A Direct Synthesis of Alkenyl Alkylidene Bicyclo[3.1.0]hexane Derivatives via Ruthenium(II)-Catalysed Bicyclisation of Allenynes

Chloé Vovard-Le Bray, a Sylvie Dérien, Pierre H. Dixneuf, *a Masahiro Murakami*b

^a Laboratoire 'catalyse et organométalliques', Institut Sciences Chimiques de Rennes, UMR 6226 CNRS Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France

Fax +33(223)236939; E-mail: pierre.dixneuf@univ-rennes1.fr

^b Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

Received 26 October 2007

Dedicated to the late Professor Yoshihiko Ito for his outstanding contribution to catalysis and synthesis

Abstract: The reaction of allenynes with N_2 CHSiMe₃ in the presence of RuCl(cod)Cp* catalyst at room temperature constitutes a selective, general route to alkylidenebicyclo[3.1.0]hexanes having an adjacent Z-CH=CHSiMe₃ group. The reaction shows that the RuCl(Cp*) moiety favours reductive elimination of a metallacy-clobutane intermediate and not the enyne metathesis process.

Keywords: allenynes, C–C coupling cyclisation, homogeneous catalysis, ruthenium

Methylenecyclopropanes play a key role in the construction of 5-membered cycles, via initial metal-catalysed opening of the cyclopropane moiety, thus offering a threecarbon component for cycloaddition with unsaturated molecules.^{1,2} Initial works have shown that palladium(0)and nickel(0)-catalysed activation of methylenecyclopropanes leads to the formation of alkylidenecyclopentanes^{3,4} or 5-membered heterocycles.^{5,6} Methylenecyclopropanes are now offering applications for hydrocarbonation,^{7,8} cobalt-catalysed carbonylation⁹ and hydroamination.^{10,11} There is a renaissance of alkylidenecyclopropanes in synthesis via their skeleton rearrangements to build small cycles,¹² the formation of alkylidene cyclopentanones via nickel(0)-catalysed cycloaddition with alkenyl metal carbenes,¹³ and especially their rearrangement into cyclobutenes catalysed by palladium(II)¹⁴ or PtCl₂.¹⁵

The above recent applications motivate the search for easy functional methylenecyclopropane syntheses. Simple methylenecyclopropanes can be prepared by two main routes.¹ The first one involves the cyclopropane ring formation by carbene addition to unsaturated compounds such as allenes and olefins,¹⁶ or by elimination reactions.¹⁷ The second route involves the synthesis of methylenecyclopropanes from cyclopropane substrates, with subsequent formation of a double bond,¹⁸ including double bond shift reactions¹⁹ and Wittig olefination.²⁰

Recently, the selective transformation of enynes into alkenylbicyclo[3.1.0]hexane derivatives has been promoted by ruthenium(II) catalyst on reaction with diazoalkanes.^{21,22} We then reasoned that such a reaction could of-

SYNLETT 2008, No. 2, pp 0193–0196 Advanced online publication: 04.01.2008 DOI: 10.1055/s-2008-1032015; Art ID: G36007ST © Georg Thieme Verlag Stuttgart · New York fer an entry to bicyclic alkylidenecyclopropanes I by activation of allenynes on the condition that the possible envne metathesis product (II) formation²³ could be inhibited (Scheme 1). However, the catalytic transformation of allenynes raises questions about the regioselectivity of initial interaction of allene C=C bond with a carbene Ru=C bond that can not be predicted. The reaction of allenes with electrophilic alkenes promoted bv RuCl(cod)Cp complex has shown that the internal double bond is involved in the oxidative coupling,²⁴ whereas RuCl(cod)Cp*, with sterically hindered allenylboronates, promoted the [2+2] cycloaddition of only the terminal allene C=CH₂ bond.²⁵

Herein we report that the RuCl(cod)Cp* catalyst precursor in the presence of N₂CHSiMe₃ does not promote the coupling with terminal allene bond, but the regioselective transformation of allenynes into the new alkylidenebicyclo[3.1.0]hexane derivatives of type I containing an adjacent Z-alkenyl group. From the synthetic point of view, the products I are of high interest due to the reactivity of the cyclopropane ring which is expected to be enhanced by simultaneous substitution with alkylidene and alkenyl groups.

