
INTRODUCTION

In ship weather routing, one is concerned with the
optimization of quantities such as the transit time of
a ship as it travels over the ocean between two given
points, its fuel consumption, or certain criteria for
the benefit of passengers or cargo. To achieve such
optimization, the sea state must be known for the
complete passage, as well as the response of a ship to
waves and its performance under specific weather
conditions.

Several methods have been proposed for the solu-
tion of these optimization problems. The first was
a manual method for minimal-time routing (see, for
instance, [1]), using time fronts similar to wave fronts
in geometrical optics. The most obvious next step was
to program the manual method for the computer. This
has been done in [2–4] for the computation of a least-
time track and in [5] for the computation of a mini-
mum fuel route. An alternative approach includes
applications of optimal control theory or calculus of
variations (see, for example, [6–9]), as well as appli-
cations of the theory of multistage decision processes
(dynamic programming) (see, for instance, [10–13]).

Optimal control theory is an extension of the clas-
sical calculus of variations in that the spatial and
control variables may belong to closed sets instead
of being restricted to open sets, as is required in the
calculus of variations; however, these terms are used

indifferently. For simplicity, it is assumed here that
the spatial and control variables lie in open sets.

In a previous paper [9], a numerical method is pre-
sented for the computation of an optimal route that
minimizes fuel consumption. This method is based on
Pontryagin’s maximum principle of optimal control
theory [14], in the calculus of variations correspon-
ding with the Weierstrass condition completed with
the Euler-Lagrange equations ([9], p. 146). Optimal
route calculations using dynamic programming are
based on Bellman’s principle of optimality [15].

In this paper, the equivalence of the two methods
is demonstrated. This is done by showing that the
maximum principle can be derived from the princi-
ple of optimality if ship routing is considered as a
continuous optimization problem, meaning that the
sailing paths are not restricted to arcs of a grid as in
the discrete dynamic programming method, but can
vary continuously in the navigation area. Relevant
here is a paper [16] that considers the time-optimal
control problem as an optimal wave propagation
problem. The computerized manual method
described in [3] is based on the proposition ([16], p. 9)
that the points of a minimal-time route fall within
the set of ultimately attainable points (time fronts)
for all times. Of course this result is valid only for
infinitesimal time steps and not necessarily for the
time steps of 12 h used in this method. It certainly
holds, however, in fine weather regions where the
optimal route is expected to be found. Successive
time fronts are constructed using the principle of
dynamic programming, in this case expressed
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by equation (10), which implies that the course of
a ship along an optimal route must be chosen so that
the velocity attains a maximum in the direction of the
normal to a time front. Therefore, the method in [3]
can be considered the finite version of the continuous
dynamic programming method as well.

With the discrete version of the method of dynamic
programming, the optimal route calculation usually
begins with the introduction of a guess route and the
construction of (one-dimensional) search grids at a
distinct number of points perpendicular to this route.
Then an approximate optimal route connecting points
of successive search grids is calculated by applying the
principle of optimality [10, 11]. Considering this
approximate optimal route as a new guess route, a
better approximation can be obtained by refining the
search grids and the distance between them along the
new guess route and repeating the optimal route cal-
culation until further refinement yields no substantial
improvement [12, 13]. For the sake of completeness, it
is noted that the method of [12] has been applied to
a ship routing problem that is studied in [7].

The application of optimal control theory as pre-
sented in [8, 9] has a number of advantages relative
to the application of the discrete version of dynamic
programming in ship weather routing. Here we note
its ability to reduce the number of control variables,
its capacity to provide insight into the nature of the
problem, and its clarity of visual presentation by
showing all possible extremals emanating from the
point of departure on their way to the end point.

The aim of this paper is to elucidate the relation
between dynamic programming and optimal control
theory for those who use these methods in ship rout-
ing and to counter the arguments made against the
application of optimal control theory. For instance, it
has been suggested that the application of optimal
control theory, which treats ship routing as a continu-
ous optimization problem subject to a number of nec-
essary conditions for a local minimum, could lead to
problems associated with convergence to a global min-
imum [4], as well as to the presence of spatial deriva-
tives that cannot be approximated with sufficient
accuracy because of errors in the forecast data [4, 5],
especially in the face of severe weather conditions.

