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Abstract: A general catalytic conjugate addition with allyltrimethylsilane and

chalcones is described. Allyltrimethylsilane undergoes the Sakurai–Michael reaction

smoothly with high chemoselectivity in the presence of a catalytic amount of FeCl3/
TMSCl under very mild and convenient conditions to afford the corresponding

Michael adducts in high yields.
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INTRODUCTION

The conjugate addition of allylsilanes to conjugated enones, referred to as the

Sakurai–type Michael reaction, has been recognized as one of the most

efficient methods of carbon–carbon bond formation and has been extensively

applied in organic synthesis, especially in the preparation of some heterocyclic

compounds and natural product synthesis.[1] The range of Lewis acids
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employed in Sakurai–type Michael addition is extensive, among which TiCl4,

AlCl3, and BF3-OEt2 have been employed as the most effective promoters for

these conjugate additions of allylsilanes.[2] However, many of these methods

involve the use of highly toxic compounds, expensive reagents, or procedures

that require a stoichiometric amount of catalyst to accelerate the reaction.

Although a few examples of catalytic Sakurai–type Michael reactions have

been reported recently,[3] the development of new and cheap catalyst

systems, which are more efficient and lead to convenient procedures with

improved yields, is well appreciated.

In our search for an economical, efficient Sakurai–type Michael addition

of allylsilane to enones, we became intrigued by the idea of using a catalytic

amount of cheap, readily available, and low-toxicity FeCl3 in this reaction. As

an extension of these studies of FeCl3-catalyzed organic transformations,[4]

herein we report a mild and convenient procedure for the Sakurai–type

Michael addition of allyltrimethylsilane to chalcones.

RESULTS AND DISCUSSION

The reaction of chalcone (1a) and allyltrimethylsilane was selected as a model

in the initial experiments. We screened some metal salts for this reaction. In

the first trials, we found many transition-metal salts, such as InCl3, ZnF2,

FeCl3, Fe(ClO4)3, PdCl2(CH3CN)2, and Mg(ClO4)2, were not effective in

this reaction, and only Trace adduct was obtained in the most cases (less

than 10% of yield). We also found the product was isomeric in the presence

of catalytic FeCl3 (Scheme 1, 2a and 2b); even when the amount of FeCl3
was increased to 1.0 equiv., the yield was still low. After the first screening,

a test was performed using the strategies of combination of two different

Lewis acids and the addition of different additives. As shown in Table 1,

FeCl3 was a highly effective catalyst in the presence of TMSCl and gave

excellent yields with good chemoselectivity for the desired product 2a

(entry 13). Other types of additives, such as ZnF2, Brønsted acid (1,10-Bi-2-

naphthol (BINOL)), and Lewis base (hexamethylphosphoramide (HMPA)

or amines), were not suitable promoters in the FeCl3-catalyzed Sakurai–

Michael reaction (entries 2, 5, 7) (Scheme 2). We reasoned that these

results may be due to the activation of Michael acceptors, which should be

feasible in the presence of TMSCl or the product of a stronger Lewis acid

Scheme 1. Sakurai–Michael reaction.
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catalyst of FeCl3–TMSCl complex. Further studies indicated that dichloro-

methane was the best solvent in our experiments (entries 13–16). It is

important to note that TMSCl (1.5 eq.) did not show any catalytic activity

in the absence of FeCl3 (entry 12). It is well known that the reactivity of allyl-

trialkloxysilanes was very low, and therefore the Sakurai–Michael reaction of

allyltriethoxysilane was also studied (entries 17–19); unfortunately, this

reaction did not occur in the presence of catalytic FeCl3 and TMSCl.