The reaction of allenyne **1a** with N₂CHSiMe₃ (1.1 equiv) in Et₂O with RuCl(cod)Cp* (8 mol%) for one hour at room temperature led to 85% conversion of **1a** and to the formation of **2a**, isolated in 52% yield (Table 1). The allenynes **1b–d**, bearing a nitrogen linkage with N₂CHSiMe₃ (1.1 equiv, 2 M in Et₂O), reacted with RuCl(cod)Cp* (8 mol%) in Et₂O at room temperature and led to products **2b–d**, isolated after purification by silica gel chromatography (Table 1).²⁶

Whereas **1a** reached 85% conversion after one hour, the conversion of **1b** and **1c** containing bulkier R¹ and R² groups was complete only after 19 hours and 10 hours and the corresponding products **2b** (two isomers, 55:45) and **2c** were obtained in 71% and 85% isolated yields, respectively. However, **1d** reached 95% conversion after six hours, though **2d** was isolated in only 40% yield.²⁶ For all derivatives **2a–d** the *Z*-configuration of the alkenyl group was observed. Thus, this reaction shows high regioselectivity of the interaction of the allene internal C=C bond with the catalyst.

6

95

40

The allenynes **3** containing the dimethylallene function and an aryl group at the alkyne C(1) [**3a** (Ar = Ph), **3b** (Ar = p-MeOC₆H₄)] reacted as previously for 16 hours at room temperature.²⁶ The alkenyl alkylidene bicyclo[3.1.0]hexane derivatives were formed in modest conversion and yield for **4a** (35%) (Scheme 2). At room temperature **3b** gave a convenient conversion (76%) and isolated yield (56%) of **4b**.

4b Ar = 4-MeOC₆H₄ 56% (76% conv.)

Scheme 2

d

-(CH₂)₅-

Under similar conditions the allenyne **5** with a carbon bridge between the allene and yne functions led to compound **6** in 52% yield (Scheme 3).²⁶

On the basis of the above results, a catalytic cycle can be proposed (Scheme 4).

(a) The generation of the $[Cp^*(Cl)Ru=CHSiMe_3]$ moiety and its [2+2] cycloaddition with the alkyne bond is expected to afford the intermediate **A**. Simple models show that steric interactions allow this [2+2] addition to take place only with *anti* position of the Cp* and SiMe₃ groups.

(b) The opening of the ruthenacyclobutene **A** can then afford intermediate **B**. The $\mathbf{A} \rightarrow \mathbf{B}$ transformation leads to the *Z* configuration of the alkenyl group. This stereoselectivity may result from intramolecular Cl–SiMe₃ bond interaction in the intermediate **A**.

(c) The trapping of the allene internal C=C bond by the Ru=C bond and [2+2] addition is expected to lead to the metallacyclobutane **C**.

(d) The last step leads to the cyclopropane formation thus affording the alkylidene bicyclo[3.1.0]hexane derivative. Indeed, DFT calculations show that the $[Ru(Cl)(Cp^*)]$ unit, inside a metallacyclobutane moiety, with an adjacent vinyl group, favours reductive elimination rather than a metathesis process (retro-[2+2] addition),²² by the initial coordination of the vinyl group leading to the alkyl allyl ruthenium intermediate of type **D**.

The above results show a novel access to alkylidenebicyclo[3.1.0]hexanes with a neighbouring Z-alkenyl group. It appears to be the most direct route to bicyclic compounds containing a reactive alkylidenecyclopropane unit. The formed molecules offer potential for catalytic access to 5to 8-membered cycles enhanced by the simultaneous presence of a vinyl cyclopropyl unit.²⁷ The described reaction also demonstrates that the Cp*(Cl)Ru moiety, inside a metallacyclobutane intermediate, resulting from Ru=C and C=C bond addition, favours reductive elimination and inhibits retro-[2+2] addition such as an alkene metathesis process. This phenomenon deserves to be explored and is expected to give a new life to ruthenium carbenes in catalysis.

Acknowledgment

The authors are grateful to Dr. T. Matsuda and S. Kadowaki for discussions and providing allenynes, CNRS and Ministère de la recherche for support, the latter for a PhD grant to C.V., the European Union through network IDECAT and the Institut Universitaire de France for membership (P.H.D.).

