Organic & Biomolecular Chemistry

www.rsc.org/obc

Cite this: Org. Biomol. Chem., 2011, 9, 7057

Dynamic Article Links 🕟

PAPER

Claisen rearrangements of equilibrating allylic azides[†]

Donald Craig,*a John W. Harvey,^b Alexander G. O'Brien^a and Andrew J. P. White^c

Received 13th April 2011, Accepted 30th June 2011 DOI: 10.1039/c1ob05972f

Equilibrating mixtures of allylic azide-containing allylic alcohols or allylic 2-tolylsulfonylacetic esters undergo Johnson–Claisen or Ireland–Claisen rearrangement reactions to give unsaturated γ -azidoesters and -acids, respectively. Decarboxylation of the acids under basic conditions gives azidosulfones, with moderate to high diastereoselectivity.

Introduction

Allylic azides have seen limited use in synthesis,^{1,2} because they exist as equilibrating mixtures of regioisomers,³ which interconvert *via* [3,3]-sigmatropic rearrangement (Winstein rearrangement).⁴⁻⁶ It occurred to us that Claisen rearrangement of allylic azide-containing substrates would take place regardless of the position of equilibrium if the isomers unreactive in the sigmatropic process were inert with respect to competing reaction pathways.⁷ Thus, ketene acetals **1** and **2**, generated from allylic alcohols under Johnson–Claisen conditions, would react to give esters **3**. We were interested additionally in any 1,2-asymmetric induction associated with C–C bond formation (Scheme 1).⁸

Scheme 1 Proposed tandem rearrangement.

Results and discussion

Allylic azidoalcohol substrate mixtures **5** and **6** were prepared by reaction of vinylic oxiranes **4**⁹ with sodium azide (Scheme 2).† That **5** and **6** were formed by initial attack on **4** by azide by an $S_N 2$ mechanism, rather than in an $S_N 2'$ sense, followed by equilibration was suggested by the observation that only allylic nitrile **7** (together with hydrolysis product **8**¹⁰) was formed upon analogous treatment of **4a** with potassium cyanide (Scheme 2).¹¹

Scheme 2 Preparation of allylic azidoalcohols 5/6.

Mixtures of **5** and **6** were heated in the presence of triethyl orthoacetate (as solvent) and sub-stoichiometric propionic acid to give unsaturated γ -azidoesters **9** (Scheme 3, Table 1). Substrates bearing straight-chain and branched alkyl R groups reacted in high yield, although longer reaction times were required for the more sterically demanding congeners. Where R' = Me (Table 1, entries b–d), moderate *syn* stereoselectivity was observed. This was assigned by NOESY-NMR of the derived lactam **10** (Scheme 4), and the

Scheme 3 Johnson–Claisen rearrangement reactions of 5/6.

^aDepartment of Chemistry, Imperial College London, South Kensington Campus, London, UK, SW7 2AZ. E-mail: d.craig@imperial.ac.uk; Fax: +44 (0)20 7594 5804; Tel: +44 (0)20 7594 5771

^bDiscovery Chemistry, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent, UK, CT13 9NJ

^cChemical Crystallography Laboratory, Imperial College London, South Kensington Campus, London, UK, SW7 2AZ

[†] Electronic supplementary information (ESI) available: Full experimental procedures and characterisation of compounds **4–12** and **14**. CCDC reference number 813338. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1ob05972f

Table 1 Johnson-Claisen rearrangement reactions of 5/6

Entry	R	R′	Ratio 5:6	t (h)	Yield (%)	Ratio syn-: anti- 9 ª
a	nC_5H_{11}	Н	73:27	6	99	50:50
b	nC_5H_{11}	Me	61:39	24	72	59:41
с	Me	Me	64:36	12	86	60:40
d	cHex	Me	63:37	26	94	63:37
e	Ph	Н	100:0	48	0	
f	2-Pyridyl	Me	100:0	48	<4	(77:23)
g	Me	Ph	0:100 ^b	24	75	50:50

