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Abstract—Calpains are involved in a variety of calcium-regulated cellular processes, such as signal transduction, cell proliferation,
differentiation, and apoptosis. Excessive calpain activation contributes to serious cellular damage and has been reported in many
pathological conditions. 4-Quinolinone 2-carboxamide derivatives were prepared and evaluated for l-calpain inhibitory activities.
Of the compounds synthesized, 3a and 3k, which possess a primary amide and 4-methoxyphenethyl amide at P1

0 region, were found
to most potently inhibit l-calpain with IC50 values of 0.71 ± 0.07 and 0.73 ± 0.23 lM, respectively. On the other hand, the incor-
poration of pyridine-containing amides decreased inhibitory activity.
� 2007 Elsevier Ltd. All rights reserved.
Calpains are calcium-dependent, intracellular proteo-
lytic enzymes and are found in many cells. Calpains
are referred to as cysteine proteases because they utilize
a cysteine residue in the catalytic process.1 Two major
forms of calpains have been identified: calpain I (or l-
calpain) and calpain II (or m-calpain), which require
micromolar and millimolar concentrations of calcium
ions for activation, respectively.2 Calpains are involved
in a variety of calcium-regulated cellular processes, such
as signal transduction, cell proliferation, differentiation,
and apoptosis. However, excessive calpain activation
contributes to serious cellular damage or even cell death.
The involvement of l-calpain in neurological disorders
such as stroke3 and Alzheimer’s disease4 has attracted
much interest in calpain inhibitors as potential therapeu-
tic agents. Most of the known calpain inhibitors bind to
the catalytic site in a competitive manner and are de-
rived from small peptides (e.g., 1, MDL 28,170), which
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are structurally related to the cleavage site of calpain
substrates.5,6 However, 1 suffers from the disadvantages
of nonselectivity, instability during storage, and exces-
sive metabolism due to its peptide character and the
high reactivity of its aldehyde moiety.7 In connection
with our work to find a less peptidic scaffold for l-cal-
pain inhibitors, we recently reported that a chromone
carboxamide 2 is a conformationally restricted cyclic
analog of 1.8 The chromone skeleton of 2 was designed
based on the expectation that the formation of addi-
tional hydrogen bonds might be possible via an interac-
tion between carbonyl oxygen of the pyran ring and
calpain residues. However, this increased binding affin-
ity might be compromised by the loss of probable
hydrogen bonding in the active site by the replacement
of the hydrogen bond donor –NH in 1 by the hydrogen
bond acceptor oxygen at position-1 of the chromone
ring. Therefore, we designed a 4-quinolinone ring as a
new scaffold for l-calpain inhibitors. In this case, it
was expected that the NH group in the 4-quinolinone
ring would interact with the residue in the catalytic site
as a hydrogen bond donor, and that this would lead to
increased binding affinity, and thus, increased l-calpain
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inhibitory activity. Herein we present the synthesis of 4-
quinolinone 2-carboxamide derivatives 3 and their bio-
logical evaluation for l-calpain inhibition (Fig. 1).
Ketoamide was used as a warhead in the new inhibitors
since several ketoamide-derived inhibitors have shown
improved in vitro and in vivo metabolic stability.9 To
investigate the influence of substituents located in the
warhead position of inhibitors, we introduced variations
in the amide region (R).

Compound 7 was synthesized as previously reported
with slight modification (Scheme 1).10 Briefly, diethyl
oxalpropionate (4) was condensed with aniline in acetic
acid to give anilino-maleate 5. Compound 5 was heated
at 250 �C in mineral oil to form the cyclized product,
quinolinone 6. The ethyl ester group in 6 was hydrolyzed
with KOH to yield 4-quinolinone 2-carboxylic acid 7.
Compound 7 was then coupled to various 3-amino-2-
hydroxybutanoic acid amides (8a–l),11 the P1 building
blocks, using EDC/HOBt to afford hydroxy-amides
9a–l, which were subsequently transformed into the 4-
quinolinone 2-carboxamide derivatives 3a–l by oxida-
tion under Dess–Martin periodinane conditions
(Scheme 2).12 The yields of coupling and oxidation reac-
tions are summarized in Table 1.13