With respect to the first point, it is noted that,
apart from the iterative methods used in optimal
control theory (see [6]), it is the iterative variant of
the discrete method of dynamic programming in
particular that could involve convergence problems.
This is the case because, as noted earlier, a proper
optimal route calculation using the discrete method
starts on a coarse grid and is then continued itera-
tively on more and more refined grids. This is so in
turn because refinement of the initial coarse grid to
make it suitable for a sufficiently accurate optimal
route calculation is unrealistic given the required
computation time and memory space.

With respect to the second point, the first-order
spatial derivatives occurring in the equations
governing the course of an optimal route in optimal
control theory can be approximated extremely well.
This fact is demonstrated by the experiments in
this paper, in which the methods of [3] and [9] are
compared for the case of minimal-time ship routing.

The application of the maximum principle to ship
routing is described in the following section. Next the
connection with dynamic programming is discussed.
It was noted above that to solve the optimization
problem, the sea state must be known for the
complete passage. This will in general not be the case.
The limited predictability of the weather plays an
important role in the optimal route calculation.
Therefore, attention is paid to the limited predictabil-
ity of the weather and to the practical aspects of the
two optimization methods. Results of these methods
are provided for the case of minimal-time ship
routing. Conclusions are presented in the last section.

THE MAXIMUM PRINCIPLE IN SHIP ROUTING

In this section, the maximum principle from [14]
is applied to the problem of ship routing. The prob-
lem of minimizing fuel consumption during an
ocean crossing is considered. For the sake of com-
pleteness, it is noted that the resulting equations
also apply in the case of other cost or penalty func-
tions. The speed V and the course p of the ship are
used as control variables. The equations of motion of
a ship in a Cartesian coordinate system with coordi-
nates x1 and x2 are given by

1 � V cos p � S1(t, x1, x2) (1)

2 � V sin p � S2(t, x1, x2) (2)

where the dot denotes differentiation to the time t.
The functions S1(t, x1, x2) and S2(t, x1, x2) denote the
velocity components of the ocean current. It is
assumed that the rate of decrease of fuel can be
described by the equation

0 � f0(t, x1, x2,V, p)

where the function x0(t) denotes fuel consumption.
The path of a ship is completely determined by the
initial values of x1 and x2 and by the values of V(t)
and p(t) over the voyage, so that the problem under
consideration is now to determine the functions

V(t), p(t) 0 � t � t1

which will minimize the integral

f0(t, x1, x2,V, p) dt (3) 

among all paths with prescribed conditions on
initial and final values

xi(0) � xi0, xi(t1) � xi1 (i � 1,2)

�t1

0
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For the sake of simplicity, ocean current is omit-
ted. Of course, ocean current may be included, but
its inclusion would complicate the discussion unnec-
essarily at this point (see also [9], p. 147). In the
results presented in this paper, ocean current is
included. The maximum principle can now be for-
mulated as follows (cf. [14], p. 59).

Let V(t) and p(t), 0 � t � t1 be continuous control
functions such that the corresponding trajectory
x(t) � (x1(t), x2(t)), satisfying equations (1) and (2)
and issuing at instant t � 0 from point (x10, x20),
passes at time t � t1 through point (x11, x21). The
necessary condition for the control functions V(t)
and p(t) and the trajectory x(t) to be optimal (i.e.,
to minimize equation (3)) is that there exist a non-
zero continuous differentiable vector function �(t) �
(�0(t), �1(t), �2(t)) and a function

H(t, x, V, p, �) � �0f0(t, x1, x2, V, p)
� �1V cos p � �2V sin p

connected by the differential equations

i � �H (i � 0, 1, 2) (4)

where variables as subscripts denote partial differ-
entiation, such that:

● For all t, 0 � t � t1, the function H(t, x(t), V,
p,�(t)) of the variables V and p attains a maxi-
mum at the point V � V(t), p � p(t):

H(t, x(t), V(t), p(t), �(t)) � M(t, x(t), �(t)) (5)

where

M(t, x(t), �(t)) � H(t, x(t), V, p, �(t))

for fixed t, x(t) and �(t).