^a Determined by ¹H NMR analysis; ^b 6g was present as a 3 : 1 E : Z mixture

Me polystyrene-PPh THF/H₂O HN m/w, 120 °C, 30 min 87% 10 Ň₃ 9c dr = 60 : 40 dr = 60 : 40 [3,3] Ñ3 ÓEt syn-9 favoured 2 [3.3] EtC Ň3 anti-9 disfavoured

Scheme 4 Assignment of structures 9 and proposed origin of selectivity.

selectivities of the other rearrangements were inferred from this result. Where R or R' was an aryl group (Table 1, entries e-g), the allylic azidoalcohols 5e, 5f and 6g existed as single isomers, with the olefin in conjugation with the aryl group.¹²⁻¹⁴ When R = Ph, the substrate existed solely as the conjugated allylic isomer 5e, and no reaction was observed (Table 1, entry e). In the reaction of the less aromatic¹⁵ pyridine 5f, small amounts of impure 9f were formed after extended reaction times (Table 1, entry f).¹⁶ In contrast, the allylic azidoalcohol 6g reacted efficiently, reflecting the inferred absence in the equilibrium mixture of the unreactive, less highly conjugated ketene acetal corresponding to 5g. Selectivity for the 3,4-syn products where $\mathbf{R'} = \mathbf{Me}$ may result from unfavourable 1,3diaxial interactions in the transition states leading to the 3,4-anti isomers. In this model, in line with our previous studies,^{8h} internal approach of the ketene acetal takes place along a trajectory in proximity to the σ^*_{C-N} orbital (Scheme 4).

Our attention turned to the modest stereoselectivities observed for the rearrangement reactions described above. We had shown previously that analogous Z-allylic thioethers reacted in Johnson– Claisen rearrangements with higher *syn* stereoselectivity than the *E*-isomers.^{8h} However, Z-allylic azides could isomerise to the more reactive¹⁷ *E*-isomers by [3,3]-sigmatropic rearrangement, and therefore it was considered that changing olefin geometry would not result in an increase in stereoselectivity. However, it was anticipated that increased steric bulk at the terminal position of the ketene acetal would increase the diastereofacial selectivity

Table 2 Prepar	ation and	isomer	ratios	of esters	11/12
----------------	-----------	--------	--------	-----------	-------

Entry	R	R′	Ratio 5:6 ^{<i>a</i>}	Yield (%)	Ratio 11:12 ^a
a	nC_5H_{11}	Н	73:27	99	58:42
b	nC_5H_{11}	Me	61:39	69	32:68
с	Me	Me	64:36	97	30:70
d	cHex	Me	63:37	92	36:65
e	Ph	Н	100:0	97	100:0
f	2-Pyridyl	Me	100:0	52	100:0
g	Me	Ph	0:100	75	0:100
^a Deter	mined by ¹ H	NMR a	nalysis		

of attack on the allylic moiety.^{8a} The recently developed¹⁸ decarboxylative variant (dCr) of the Ireland–Claisen rearrangement reaction of α -tosyl esters was particularly attractive for this study, since the decarboxylation step obviated the incorporation of a third stereocentre. The required dCr substrates **11/12** were prepared by treatment of azidoalcohols **5/6** with tosylacetic acid–DCC–DMAP (Scheme 5, Table 2). Interestingly, in cases where the allylic azide could contain a trisubstituted olefin (entries b–d) inversion of the ratio to favour the **1**,4-azidoesters **12** occurred. This effect was attenuated in substrate **11/12a**, where both isomers possess disubstituted olefins, and substrates **e** and **f** possessing conjugating aryl groups existed solely as isomers **11**. The decrease in the proportion of vicinal isomers may be a consequence of the removal upon esterification of the possibility of hydrogen-bonding between the azide and alcohol–OH groups.^{19,20}

Scheme 5 Formation of ester substrates 11/12 from alcohols 5/6.