The l-calpain inhibitory activities of the prepared
4-quinolinone 2-carboxamide derivatives 3a–l were
then evaluated using human calpain I, which was iso-
lated from erythrocytes. Suc-Leu-Tyr-AMC was used
as the fluorogenic substrate.14,15 Results are summa-
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Figure 1. Design of 4-quinolinone derivatives as new l-calpain inhibitors.
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rized in Table 1. MDL 28,170 (1) and the chromone
derivative 2 were also tested for comparisons. Primary
amide 3a most potently inhibited l-calpain (IC50 =
0.71 lM), and it was observed that the potencies
decreased as the bulkiness of substituents increased.
When N-alkylaryl substituents were incorporated in
the warhead region (R), a clear structure–activity
relationship, but different pattern to the N-alkyl substi-
tuted derivatives (3a–c) was found. It is believed that
the aryl group participates in a specific interaction with
adjacent hydrophobic pocket in the catalytic site since
more bulky N-alkylaryl substituted derivatives showed
potent inhibitory activities. Compounds containing a
4-methoxy substituent at the benzene ring (3f,3k) were
more potent than unsubstituted N-alkylaryl derivatives
(3e,3j). Incorporation of a pyridine (3i,3l) decreased
inhibitory activity, indicating that lipophilic residues
are preferred in this region. However, compounds 3a
and 3k, the most potent l-calpain inhibitors of the ser-
ies, were 10- and 20-fold less potent than MDL 28,170
(1) and the parent chromone derivative 2, respectively.
By visual inspection, it might be supposed that the
decreased inhibitory activities of 4-quinolinone deriva-
tives are partly due to the presence of tautomeric
structures, 4-hydroxyquinolines, which would result in
the loss of expected H-bonding interactions at posi-
tion-1 of 1 and position-4 of the chromone derivative
2. However, it is well known that 4-pyridones and their
benzo analogs exist predominantly in the keto form
rather than the 4-hydroxypyridine form.16 The predom-
inant presence of 4-quinolinone structures was also
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evident by 13C NMR spectra of synthesized com-
pounds since compound 3a showed a carbon signal
at d 177.5 corresponding to a C-4 carbonyl carbon.
Therefore, more detailed structure–activity relationship
studies on chromone and 4-quinolinone series of l-cal-
pain inhibitors are required to understand the interac-
tion between the P2 and the P3 region of the
inhibitors with l-calpain.
Table 1. The yields of coupling and oxidation steps and the l-calpain inhib

Inhibitors R– Y

EDC coupling

3a H– 33

3b H3C– 73

3c 70

3d 67

3e 76

3f
H3CO

78

3g

H3CO

H3CO
88

3h
F

88

3i
N

67

3j 89

3k

H3CO
73

3l
N

67

1

2

In conclusion, 4-quinolinone 2-carboxamides, a new
family of l-calpain inhibitors, were synthesized by
EDC coupling of 4-quinoline 2-carboxylic acid with var-
ious 3-amino-2-hydroxybutanoic acid amides followed
by Dess–Martin oxidation of the resulting hydroxy-
amides. Of the derivatives synthesized, 4-quinolinone
2-carboxamides 3a and 3k, which possess a primary
amide and 4-methoxyphenethyl amide, respectively,
itory activities of 3a–l

ields (%) l–Calpain inhibition IC50 (lM)

Oxidation

36 0.71 ± 0.07

85 8.62 ± 0.13

52 40.17 ± 3.77

89 >50

73 5.01 ± 0.85

62 3.81 ± 0.01

67 1.78 ± 0.81

63 5.63 ± 2.02

62 7.72 ± 1.15

90 3.71 ± 0.51

58 0.73 ± 0.23

62 6.28 ± 0.83

0.07 ± 0.01

0.04 ± 0.01
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most potently inhibited l-calpain activity (IC50 = 0.71–
0.73 lM), thus indicating that the 4-quinolinone ring
can be considered as a new scaffold for l-calpain inhib-
itors. Discussions concerning the structures of chro-
mone and 4-quinolinone series in relation to their
inhibitory activities contribute to our understanding of
the structural features required for inhibitors binding
to the active site of the enzyme and to the design of more
selective and potent l-calpain inhibitors for the treat-
ment of calpain-associated diseases.
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