The success of the Sakurai–Michael addition between chalcone and ally-

trimethylsilane prompted us to extend the general scope of the reaction. Under

Table 1. Catalytic activity of several Lewis acids in the Sakurai–type Michael

reaction

Entrya Allylsilane Catalysts Additive Solvent
Reaction
time (h)

Isolated
yield
(%)

1 CH255CHCH2SiMe3 InCl3 — CH2Cl2 4 0
2 CH255CHCH2SiMe3 InCl3 BINOLb CH3NO2 3 Trace
3 CH255CHCH2SiMe3 ZnF2 — CH2Cl2 12 0
4 CH255CHCH2SiMe3 FeCl3 — CH2Cl2 3 Trace
5 CH255CHCH2SiMe3 FeCl3 ZnF2 CH3NO2 12 Trace
6 CH255CHCH2SiMe3 Fe(ClO4)3 — CH3NO2 3 Trace
7 CH255CHCH2SiMe3 Fe(ClO4)3 HMPA CH2Cl2 6 NR
8 CH255CHCH2SiMe3 Fe(ClO4)3 — CH2Cl2 3 Trace
9 CH255CHCH2SiMe3 Mg(ClO4)2 — CH2Cl2 12 0

10 CH255CHCH2SiMe3 PdCl2(CH3CN)2 — CH3CN 3 0
11 CH255CHCH2SiMe3 L-Proline — CH2Cl2 24 0
12 CH255CHCH2SiMe3 — TMSCl CH2Cl2 3 Trace
13 CH255CHCH2SiMe3 FeCl3 TMSCl CH2Cl2 3 88 (95)c

14 CH255CHCH2SiMe3 FeCl3 TMSCl Toluene 4 27c

15 CH255CHCH2SiMe3 FeCl3 TMSCl CH3CN 4 52c

16 CH255CHCH2SiMe3 FeCl3 TMSCl THF 12 0
17 CH255CHCH2Si(OEt)3 FeCl3 TMSCl CH2Cl2 12 NR
18 CH255CHCH2Si(OEt)3 FeCl3 ZnF2 CH2Cl2 24 NR
19 CH255CHCH2Si(OEt)3 Fe(ClO4)3 TMSCl CH2Cl2 12 NR

aReaction conditions: 1.0 mmol of enone, 1.5 mmol of allylsilane, 10 mol% of

catalyst, 1.5 equiv. of additive, 3 mL of solvent, at room temperature.
b30 mol% of (S)-BINOL.
cGC yield.

Scheme 2. Iron-catalyzed Sakurai–Michael reaction.

Allyltrimethylsilane to Chalcones 1013

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 2

3:
54

 2
2 

A
ug

us
t 2

01
3 



the optimized conditions, we were pleased to find that a series of chalcones

with allyltrimethylsilane gave the desired Michael adduct in good to

excellent isolated yields (Table 2). In this reaction, chalcones with electron-

donating groups as CH3 and Cl (entries 4 and 5) gave better yields, but

those with electron-withdrawing groups such as NO2 afforded lower yields

(entry 2). Interestingly, p-OCH3-substituted chalcones worked to give low

to moderate isolated yields (entries 3 and 6–8).

With the basic reaction conditions established, questions regarding the

mechanism warranted further attention. Although it is known that TMSCl

could activate the carbonyl group by the initial interaction of TMSCl with

enones to activate the next step of the reaction,[5] the complete reaction

mechanism of transition-metal-salt/TMSCl–catalyzed Sakurai–Michael

Table 2. Sakurai–type Michael reactions of allyltrimethylsilane with chalcones

catalyzed by FeCl3 in the presence of TMSCl

Entrya Enone

Enone

number Product

Product

number Yieldb

1 1a 2a 88

2 1b 2d 39

3 1c 2c 55

4 1d 2d 87

5 1e 2e 67

6 1f 2f 21

7 1g 2g 46

8 1h 2h 54

aReaction conditions: 1.0 mmol of enone, 1.5 mmol of allylsilane, and 3 mL of

solvent at room temperature for 3 h.
bIsolated yield (%) by silica column chromatography.
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reaction of allyltrimethylsilane with enones was not clear in the past. A series

of control experiments with chalcone and allyltrimethylsilane gave some

mechanistic insight to better understanding the roles of the catalyst and

additive. The results in Tables 1 and 2 show that transition-metal-salt-based

Lewis acid and TMSCl should work synergistically in the hetero-Lewis

acidic catalyst system. First, the importance of FeCl3 and TMSCl was

assessed by carrying out reactions in their absence. As shown in Table 1

(entries 4 and 12), both FeCl3 and TMSCl are required for good reactivity.

The results of these experiments were consistent with our working hypothesis

based on the enhancement of the activity of FeCl3 in the presence of TMSCl.