Attempted dCr reactions of 11/12 using the BSA-KOAc conditions¹⁸ gave low yields of 14.²¹ Carrying out the rearrangement and decarboxylation as two discrete steps improved the yield. Thus, microwave irradiation of 11/12 in the presence of BSA-TEA afforded acids 13. After removal of residual BSA and TEA, decarboxylation with sodium hydrogencarbonate-DMF gave 14. With the exception of 11/12f, all esters 11/12 underwent rearrangement under these conditions (Scheme 6, Table 3). More hindered substrates required increased amounts of BSA and TEA to react. In contrast to the unreactive phenyl-bearing azidoalcohol 5e, the single-regioisomer azidoester 11e underwent dCr reaction to give 14e, albeit in relatively low yield. Substrate 11f decomposed under these conditions, possibly triggered by BSAmediated pyridine N-silylation. X-Ray crystallographic analysis of syn-14a confirmed its structure (Fig. 1);22 syn stereochemistry for the other major products was inferred from this result. In each case, the predominance of the syn product was more pronounced than that observed for Johnson-Claisen rearrangement of the corresponding allylic azidoalcohols.

Scheme 6 Formation of azidosulfones 14.

 Table 3
 Claisen rearrangement and decarboxylation of esters 11/12

Entry	R	R′	Conditions ^a	t (min)	Yield (%)	Ratio syn- : anti-14 ^b
a	nC_5H_{11}	Н	А	15	86	84:16
b	nC_5H_{11}	Me	В	30	68	68:32
с	Me	Me	А	30	82	91:9
d	cHex	Me	В	30	44	82:18
e	Ph	Н	В	90	22	75:25
f	2-Pyridyl	Me	А	30	0	
g	Me	Ph	А	40	32	73:27

^{*a*} Conditions A: BSA (3.0 equiv), TEA (1.2 equiv); conditions B: BSA (5.0 equiv), TEA (2.0 equiv). ^{*b*} Determined by ¹H NMR analysis

Fig. 1 The molecular structure of syn-14a.

Conclusions

In conclusion, equilibrating mixtures of allylic azides participate effectively in Claisen rearrangements, in most cases regardless of the position of equilibrium. Diastereoselectivity can be achieved by selection of the appropriate olefin substitution pattern and rearrangement type.

Experimental

Procedures for the preparation of 4a–g, 7, 8, 10,and characterisation data for all compounds are detailed in the ESI.† Representative procedures for the preparation of allylic azidoalcohols 5a/6a, ester 9, esters 11a/12a and homoallylic sulfone 14a are given below.

(E)-2-Azidonon-3-en-1-ol (5a) and (E)-4-azidonon-2-en-1-ol (6a)

To a solution of **4a** (31.5 mmol, 1.0 equiv) in acetone (45 mL) and water (19 mL) was added sodium azide (94.5 mmol, 3.0 equiv) in one portion. After heating the resulting solution under reflux

This journal is © The Royal Society of Chemistry 2011

for 8 h, the reaction mixture was cooled to rt and NH₄Cl (5.0 g) was added. Water (50 mL) was added and the reaction mixture was concentrated under reduced pressure to remove acetone. The remaining aqueous layer was extracted with dichloromethane ($3 \times 100 \text{ mL}$). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure to afford a 73:27 mixture of (*E*)-2-azidonon-3-en-1-ol **5a** and (*E*)-4-azidonon-2-en-1-ol **6a** respectively (4.04 g, 70%) as a colourless oil after purification over silica gel (30% TBME/petrol).

Data for the mixture: v_{max} (film) 3352, 2101, 1667, 1462, 1240, 1072 cm⁻¹; m/z (CI) 201 [MNH₄]⁺, 191, 158, 126 (Found: [MNH₄]⁺, 201.1715. C₉H₁₇N₃O requires [MNH₄]⁺, 201.1715.

NMR data for **5a**: $\delta_{\rm H}$ (500 MHz, CDCl₃) 5.85 (1H, dt, *J* 15.5, 6.5, H-4), 5.40 (1H, ddt, *J* 15.5, 8.0, 1.5, H-3), 4.03 (1H, dt, *J* 11.5, 5.0, H-2), [3.60 (1H, dd, *J* 11.5, 5.0) and 3.52 (1H, dd, *J* 11.5, 7.5), H-1], 2.09–2.11 (2H, m, H-5), 1.66 (2H, s (br), OH), 1.43–1.25 (12H, m, H-6,7.8), 0.89 (6H, t, *J* 7.0, H-9); $\delta_{\rm C}$ (101 MHz, CDCl₃) 138.2, 123.4, 66.3, 65.0, 32.3, 31.2, 28.7, 22.4, 14.0.