References and Notes

- (1) Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589.
- (2) Nakamura, I.; Yamamoto, Y. *Adv. Synth. Catal.* **2002**, *344*, 111.
- (3) (a) Noyori, R.; Odagi, T.; Takaya, H. J. Am. Chem. Soc. 1970, 92, 5780. (b) Binger, P.; Wedemann, P. Tetrahedron Lett. 1983, 24, 5847. (c) Binger, P.; Doyle, M. J.; Benn, R. Chem. Ber. 1983, 116, 1. (d) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 1. (e) Yamago, S.; Nakamura, E. J. Chem. Soc., Chem. Commun. 1988, 1112.
- (4) (a) Lautens, M.; Ren, Y.; Delanghe, P. H. M. J. Am. Chem. Soc. 1994, 116, 8821. (b) Corlay, H.; Lewis, R. T.; Motherwell, W. B.; Shipman, M. Tetrahedron 1995, 51, 3303. (c) De Meijere, A.; Nüske, H.; Es-Sayed, M.; Labahn, T.; Schroen, M.; Bräse, S. Angew. Chem. Int. Ed. 1999, 38, 3669. (d) Nüske, H.; Notlemeyer, M.; De Meijere, A. Angew. Chem. Int. Ed. 2001, 40, 3411.
- (5) Binger, P.; Freund, A.; Wedemann, P. *Tetrahedron* 1989, 45, 2887.
- (6) (a) Binger, P.; Weintz, H.-J. *Chem. Ber.* **1984**, *117*, 654.
 (b) Oh, B.-H.; Nakamura, I.; Saito, S.; Yamamoto, Y. *Tetrahedron Lett.* **2001**, *42*, 6203. (c) Murakami, M.; Ishida, N.; Miura, T. *Chem. Commun.* **2006**, 643.
- (7) Itazaki, M.; Nishihara, Y.; Takimoto, H.; Yoda, C.; Osakada, K. J. Mol. Catal. A: Chem. 2005, 241, 65.
- (8) Tsukada, N.; Shibuya, A.; Nakamura, I.; Kitahara, H.; Yamamoto, Y. *Tetrahedron* **1999**, *55*, 8833.
- (9) Kurahashi, T.; De Meijere, A. Angew. Chem. Int. Ed. 2005, 44, 7881.
- (10) (a) Nakamura, I.; Itagaki, H.; Yamamoto, Y. J. Org. Chem. 1998, 63, 6458. (b) Yamamoto, T.; Sano, K.; Yamamoto, A. Chem. Lett. 1982, 907. (c) Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371.
- (11) Shi, M.; Liu, L.-P.; Tang, J. Org. Lett. 2006, 8, 4043.
- (12) Lian, J.-J.; Odedra, A.; Wu, C.-J.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 4186.
- (13) Kamikawa, K.; Shimizu, Y.; Takemoto, S.; Matsuzaka, H. Org. Lett. 2006, 8, 4011.
- (14) Shi, M.; Liu, L.-P.; Tang, J. J. Am. Chem. Soc. 2006, 128, 7430.
- (15) Fürstner, A.; Aïssa, C. J. Am. Chem. Soc. 2006, 128, 6306.
- (16) (a) Stang, P. J. *Chem. Rev.* **1978**, *78*, 383; and cited references. (b) Gajewski, J. J.; Paul, G. C.; Chang, M. J.; Gortva, A. M. J. Am. Chem. Soc. **1994**, *116*, 5150.
- (17) (a) Köster, R.; Arora, S.; Binger, P. Justus Liebigs Ann. Chem. 1973, 1219. (b) Muthuramu, K.; Ramamurthy, V. J. Chem. Soc., Chem. Commun. 1980, 243.
- (18) (a) Dolbier, W. R. Jr.; Seabury, M.; Daly, D.; Smart, B. E. J. Org. Chem. 1986, 51, 974. (b) Loosli, T.; Borer, M.; Kulakowska, I.; Minger, A.; Neuenschwander, M.; Engel, P. Helv. Chim. Acta 1995, 78, 1144; and cited references.
- (19) (a) Rousseau, G.; Le Percher, P.; Conia, J. M. *Tetrahedron Lett.* **1977**, 45. (b) Wessjohann, L.; Giller, K.; Zuck, B.; Skattebal, L.; De Meijere, A. *J. Org. Chem.* **1993**, *58*, 6442.
 (c) Padwa, A.; Wannamaker, M. W. *Tetrahedron* **1991**, *47*, 6139. (d) Stolle, A.; Ollivier, J.; Piras, P. P.; Salaün, J.; De Meijere, A. *J. Am. Chem. Soc.* **1992**, *114*, 4051.

