaction of 3 with 4a utiliz-
ing 6 or 7·HCl.
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In conclusion, we have developed the organocata-
lytic phospha-Michael reaction of diphenyl phospho-
nate with nitroolefins by utilizing a conformationally
flexible organocatalyst. The availability of monomeric
or oligomeric active species of the catalyst, depending
on the presence or absence of water, may serve to
extend the concept of constructing diverse chiral envi-
ronments with a single chiral catalyst. Further efforts
to apply assembly-state-tunable organocatalysis to
other classes of asymmetric transformations, including
enantio-switching, diastereo-switching and organocas-
cade reactions, are under way.

Experimental Section

Typical Procedure

To a mixture of 2a·HCl (4.5 mg, 0.005 mmol) and b-nitro-
styrene (4a) (14.9 mg, 0.100 mmol) in toluene (1.0 mL) and
0.1 M aqueous K2CO3 (0.5 mL) was added diphenyl phos-
phonate (3a) (21.1 mL, 0.11 mmol) at 0 8C. The mixture was
stirred for 18 h at 0 8C, then the reaction was quenched with
saturated aqueous NH4Cl. The resulting mixture was diluted
with CH2Cl2 and poured into water. The aqueous layer was
extracted with CH2Cl2 (� 3) and the combined organic layer
was washed with brine, and dried over MgSO4. Solvents
were evaporated under reduced pressure, and the residue
was purified by flash column chromatography (n-hexane/
EtOAc =10/1) to afford (R)-5a (yield: 36.4 mg, 95% yield)
and 2a·HCl (recovery: 4.5 mg, 99%). The enantiomeric
excess of (�)-(R)-5a (95% ee) was determined by means of
chiral HPLC analysis (Chiralpak IA, 0.46 cm (f) � 25 cm
(L), n-hexane/ethanol=80/20, 1.0 mL min�1): major;
17.9 min, minor; 13.6 min.
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