NMR data for **6a**: $\delta_{\rm H}$ (500 MHz, CDCl₃) 5.88 (1H, dt, *J* 15.0, 5.5, H-2), 5.66 (1H, ddt, *J* 15.5, 7.5, 1.5, H-3), 4.21 (2H, dd, *J* 5.5, 1.5, H-1), 3.85 (1H, dt, *J* 14.0, 7.5, H-4), 1.66 (2H, s (br), OH), 1.56–1.49 (2H, m, H-5), 1.43–1.25 (12H, m, H-6,7,8), 0.89 (6H, t, *J* 7.0, H-9); $\delta_{\rm C}$ (101 MHz, CDCl₃) 132.9, 128.9, 64.0, 62.6, 34.5, 31.4, 35.5, 22.5, 14.0.

Ethyl 4-azido-3-ethenylnonanoate (9a)

To a solution of a 73:27 mixture of allylic azides 5a and 6a respectively (100 mg, 0.546 mmol, 1.0 equiv) in triethyl orthoacetate (20.4 mmol, 13.0 equiv) was added propionic acid (0.314 mmol, 0.2 equiv) dropwise via syringe. After heating under reflux for 6 h, the reaction mixture was cooled to rt and concentrated under reduced pressure to afford ethyl 4-azido-3-ethenylnonanoate 9a (137 mg, 99%, 50:50 syn:anti mixture of diastereomers) as a colourless oil without further purification: v_{max} (film) 2102, 1736, 1641, 1465, 1257, 923 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) [5.74 (1H, ddd, J 17.0, 10.0, 4.0), and 5.65 (1H, ddd, J 17.0, 10.0, 4.0), syn+anti CHCH₂), 5.19–5.13 (4H, m, syn+anti CHCH₂), [4.14 (2H, q, J 7.5) and 4.15 (2H, q, J 7.5), syn+anti OCH₂], [3.84–3.43 (1H, m) and 3.26-3.06 (1H, m), syn+anti H-4], 2.77-2.69 (2H, m, syn+anti H-3), [2.56 (2H, dd, J 15.0, 5.0) and 2.41 (2H, dd, J 15.0, 8.0), syn+anti H-2], 1.62–1.32 (16H, m, syn+anti H-5,6,7,8), [1.27 (3H, t, J 7.5), and 1.26 (3H, t, J 7.5), syn+anti OCH₂CH₃], 0.91 (6H, t, J 6.0 syn+anti H-9); $\delta_{\rm C}$ (101 MHz, CDCl₃) 172.0 (C-1), [137.2 and 135.6, (CHCH₂)], [118.3 and 117.8, (CHCH₂)], [65.8 and 65.3, (C-4)], 60.5 (OCH₂), [44.9 and 44.5, (C-3)], [37.0 and 36.3, (C-2)], 32.2, 32.0, 31.5, 26.0, 25.8, 22.5, 14.2, 14.0; *m/z* (CI) 271 [MNH₄]⁺, 254 [MH]⁺, 226 (Found: [MH]⁺, 254.1858. C₁₃H₂₃N₃O₂ requires [MH]⁺, 254.1869).

(E)-2-Azidonon-3-enyl 2-tosylacetate (11a) and (E)-4-azidonon-2-enyl 2-tosylacetate (12a)

To a solution of a 73:27 mixture of allylic azides **5a** and **6a** respectively (1.00 g, 5.46 mmol, 1.0 equiv) in dichloromethane (10 mL) was added DMAP (0.546 mmol, 0.1 equiv), followed by a solution of DCC (6.01 mmol, 1.1 equiv) in dichloromethane (10 mL) at rt. The mixture was stirred for 5 min before addition of 2-*p*-toluenesulfonylacetic acid (1.29 g, 6.01 mmol, 1.1 equiv). After stirring the colourless suspension for 16 h, the reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure to afford a 58:42 mixture of the esters (*E*)-2-*azidonon-3-enyl 2-tosylacetate* **11a** and (*E*)-4-*azidonon-2-enyl 2-tosylacetate* **12a** (2.05 g, 99%) respectively as a colourless oil after purification over silica gel (25% ether/petrol).