(20) (a) Bestmann, H.-J.; Denzel, T. *Tetrahedron Lett.* 1966, 3591. (b) Schweizer, E. E.; Thompson, J. G. *J. Chem. Soc., Chem. Commun.* 1966, 666. (c) Stafford, J. A.; McMurry, J. E. *Tetrahedron Lett.* 1988, 29, 2531. (d) Maercker, A.; Daub, V. E. E. *Tetrahedron* 1994, *50*, 2439.

195

- (21) Monnier, F.; Castillo, D.; Dérien, S.; Toupet, L.; Dixneuf, P. H. Angew. Chem. Int. Ed. **2003**, 42, 5474.
- (22) Monnier, F.; Vovard-Le Bray, C.; Castillo, D.; Aubert, V.; Dérien, S.; Dixneuf, P. H.; Toupet, L.; Ienco, A.; Mealli, C. *J. Am. Chem. Soc.* **2007**, *129*, 6037.
- (23) Murakami, M.; Kadowaki, S.; Matsuda, T. Org. Lett. 2005, 7, 3953.
- (24) (a) Trost, B. M.; Pinkerton, A. B. J. Am. Chem. Soc. 1999, 121, 4068. (b) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466.
- (25) Bustelo, E.; Guerot, C.; Hercouet, A.; Carboni, B.; Toupet, L.; Dixneuf, P. H. J. Am. Chem. Soc. 2005, 127, 11582.
- (26) Low isolated product yields were obtained only when the reaction was performed with a small substrate quantity (0.1 mmol) due to inefficient extraction techniques for small quantities; for example, for **1c** 40% and 85% isolated yields were obtained from 0.1 mmol and 0.3 mmol, respectively. **Typical Procedure for the Catalytic Reaction**: In a Schlenk tube under an inert atmosphere, to a solution of the allenyne in degassed Et_2O (1.5 mL) was added the (trimethylsilyl)diazomethane solution (2.0 M; 1.1 equiv) in Et_2O . Next, the precatalyst RuCl(cod)Cp* (8 mol%) was introduced. The mixture was stirred at r.t. Reaction completion was monitored using TLC or ¹H NMR techniques. The products were obtained after purification by silica gel chromatography with an Et_2O -pentane eluting mixture.

Data for compounds 2a-d, 4a,b, and 6:

Compound **2a**: ¹H NMR (300.13 MHz, CDCl₃): $\delta = 0.12$ (s, 9 H, SiMe₃), 1.68 (s, 3 H, Me), 1.69 (s, 3 H, Me), 1.95 (m, 1 H, CH), 2.45 (s, 3 H, Me), 3.26 (dd, J = 4.1, 9.4 Hz, 1 H, NCH₂), 3.27 (d, J = 9.0 Hz, 1 H, NCH₂), 3.64 (d, J = 9.4 Hz, 1 H, NCH₂), 3.80 (d, J = 9.1 Hz, 1 H, NCH₂), 5.49 (d, J = 15.6 Hz, 1 H, =CHSiMe₃), 6.02 (d, J = 15.6 Hz, 1 H, CH=), 7.32 (d, J = 7.8 Hz, 2 H, Ph), 7.67 (d, J = 8.2 Hz, 2 H, Ph). ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 145.1, 143.3, 133.7, 129.5, 129.4, 127.6, 127.5, 122.3, 53.1, 50.0, 35.9, 29.9, 22.2, 21.6, 21.5, 0.8. HRMS:$ *m/z*calcd for C₂₀H₂₉NO₂SiS: 375.1688; found: 375.1684.