● At the final instant t � t1, the conditions

�0(t1) � constant � 0, M(t1, x(t1), �(t1)) � 0

are satisfied.

If the strict upper bound of the values of the func-
tion H is attained at some point of the control domain,
as is the case in this paper, M(t, x, �) is the maximum
of the values of the function H for fixed t, x, and �.
Therefore, this necessary condition for optimality is
called the maximum principle. We return to this
maximum principle in discussing methods of solution
for the ship routing problem. The similarity of the
maximum principle and the principle of optimality is
indicated in the following section, with ship routing
being treated as a continuous optimization problem.

CONNECTION WITH DYNAMIC PROGRAMMING

Referring to the preceding section, another
method for the optimization of similar processes is
dynamic programming. The functional equations
governing the process of dynamic programming are

sup
V, p

xi
�B

obtained from application of the principle of opti-
mality, using the concept of an optimal policy. If
a policy is any rule for making decisions (the effect
of a decision being a transformation of the state
variables) that yields an allowable sequence of deci-
sions, then an optimal policy is one that maximizes
a preassigned function of the final state variables.
We are now in a position to formulate the principle
of optimality ([15], p. 83): An optimal policy has the
property that, whatever the initial state and initial
decision are, the remaining decisions must consti-
tute an optimal policy with regard to the state
resulting from the first decision.

The focus here is on the connection between the
method of dynamic programming and the maximum
principle for the case of ship routing. Let the fuel con-
sumption along an optimal trajectory from point 
x(t) � (x1(t), x2(t)) (0 � t � t1, xi(0) � xi0, i � 1, 2),
belonging to the set of points � from which an
optimal passage to the end point xi(t1) � xi1(i � 1,2) is
possible, to x(t1) be denoted by

J(x(t)) � f0(t, x1(t), x2(t), V(t), p(t))dt

using the fact that every piece of an optimal trajec-
tory is itself an optimal trajectory. For convenience
(cf. [14], p. 68), we define

I(x(t)) � � f0(t, x1(t), x2(t), V(t), p(t))dt

� I(x(0)) � f0(t, x1(t), x2(t), V(t), p(t))dt (6)

From equation (6), it follows that

(x(t)) � (x(t)) i(t) � f0(t, x1(t),
x2(t), V(t), p(t)) (7)

Let us consider the same problem for arbitrary
control functions V and p, starting from point x(t)
on the optimal trajectory. After a time interval
dt, the new position will be x(t) � dx, with dx �
(dx1, dx2) � (V cos p, V sin p)dt. Now the fuel con-
sumption along a trajectory from x(t) along x(t) � dx
to x(t1) (moving from x(t) � dx optimally to the end
point x(t1)) is given by

J(x(t) � dx) � f0(t, x(t), V, p)dt

so that

J(x(t) � dx) � f0(t, x(t), V, p)dt � J(x(t))

or

I(x(t) � dx) � I(x(t)) � f0(t, x(t), V, p)dt

This last expression can be written as

( (x(t))V cos p � (x(t))V sin p
� f0(t, x(t), V, p))dt � 0 (8)

From equations (7) and (8) it follows that

( (x(t))V cos p � (x(t))V sin p
� f0(t, x(t), V, p)) � 0

Ix2
Ix1

max
V,p

Ix2
Ix1

xBIxi�
2
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where the maximum is attained for V � V(t),
p � p(t). We may define the equation