Data for the mixture: v_{max} (film) 2932, 2099, 1747, 1598, 1455, 1330, 1152, 1085, 975, 814, 728, 646, cm⁻¹; $\delta_{\rm C}$ (126 MHz, CDCl₃) 162.2, 162.1, 138.7, 133.2, 129.9, 128.5, 125.9, 128.5, 125.9, 122.3, 67.1, 65.5, 63.5, 62.0, 60.8, 34.2, 32.2, 31.4, 31.2, 28.5, 25.4, 22.5, 22.4, 21.7, 14.0; *m/z* (CI) 397 [MNH₄]⁺, 352, 243 (Found: [MNH₄]⁺, 397.1926. C₁₈H₂₅N₃O₄S requires [MNH₄]⁺, 397.1910).

¹H-NMR data for **11a**: $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.85–7.81 (2H, m, *o*-Ts), 7.39–7.37 (2H, m, *m*-Ts), 5.82 (1H, dt, *J* 15.0, 7.0, H-4), 5.31 (1H, ddt, *J* 15.0, 7.0, 1.5, H-3), 4.62 (2H, d, *J* 5.0, H-1), 4.13 (2H, d, *J* 5.0, CH₂Ts), 4.10–3.90 (1H, m, H-2), 2.47 (3H, s, TsMe), 2.10–2.15 (2H, m, H-5), 1.57–1.28 (6H, m, H-6,7,8), 0.89 (3H, t, *J* 7.5, H-9).

¹H-NMR data for **12b**: $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.85–7.81 (2H, m, *o*-Ts), 7.39–7.37 (2H, m, *m*-Ts), 5.74–5.65 (2H, m, H-2,3), 4.62 (2H, d, *J* 5.0, H-1), 4.13 (2H, d, *J* 5.0, CH₂Ts), 3.82 (1H, dt, *J* 14.0, 7.0, H-4), 2.47 (3H, s, TsMe), 1.57–1.28 (8H, m, H-5,6,7,8), 0.89 (3H, t, *J* 7.5, H-9).

1-[(3-Azido-2-ethenyloctane)sulfonyl]-4-methylbenzene (14a)

To a solution of a 58:42 mixture of allylic azides 11a and 12a respectively (50 mg, 0.132 mmol, 1.0 equiv) in acetonitrile (1.0 M) was added N,O-bistrimethylsilylacetamide (0.396 mmol, 3.0 equiv) and TEA (0.158 mmol, 1.2 equiv) in a capped microwave vial. The mixture was heated by microwave at 160 °C until TLC showed consumption of the starting material. The reaction mixture was cooled to rt, quenched with aqueous HCl (2 M, 10 mL) and extracted with dichloromethane ($3 \times 10 \text{ mL}$). The combined organic extracts were passed though an SCX ion-exchange column (conditioned with 10% MeOH/dichloromethane) and concentrated under reduced pressure to afford the acid intermediate 13a without further purification. To solution of the crude acid (1.0 equiv) in DMF (1.0 M) was added sodium hydrogencarbonate (1.2 equiv) in a microwave vial. The mixture was heated by microwave at 160 °C for 35 min and cooled to rt. Water (10 mL) was added and the mixture was extracted with dichloromethane $(3 \times 10 \text{ mL})$. The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure to afford 1-[(3-azido-2-ethenyloctane)sulfonyl]-4-methylbenzene 14a (38 mg, 86%, 84:16 syn:anti mixture of diastereomers) as a white solid after purification over silica gel (2-10% ether/petrol). Repeated purification over silica gel (2-10% ether/petrol) followed by recrystallisation (EtOAc/petrol) afforded an analytical sample of syn-14a for crystallography studies and an analytical sample enriched in anti-14a.