Compound **2b** (two isomers, 55:45): Major isomer: ¹H NMR $(300.08 \text{ MHz}, \text{CDCl}_3): \delta = 0.11 (s, 9 \text{ H}, \text{SiMe}_3), 0.97 (t, J =$ 7.7 Hz, 3 H, Me), 1.70 (s, 3 H, Me), 1.91 (m, 1 H, CH), 1.99 (m, 2 H, CH₂), 2.45 (s, 3 H, Me), 3.24 (m, 1 H, NCH₂), 3.28 $(d, J = 9.0 \text{ Hz}, 1 \text{ H}, \text{NCH}_2), 3.65 (d, J = 9.2 \text{ Hz}, 1 \text{ H}, \text{NCH}_2),$ 3.75 (d, J = 9.0 Hz, 1 H, NCH₂), 5.47 (d, J = 15.6 Hz, 1 H, =CHSiMe₃), 6.01 (d, J = 15.6 Hz, 1 H, CH=), 7.32 (d, J = 7.9 Hz, 2 H, Ph), 7.68 (d, J = 8.2 Hz, 2 H, Ph). ¹³C NMR (75.47 MHz, CDCl₃): δ = 145.4, 143.3, 133.8, 133.0, 129.5, 129.2, 127.6, 121.2, 53.1, 50.5, 36.3, 30.5, 29.2, 21.5, 20.1, 12.0, 0.8. Minor isomer: ¹H NMR (300.08 MHz, CDCl₃): $\delta = 0.13$ $(s, 9 H, SiMe_3)$, 1.02 (t, J = 7.4 Hz, 3 H, Me), 1.62 (s, 3 H, Me)Me), 1.99 (m, 2 H, CH₂), 2.01 (m, 1 H, CH), 2.45 (s, 3 H, Me), 3.24 (m, 1 H, NCH₂), 3.28 (d, J = 9.0 Hz, 1 H, NCH₂), 3.63 (d, J = 9.1 Hz, 1 H, NCH₂), 3.81 (d, J = 8.9 Hz, 1 H, NCH₂), 5.49 (d, J = 15.6 Hz, 1 H, =CHSiMe₃), 6.00 (d, J = 15.5 Hz, 1 H, CH=), 7.32 (d, J = 7.9 Hz, 2 H, Ph), 7.68 (d, J = 8.2 Hz, 2 H, Ph). ¹³C NMR (75.47 MHz, CDCl₃): $\delta =$ 145.8, 143.3, 133.2, 133.0, 129.5, 128.9, 127.6, 121.5, 53.4, 50.0, 36.3, 29.4, 28.7, 21.5, 20.5, 12.4, 0.8. HRMS: m/z calcd for C₂₁H₃₁NO₂SiS: 389.1845; found: 389.1854. Compound **2c**: ¹H NMR (200.13 MHz, CDCl₃): $\delta = 0.11$ (s, 9 H, SiMe₃), 1.06 (m, 12 H, Me), 1.94 (m, 1 H, CH), 2.38 (m,

2 H, CH), 2.44 (s, 3 H, Me), 3.19 (dd, J = 4.1, 8.8 Hz, 1 H, NCH_2), 3.25 (d, J = 8.3 Hz, 1 H, NCH_2), 3.64 (d, J = 8.8 Hz, 1 H, NCH₂), 3.72 (d, J = 8.5 Hz, 1 H, NCH₂), 5.45 (d, J = 15.7 Hz, 1 H, =CHSiMe₃), 5.94 (d, J = 15.7 Hz, 1 H, CH=), 7.32 (d, J = 7.7 Hz, 2 H, Ph), 7.70 (d, J = 8.1 Hz, 2 H, Ph). ¹³C NMR (75.47 MHz, CDCl₃): δ = 148.3, 146.9, 143.4, 133.7, 129.5, 127.7, 127.6, 119.0, 53.1, 50.5, 33.8, 33.6, 32.9, 28.5, 22.9, 22.6, 22.5, 22.2, 21.5, 1.0. HRMS: m/z calcd for C₂₄H₃₇NO₂SiS: 431.2314; found: 431.2304. Compound **2d**: ¹H NMR (300.08 MHz, CDCl₃): $\delta = 0.12$ (s, 9 H, SiMe₃), 1.50 (m, 6 H, CH₂), 1.98 (m, 1 H, CH), 2.07 (m, $4 \text{ H}, \text{CH}_2$, 2.45 (s, 3 H, Me), 3.23 (dd, J = 4.1, 13.2 Hz, 1 H,NCH₂), 3.26 (d, J = 8.6 Hz, 1 H, NCH₂), 3.61 (d, J = 9.2 Hz, 1 H, NCH₂), 3.76 (d, J = 8.8 Hz, 1 H, NCH₂), 5.48 (d, J = $15.6 \text{ Hz}, 1 \text{ H}, = \text{CHSiMe}_3), 6.04 (d, J = 15.5 \text{ Hz}, 1 \text{ H}, \text{CH}=),$ 7.33 (d, *J* = 7.9 Hz, 2 H, Ph), 7.68 (d, *J* = 8.2 Hz, 2 H, Ph). ¹³C NMR (75.47 MHz, CDCl₃): δ = 145.5, 143.3, 135.3, 133.8, 129.6, 129.1, 127.6, 119.1, 53.2, 50.1, 47.5, 35.4, 33.2, 32.8, 29.3, 27.7, 26.4, 21.5, 0.8. HRMS: *m/z* calcd for C₂₃H₃₃NO₂SiS: 415.2001; found: 415.1994. Compound 4a: ¹H NMR (200.13 MHz, CDCl₃): $\delta = 0.13$ (s, 9 H, SiMe₃), 1.20 (s, 3 H, Me), 1.53 (s, 3 H, Me), 1.94 (m, 1 H, CH), 2.44 (s, 3 H, Me), 3.46 (dd, *J* = 4.1, 9.7 Hz, 1 H, NCH_2), 3.48 (d, J = 9.2 Hz, 1 H, NCH_2), 3.60 (d, J = 9.6 Hz, $1 \text{ H}, \text{NCH}_2$, $4.06 \text{ (d}, J = 9.2 \text{ Hz}, 1 \text{ H}, \text{NCH}_2$), 5.60 (s, 1 H, H)=CHSiMe₃), 7.07 (m, 2 H, Ph), 7.31 (m, 5 H, Ph + Ts), 7.78 (d, J = 8.2 Hz, 2 H, Ts). ¹³C NMR (75.47 MHz, CDCl₃): $\delta =$ 155.2, 146.6, 143.2, 134.3, 132.5, 129.5, 127.8, 127.4,