( (x)V cos p � (x)V sin p
� f0(t, x, V, p)) � 0 (9)

on the set of points �, where the maximum is attained
for the values of the optimal control functions at the
instant of emanation from point x. Analogous to equa-
tion (83) from [14], equation (9), expressing the princi-
ple of dynamic programming for the present problem,
can be called Bellman’s equation. It says that the con-
trol variables V and p must be chosen such that the
scalar product of the gradient ( , ) and the velocity
(V cos p, V sin p), diminished with the function f0(t, x1,
x2, V, p), attains a maximum value (equal to zero).
From this equation, the maximum principle can be
deduced. It will not be surprising that the derivatives

and can be identified with the Lagrange multi-
pliers �1 and �2 from the foregoing section. Indeed,
from equations (7) and (9) it follows that for optimal
choices V � V(t), p � p(t), the expression

(x)V(t) cos p(t) � (x)V(t) sin p(t)
� f0 (t, x, V(t), p(t))

as a function of the variable x, defined on the set �,
attains a maximum value at the point x � x(t). Thus

(x(t))V(t) cos p(t) � (x(t))V(t) sin p(t)
– (t, x(t), V(t), p(t)) � 0 ( j � 1, 2)

is satisfied along an optimal trajectory or with equa-
tions (1), (2), and (7):

(x(t)) � (t, x(t), V(t), p(t)) ( j � 1, 2)

which is in accordance with equation (4) with the
choice �0 � �1. In the time-optimal case, the cost
function f0(t, x, V, p) � 1, and the speed is a known
function of t, x, and p. In this case, equation (9) reads

( (x)V cos p � (x)V sin p) � 1 (10)

For an optimal choice p � p(t), the expression

(x)V cos p(t) � (x)V sin p(t)

as a function of the variable x, defined on the set �,
has a maximum at the point x � x(t). Thus

(x(t)) i(t) � (x(t)) cos p(t)

� (x(t)) sin p(t) � 0

or

(x(t)) � � (x(t)) cos p(t)
� (x(t)) sin p(t) ( j � 1, 2)

In the following section, results of the method in
[3], using relation (10), in which (I , I ) could be
identified as the normal to a time front, are
compared with those of the method in [9] for the
case of minimal-time routing.
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PRACTICAL CONSIDERATIONS

In this section, practical aspects of computational
methods based on both the maximum principle and
the method of dynamic programming are considered.
In these methods, it is assumed that the weather
forecast is valid for the entire crossing. An overview of
the essential features of these methods is presented.

The trajectory characterized by the functions x(t),
V(t), and p(t) satisfying the necessary conditions of
the maximum principle is supposed to be normal. As
a consequence of that normality, the equality sign for
the multiplier �0 is excluded. The abnormal case is
highly singular and is not discussed. In fact, if the
optimal trajectory is abnormal, it may be the only tra-
jectory satisfying the conditions of the present prob-
lem (see [17]). As mentioned previously, it is supposed
that the functions x(t), V(t), and p(t) lie in open sets.
Cases in which these variables are limited to a closed
set, meaning for practical ship routing that the navi-
gation area is bounded or that certain courses are
forbidden, can be found elsewhere [8].

Methods Based on the Maximum Principle

Most numerical methods used in ship routing
that employ calculus of variations or optimal con-
trol theory are iterative methods. Essentially, these
methods start with a guess route as a first approx-
imation of an optimal trajectory that is to be deter-
mined by means of an iterative procedure using
variational relations between fuel consumption and
the position and control variables. The Euler-
Lagrange equations ([9], p. 146)

Hv(t, x(t), V(t), p(t), �(t)) � 0,
Hp(t, x(t), V(t), p(t), �(t)) � 0

are also involved. These equations can be derived
from equation (5), since V(t) and p(t) belong to open
sets. A comprehensive survey of the iterative meth-
ods can be found in [6]. Since the appearance of that
paper, little appears to have changed.

A disadvantage of these iterative methods is that
they may lead to relative minima or may exhibit
problems associated with convergence. Therefore,
a method is discussed that does not have these
disadvantages.