Data for *syn*-**14a**: m.p 72–74 °C; v_{max} (film) 2902, 2100, 1456, 1142, 880, 771, 706, 670 cm⁻¹; δ_{H} (400 MHz, CDCl₃) 7.81 (2H, d, *J* 8.5, *o*-Ts), 7.39 (2H, d, *J* 8.5, *m*-Ts), 5.60 (1H, ddd, *J* 17.0, 10.0, 8.5, CHCH₂), 5.17 (1H, d, *J* 10.0, *trans*-CHCH₂), 5.12 (1H, d, *J* 17.0, *cis*-CHCH₂), 3.70 (1H, ddd, *J* 8.5, 5.5, 3.0, H-3), [3.40 (1H, ddd, *J* 14.0, 7.0) and 3.15 (1H, dd, *J* 14.0, 6.0), H-1], 2.90 (1H, dddd, *J* 12.5, 9.5, 6.0, 3.0, H-2), 2.48 (3H, s, TsMe), 1.62–1.31 (8H, m, H-4,5,6,7), 0.92 (3H, t, *J* 6.0, H-8); δ_{C} (101 MHz, CDCl₃) 144.9 (Ts), 136.9 (Ts), 133.7 (CHCH₂), 130.0 (*m*-Ts), 128.0 (*o*-Ts), 119.5 (CHCH₂), 64.3 (C-3), 58.1 (C-1), 42.5 (C-2), 32.2 (C-4), 31.5 (C-5), 25.8 (C-6), 22.5 (C-7), 21.7 (TsMe), 14.0 (C-8); *m*/*z* (CI) 353 [MNH₄]⁺, 310, 226, 174, 152; *m*/*z* (CI) 353 [MNH₄]⁺, 353.2020. C₁₇H₂₅N₃O₂S requires [MNH₄]⁺, 353.2011) (Found: C, 60.95; H, 7.47; N, 12.48. C₁₇H₂₅N₃O₂S requires C, 60.87; H, 7.51; N, 12.53).

NMR data for *anti*-14a: $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.79 (2H, d, J 8.0, *o*-Ts), 7.38 (2H, d, J 8.0, *m*-Ts), 5.68 (1H, ddd, J 17.5, 10.0, 8.5, CHCH₂), 5.17 (1H, d, J 10.0, *trans*-CHCH₂), 5.16 (1H, d, J 17.5, *cis*-CHCH₂), 3.41–3.36 (1H, m, H-3), [3.31 (1H, dd, J 14.5, 3.5) and 3.20 (1H, dd, J 14.5, 9.0), H-1], 2.80–2.74 (1H, m, H-2), 2.48 (3H, s, TsMe), 1.63–1.28 (8H, m, H-4,5,6,7), 0.91 (3H, t, J 7.0, H-8); $\delta_{\rm C}$ (101 MHz, CDCl₃) 144.4 (Ts), 135.9 (Ts), 135.5 (CHCH₂), 129.9 (*m*-Ts), 128.1 (*o*-Ts), 118.9 (CHCH₂), 65.8 (C-3), 56.9 (C-1), 43.0 (C-2), 31.6 (C-4), 31.4 (C-5), 25.3 (C-6), 22.4 (C-7), 21.7 (TsMe), 13.6 (C-8).

Acknowledgements

We thank EPSRC and Pfizer for support (supported DTA studentship to A.G.O.).