LETTER

126.8, 126.7, 120.3, 55.4, 50.3, 38.4, 28.0, 22.7, 21.5, 20.9, 0.8. HRMS: m/z calcd for C₂₆H₃₃NO₂SiS: 451.2001; found: 451.2008.

Compound **4b**: ¹H NMR (200.13 MHz, CDCl₃): $\delta = 0.13$ (s, 9 H, SiMe₃), 1.24 (s, 3 H, Me), 1.54 (s, 3 H, Me), 1.95 (m, 1 H, CH), 2.44 (s, 3 H, Me), 3.44 (dd, J = 4.1, 9.5 Hz, 1 H, NCH₂), 3.46 (d, J = 9.5 Hz, 1 H, NCH₂), 3.60 (d, J = 9.1 Hz, 1 H, NCH₂), 3.79 (s, 3 H, OMe), 4.04 (d, J = 9.1 Hz, 1 H, NCH₂), 5.61 (s, 1 H, =CHSiMe₃), 6.70 (m, 3 H, p- C_6H_4OMe), 7.29 (m, 3 H, p- C_6H_4OMe + Ph), 7.67 (d, J = 8.2 Hz, 2 H, Ph). ¹³C NMR (75.47 MHz, CDCl₃): δ = 158.2, 154.2, 147.2, 142.7, 142.4, 131.5, 128.7, 126.6, 118.5, 54.6, 54.4, 49.5, 37.4, 27.2, 20.7, 20.2, 19.5, 0.0. HRMS: m/z calcd for C₂₇H₃₅NO₃SiS: 481.2107; found: 481.2101. Compound 6: ¹H NMR (300.13 MHz, CDCl₃): $\delta = 0.20$ (s, 9 H, SiMe₃), 1.67 (s, 3 H, Me), 1.71 (s, 3 H, Me), 1.89 (m, 1 H, CH), 2.35 (dd, J = 4.6, 12.6 Hz, 1 H, NCH₂), 2.50 (d, J = $12.3 \text{ Hz}, 1 \text{ H}, \text{NCH}_2$, $2.81 (d, J = 12.6 \text{ Hz}, 1 \text{ H}, \text{NCH}_2$), 3.03 $(d, J = 12.3 \text{ Hz}, 1 \text{ H}, \text{NCH}_2), 3.64 (s, 3 \text{ H}, \text{OMe}), 3.70 (s, 3 \text{ H})$ H, OMe), 5.44 (d, J = 15.5 Hz, 1 H, =CHSiMe₃), 6.11 (d, J =15.5 Hz, 1 H, CH=). ¹³C NMR (75.47 MHz, CDCl₃): δ = 172.0, 171.2, 148.4, 128.1, 127.1, 125.0, 59.4, 52.9, 52.6, 39.7, 36.1, 35.9, 29.8, 22.2, 21.5, 1.20. HRMS: m/z calcd for C₁₈H₂₈O₄Si: 336.1757; found: 336.1750.

(27) (a) Wegner, H. A.; De Meijere, A.; Wender, P. A. J. Am. Chem. Soc. 2005, 127, 6530. (b) Wender, P. A.; Haustedt, L. O.; Lim, J.; Love, J. A.; Williams, T. J.; Yoon, J.-Y. J. Am. Chem. Soc. 2006, 128, 6302. Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.