Reformulating equation (5) of the maximum princi-
ple, we seek to find functions V(t) and p(t) that satisfy

(11)

for fixed t, x(t), and �(t). Since �0 can be chosen arbi-
trarily, and the parameters �0, �1, and �2 have
a common factor of proportionality, the solutions of
equation (4), where the control functions V and p

� �2(t)
V

f0(t, x(t),V,p)
 sin p) � ��o

max
V,p  

(�1(t)
V

f0(t, x(t),V,p)
 cos p
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are determined by equation (11), do not change if
the parameters �1 and �2 are multiplied by an arbi-
trary constant. To include all extremals emanating
from the point of departure, we write �1(0) � cos a
and �2(0) � sin a for any choice of �0. For instance,
�0 � �1 can be chosen. All extremals emanating
from the point of departure can then be found by
varying the parameter a. Equation (11) expresses
that the speed V and the course p along an extremal
must be chosen such that the ‘velocity’

attains a maximum value in the direction (�1(t),
�2(t)). It can be shown that, under certain conditions,
x1(t, a), x2(t, a), �1(t, a), and �2(t, a) as solutions of
equations (1), (2), and (4), where V(t) and p(t) are
implicitly defined by equation (11), depend continu-
ously on the parameter a for a fixed value of t. This
property serves as a starting point for a computa-
tional method that is described extensively in [9].
The essence of the method is illustrated in Figure 1
for the case in which the sailing time is minimized.

Methods Based on the Method
of Dynamic Programming

The method described in [3] can be considered a
finite version of the continuous dynamic program-
ming approach to ship routing. The method is based
on the fundamental property ([16], p. 9) that each
point of a time-optimal trajectory at a specific time

� V
f0(t, x(t),V, p)

 cos p, 
V

f0(t, x(t),V, p)
 sin p�

belongs to the boundary of the set of attainable
points at that time. In fact, this property also holds
if fuel consumption is minimized (see [18]). In that
case, the boundary of the set of attainable points can
be defined as the set of points that can ultimately be
attained within a specific time with minimal fuel
consumption. These boundaries are called time
fronts. The optimal control problem is then reduced
to the study of these time fronts.

Actually, this property holds for infinitesimal time
steps and not necessarily for 12 h time steps, as is
clear from Figure 2, which shows a situation in
which the necessary condition of Jacobi ([9], p. 149)
is violated. This condition expresses that a nonsin-
gular extremal between two points cannot be a min-
imal curve if it contains a conjugate point between
those points.

Successive time fronts are constructed using the
principle of dynamic programming expressed by
equation (10). The weakness of this method is asso-
ciated with the geometrical construction of the gra-
dients (normals) to these time fronts, a method that
is more appropriate for a manual application. For
that reason, the method could be considered a com-
puterized manual method as well. The method has
proven very useful as a frame of reference for the
approximation of spatial derivatives used in the
method described in [8] and [9]. Results of both
methods are compared in Figures 3 through 6 for
different ships’ performance data for the case of
minimal-time ship routing. The navigation area is
mapped conformally onto a plane by means of stere-
ographic projection (see [8], p. 14). The method of [3]
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Fig. 1–Example of an Ocean Crossing Using a Computational Method Based on the Maximum Principle (The least-time track is indicated
by the solid line.)
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is indicated by the dotted-dashed line, the method of
[9] by the solid line, and the great circle by the
dashed line. The service speeds of the chosen gener-
al cargo ships were 13 and 21 kn, respectively. The
polar velocity diagrams used in the computations
are of elliptic form and are constructed with the aid
of performance data in the case of following, beam,
and head waves.

These ship’s performance data were corrected by
recomputing the recommended routes of the ships,
constructed manually by the former Ship Routing
Office of the Royal Netherlands Meteorological
Institute (KNMI), with analyzed wave charts. Ocean
current was included. The crossing times along the
least-time routes computed with the methods of [3]
and [9] and the great circle in Figure 3 were, respec-
tively, 6 d, 1.0 h; 6 d, 3.0 h; and 6 d, 17.2 h. The
detours of the least-time routes of the methods of [3]
and [9] with respect to the great circle were 107 and
101 mi, respectively. For Figures 4 through 6, these
numbers were:

● Figure 4—6 d, 8.2 h; 6 d, 8.2 h; 6 d, 20.8 h;
104 mi; 89 mi

● Figure 5—10 d, 23.5 h; 11 d, 1.3 h; 14 d, 8.2 h;
242 mi; 215 mi

● Figure 6—11 d, 13.0 h; 11 d, 13.2 h; 13 d,
14.1 h; 363 mi; 350 mi

Of course, these numbers should be considered indi-
cations of the sailing times along the least-time
tracks, rather than being interpreted in absolute
terms. For the sake of completeness, the positions of
the manually constructed optimal routes are indi-
cated by the dotted lines. (For more information on
this subject, the reader is referred to Scientific
Reports WR 72-1, 72-2, 72-11, 73-2, and 73-5 [in
Dutch] of the KNMI.)

As noted earlier, dynamic programming methods of
the discrete type usually start an optimal route cal-
culation by introducing a guess route (usually the
great circle or a climatological route) and construct-
ing (one-dimensional) initially rather coarse search
grids at a distinct number of points perpendicular to
this route, as shown in Figure 7. Then an optimal
route connecting starting and end points is computed
by applying the principle of optimality to the points of
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Fig. 2–A Detail from Figure 1 (Explanation is given in the text.)

Fig. 3–Results of Both Methods (The ship departed from Bishop Rock on January 20, 1970, at 00.00 GMT. The service speed was 21 kn.)
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successive search grids. This may be done by exhaus-
tion or by using a shortest-path algorithm [12].

Two different options are then available. In the
first, the inaccuracy in the optimal route calculation
due to the coarse grid is taken for granted. In the
second, the optimal route calculation is continued
with the previous optimal route as a guess route,
and the search grids perpendicular to it as well
as the distance between them along this route
are refined, leading to a better approximation of
the optimal route. This procedure, which may be
repeated a number of times until further refinement
yields no substantial improvement [12, 13], empha-
sizes the continuous nature of the routing problem
([12], p. 20). A disadvantage of this iterative
approach is that it could lead to convergence prob-
lems and to search grids that could overlap because

of corners in the guess route ([13], p. 4). If the weath-
er forecast is not valid during the complete passage,
it might be completed with climatological data, and
the above routines could then be applied.

Limited Predictability

The quality and range of the weather prediction
have an important influence on the route calcula-
tion. Because of its importance, we pay particular
attention to the predictability of large-scale atmos-
pheric motions. The predictability associated with
large-scale numerical weather prediction models
can be measured in terms of the growth rate of
small errors in the initial values of the model vari-
ables. In fact, it is the sensitivity to initial conditions
that makes the system unpredictable.
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Fig. 4–Results of Both Methods (The ship departed from Bishop Rock on January 22, 1970, at 00.00 GMT. The service speed was 21 kn.)

Fig. 5–Results of Both Methods (The ship departed from Bishop Rock on January 18, 1970, at 00.00 GMT. The service speed was 13 kn.)
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The phenomena that determine the weather and
therefore are extremely important for ship routing
are formed by the coherent structures that are gen-
erated to adjust temperature differences in the
north–south direction to maintain large-scale cli-
matological circulation. These coherent structures
(depressions), which have dimensions on the order
of 1000 km, have a lifetime of approximately 5 days.
The predictability of atmospheric circulation is
closely related to the lifetime of these depressions.
Once a depression has been created, its further
development can be predicted rather accurately.
Therefore, the range of prediction of the weather is
about 5 days. At any moment, however, disturbances
can arise that can negate the prediction of the
course of a depression, depending on the sensitivity
of the system to perturbations.

At the end of the last century, the weather fore-
casts provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF) for 2 days
ahead had a reliability of 95 percent, for 4 days

ahead had a reliability of 90 percent, and for 5 days
ahead had a reliability of 80 percent. The reliability
of the 5-day forecast corresponds with that of the
2-day forecast in 1972.