Notes and references

- 1 D. Askin, C. Angst and S. Danishefsky, J. Org. Chem., 1985, 50, 5005.
- 2 A. K. Feldman, B. Colasson, K. B. Sharpless and V. V. Fokin, J. Am. Chem. Soc., 2005, 127, 13444.
- 3 (a) A. Gagneux, S. Winstein and W. G. Young, J. Am. Chem. Soc., 1960, 82, 5956; (b) C. A. VanderWerf and V. L. Heasley, J. Org. Chem., 1966, 31, 3534.
- 4 A. Padwa and M. M. Sá, Tetrahedron Lett., 1997, 38, 5087.
- 5 For an example of rearrangement *via* an ionic transition state see: G. L. Closs and A. M. Harrison, *J. Org. Chem.*, 1972, **37**, 1051.
- 6 (a) B. M. Trost and S. R. Pulley, *Tetrahedron Lett.*, 1995, 36, 8737;
 (b) F. Klepper, E.-M. Jahn, V. Hickmann and T. Carell, *Angew. Chem.*, *Int. Ed.*, 2007, 46, 2325; (c) H. Guo and G. A. O'Doherty, *Org. Lett.*, 2006, 8, 1609; (d) S. Lauzon, F. Tremblay, D. Gagnon, C. Godbout, C. Chabot, C. Mercier-Shanks, S. Perreault, H. DeSève and C. Spino, *J. Org. Chem.*, 2008, 73, 6239.
- 7 In conceptually related processes the vinylic, rather than allylic portion of the ketene acetal is established by isomerisation: (a) K. Wang, C. J. Bungard and S. G. Nelson, Org. Lett., 2007, 9, 2325; (b) B. D. Stevens and S. G. Nelson, J. Org. Chem., 2005, 70, 4375; (c) B. D. Stevens, C. J. Bungard and S. G. Nelson, J. Org. Chem., 2006, 71, 6397; (d) K. Wang and S. G. Nelson, J. Am. Chem. Soc., 2006, 128, 4232; (e) H. B. Ammar, J. Le Nôtre, M. Salem, M. T. Kaddachi, L. Toupet, J.-L. Renaud, C. Bruneau and P. H. Dixneuf, Eur. J. Inorg. Chem., 2003, 4055; (f) C. C. Bausch and J. S. Johnson, J. Org. Chem., 2008, 73, 1575; (g) U. Kazmaier, Tetrahedron Lett., 1996, 37, 5351; (h) B. Schmidt, Synlett, 2004, 1541.
- 8 The syn product is typically formed when the ketene acetal bears a heteroatom-containing stereocentre at the 6' position: (a) J. K. Cha and S. C. Lewis, *Tetrahedron Lett.*, 1984, **25**, 5263; (b) T. Suzuki, E. Sato, S. Kamada, H. Tada, K. Unno and T. Kametani, *J. Chem. Soc.*, *Perkin Trans. 1*, 1986, 387; (c) S. Takano, K. Seijo and S. Hatakeyama, *Tetrahedron Lett.*, 1985, **26**, 865; (d) J. Mulzer and M. Shanyoor, *Tetrahedron Lett.*, 1993, **34**, 6545; (e) J. R. Hauske and S. M. Julin,

Tetrahedron Lett., 1993, **34**, 4909; (*f*) I. Fleming and M. S. Betson, *Org. Biomol. Chem.*, 2003, **1**, 4005; (*g*) A. R. Ellwood, A. J. Price Mortimer, D. A. Tocher and M. J. Porter, *Synlett*, 2008, 2199; (*h*) D. Craig, J. W. Harvey, A. G. O'Brien and A. J. P. White, *Chem. Commun.*, 2010, **46**, 6932.

- 9 M. Lautens, M. L. Maddess, E. L. O. Sauer and S. G. Ouelle, Org. Lett., 2002, 4, 83.
- For examples of 1,2-addition of water to vinylic oxiranes, see: (a) B. M. Trost and E. J. McEachern, J. Am. Chem. Soc., 1999, 121, 8649;
 (b) D. S. Bose, A. V. N. Reddy and B. Srikanth, Synthesis, 2008, 15, 2323; (c) J. M. Ready and E. N. Jacobsen, J. Am. Chem. Soc., 2001, 123, 2687; (d) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould and E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 1307; (e) S. Dey, D. R. Powell, C. Ha and D. B. Berkowitz, Angew. Chem., Int. Ed., 2007, 46, 7010.
- 11 For a conceptually related experiment, see: M. J. McManus, G. A. Berchtold and D. M. Jerina, *J. Am. Chem. Soc.*, 1985, **107**, 2977.
- 12 R. R. Hung, J. A. Straub and G. M. Whitesides, J. Org. Chem., 1991, 56, 3849.
- 13 K. Banert, M. Hagedorn, C. Liedtke, A. Melzer and C. Schöffler, *Eur. J. Org. Chem.*, 2000, 257.
- 14 (a) D. R. Deardorff, C. M. Taniguchi, A. C. Nelson, A. P. Pace, A. J. Kim, A. K. Pace, R. A. Jones, S. A. Tafti, C. Nguyen, C. O'Connor, J. Tang and J. Chen, *Tetrahedron: Asymmetry*, 2005, 16, 1655; (b) Y. N. Belokon, W. Clegg, R. W. Harrington, E. Ishibashi, H. Nomura and M. North, *Tetrahedron*, 2007, 63, 9724.
- 15 By comparison of bond orders: (a) C. W. Bird, *Tetrahedron*, 1985, 41, 1409; (b) C. W. Bird, *Tetrahedron*, 1986, 42, 89. By comparison of magnetic anisotropies: (c) K. E. Calderbank, R. L. Calvert, P. B. Lukins and G. L. D. Ritchie, *Aust. J. Chem.*, 1981, 34, 1835. For a general discussion, see: (d) A. R. Katritzky, M. Karelson and N. Malhorta, *Heterocycles*, 1991, 32, 127.

- 16 To exclude the effects of neutralisation of the propionic acid catalyst by the 2-pyridyl substituent, the reaction was repeated using 1.2 equivalents of propionic acid: the yield was unaffected.
- 17 W. N. White and B. E. Norcross, J. Am. Chem. Soc., 1961, 83, 1968.
- 18 (a) D. Bourgeois, D. Craig, N. P. King and D. M. Mountford, Angew. Chem., Int. Ed., 2005, 44, 618; (b) D. Bourgeois, D. Craig, F. Grellepois, D. M. Mountford and A. J. W. Stewart, Tetrahedron, 2006, 62, 483.
- 19 For equilibrating mixtures of a secondary and tertiary allylic azide the regioisomer containing the more substituted olefin would be expected to predominate; see: B. Braida, V. Prana and P. C. Hiberty, *Angew. Chem., Int. Ed.*, 2009, **48**, 5724.
- 20 The Cambridge X-ray structure database contains examples of azide internal nitrogen ··· H–O (alcohol) distances of less than 2.50 Å; see: D. Crich and H. Xu, J. Org. Chem., 2007, 72, 5183; S.-C. Hung, S. R. Thopate and C.-C. Wang, Carbohydr. Res., 2001, 330, 177; S. Ahmad, S. H. Spergel, J. C. Barrish, J. DiMarco and J. Gougoutas, Tetrahedron: Asymmetry, 1995, 6, 2893; R. Łysek, S. Favre and P. Vogel, Tetrahedron, 2007, 63, 6558. Other workers have postulated the existence of a hydrogen bonding interaction between azide and alcohol groups.^{26a}.
- 21 Azide thermolysis could be a significant competing pathway: (a) G. Smolinsky, J. Am. Chem. Soc., 1960, 82, 4717; (b) G. Smolinsky, J. Am. Chem. Soc., 1961, 83, 2489.
- 22 Crystal data for *syn*-**14a**: C₁₇H₂₅N₃O₂S, M = 335.46, monoclinic, *P*₂₁/*n* (no. 14), *a* = 5.48411(17), *b* = 8.0007(2), *c* = 41.2338(12) Å, β = 90.353(3)°, *V* = 1809.17(9) Å³, *Z* = 4, ρ_c = 1.232 g cm⁻³, μ (Mo-K α) = 0.192 mm⁻¹, *T* = 173 K, colourless platy needles, Oxford Diffraction Xcalibur 3 diffractometer; 5800 independent measured reflections (R_{int} = 0.0666), F² refinement, R₁(obs) = 0.1083, wR₂(all) = 0.2018, 4035 independent observed absorption-corrected reflections [|F_o| > 4\sigma(|F_o|), 2 θ_{max} = 63°], 209 parameters. CCDC 813338.