The formation of a depression can be initiated by
a coherent structure of much smaller dimensions
that was formed to adjust differences in tempera-
ture on a smaller scale but is capable of creating
motions on a much larger scale. Coherent structures
of smaller dimensions have the capacity to adjust
temperature differences much more rapidly than is
the case for structures of larger dimensions.
Therefore, they have a shorter lifetime. Prediction of
these structures will result in a relatively small con-
tribution to the range of predictability. For every
resolution of the observation grid, however, there
always remain sufficient small disturbances (coher-
ent structures) that cannot be detected. Therefore,
even if the larger scales could be observed perfectly,
uncertainties at the smaller scales would after a day
or so introduce errors at the larger scales compara-
ble with the present larger-scale initial errors in the
observed data [19].

Earlier estimations of the limits on the pre-
dictability of large-scale motion range from 10 days
to more than a month, where the limit to pre-
dictability is considered to be the time required for
the initial error to grow so that the model no longer
gives useful weather information. Today it is not
expected that the prediction range can be expanded
substantially by refining the observation mesh and
increasing the computer capabilities. Atmospheric
predictability experiments with a large-scale
numerical model [19] suggest that “predictions at
least ten days ahead as skillful as predictions now
made seven days ahead appear to be possible.”

The sensitivity of the model to small variations in
the initial conditions can be considered a measure of
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Fig. 6–Results of Both Methods (The ship departed from Bishop Rock on January 21, 1970, at 00.00 GMT. The service speed was 13 kn.)

Fig. 7–First-Guess Route Between Points A and B and Part of Its
Adjunctive Spatial Search Grids
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the reliability of the weather forecast. The ECMWF
provides combined forecasts consisting of a control
forecast and a collection of 50 forecasts with slightly
different initial conditions [20]. These forecasts may
be used in ship routing by producing a collection of
optimal routes [13] and giving information on the
most probable optimal route, a method that deserves
further consideration.

CONCLUSIONS

In this paper, applications of optimal control theory
and dynamic programming to optimal control prob-
lems in ship routing have been discussed. The con-
nection between the two methods has been indicated
for the case in which ship routing is treated as a con-
tinuous process, meaning that the sailing paths are
not restricted to arcs of a grid as in the discrete
dynamic programming method, but can vary in the
navigation area. For this case, it is shown that the
maximum principle of the optimal control theory
can be derived from the principle of optimality, the
application of which will yield the functional equa-
tions used in this continuous type of dynamic
programming.

The method described in this paper (and more
extensively in [8] and [9]), using optimal control the-
ory, compares successfully for the case of minimal-
time routing with a closely related computerized
manual method [3], which can be considered a finite
version of the continuous type of dynamic pro-
gramming. A disadvantage of the latter method is
related to the geometrical construction of normals to
a time front, needed for the optimization procedure,
a method that is more appropriate for manual use.

Optimal route calculation with the commonly
used discrete approach of dynamic programming
starts with the introduction of a guess route and
the construction of a number of one-dimensional
search grids perpendicular to that route. An opti-
mal route connecting starting and end points is
then computed by applying the principle of opti-
mality to the points of the successive search grids.
Clearly these grids are not attuned to the dis-
tances that can be covered by a ship in 6 or 12 h,
usually the times at which weather information is
provided and a new course is determined. Actually,
a proper optimal route calculation using the dis-
crete type of dynamic programming is an iterative
method in which calculation starts on a coarse grid
around a first-guess route and continues on
increasingly refined grids around guess routes
that are better and better approximations of the
optimal route, emphasizing the continuous nature
of ship routing ([12], p. 20). A disadvantage of this
method is associated with convergence problems
and overlapping search grids due to a corner in a
guess route ([13], p. 4).

Summarizing, we may conclude that the applica-
tion of optimal control theory as presented in this
paper distinguishes itself from other methods by its
clarity of visual presentation in showing all possible
extremals emanating from the point of departure on
their way to the point of arrival. This method is also
more attuned to optimal control problems resulting
from the meteorological navigation of ships than are
the current applications of the commonly used dis-
crete method of dynamic programming.
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