The activation of Lewis acid by the formation of Fe2Cl4 . SiþMe3 from FeCl3
and TMSCl,[6,7] resulted in the improvement of catalytic activity of iron in

Sakurai–Michael reaction.

In conclusion, we have developed a new catalytic Sakurai–Michael

reaction of chalcones and allyltrimethylsilane promoted by the combination

of iron(III) salts and TMSCl. This work offers good examples of the combi-

nation of Lewis acid and TMSCl catalyst for novel Sakurai–Mchael

reactions of allylsilane with chalcones. Further studies are currently under

way to expand the application of the reaction to asymmetric catalysis and

establish the high reactivity and stereoselectivity with chalcones and allylsilane.

EXPERIMENTAL PART

General

All reaction flasks and solvent were used directly. Flash-column chromato-

graphy was performed over silica (100–200 mesh). NMR spectra were

recorded on a 400-MHz spectrometer. 13C NMR spectra were obtained with

broadband proton decoupling. For spectra recorded in CDCl3, unless noted,

chemical shifts were recorded relative to the internal TMS (tetramethylsilane)

reference signal. IR spectra were recorded using an FTIR apparatus. Thin-

layer chromatography (TLC) was performed using silica.

Typical Sakural–Michael Allylation Reaction Procedure

FeCl3 (0.1 mmol), chalcone (1.0 mmol), allyltrimethylsilane (1.1 mmol), and

TMSCl (1.5 mmol) in anhydrous CH2Cl2 (3 mL) were added to a Schlenk tube

under argon. The mixture was stirred for 3 h at room temperature. After com-

pletion of the reaction, the mixture was quenched with water, and the aqueous

layer was extracted with CH2Cl2 (3 � 30 mL). The combined organic layers

were washed with 2 N HCl, dried over MgSO4, filtered, and evaporated.

The crude product was purified by column chromatography (petroleum

ether/EtOAc 10:1) to give the pure products.

Allyltrimethylsilane to Chalcones 1015
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Selected Spectra Data of Products

1,3-Diphenylhex-5-en-1-one (2a): 1H NMR (400 MHz, CDCl3, ppm),

d ¼ 7.88 (m, 2H), 7.52 (m, 1H), 7.42 (m, 2H), 7.17–7.30 (m, 5H), 5.69

(m, 1H), 4.99 (m, 2H), 3.48 (m, 1H), 3.29 (d, J ¼ 8 Hz, 2H), 2.46 (m, 2H).
13C NMR (100 MHz, CDCl3, ppm): d ¼ 198.78, 144.20, 137.06, 136.12,

132.79, 128.37, 128.27, 127.87, 127.41, 126.22, 116.64, 44.40, 40.59,

40.54. GC-MS: m/z 250 (M, 4), 130 (58), 105 (100), 77 (39). IR (KBr):

3060, 3022, 2978, 2917, 1678, 1642, 1589, 1449, 1343, 1257, 1217, 984,

906 cm21.

3-(3-Nitrophenyl)-1-phenylhex-5-en-1-one (2b): 1H NMR (400 MHz, CDCl3,

ppm), d ¼ 8.12 (s, 1H), 8.04 (d, J ¼ 12 Hz, 1H), 7.90 (d, J ¼ 8 Hz, 2H), 7.58

(m, 2H), 7.45 (m, 3H), 5.68 (m, 1H), 5.02 (m, 2H), 3.63 (m, 1H), 3.37 (m, 2H),

2.50 (m, 2H). 13C NMR (100 MHz, CDCl3, ppm): d ¼ 197.79, 148.22,

146.38, 136.62, 135.02, 134.30, 133.14, 129.11, 128.51, 127.80, 122.06,

121.42, 117.63, 43.80, 40.38, 40.13. GC-MS: m/z 295 (M, 3), 120 (37),

105 (100), 77 (41). IR (KBr): 3068, 2978, 2920, 1686, 1597, 1528, 1448,

1349, 1266, 1204, 1098, 1001, 920 cm21.

1-(4-Methoxyphenyl)-3-phenylhex-5-en-1-one (2c): 1H NMR (400 MHz,

CDCl3, ppm), d ¼ 7.89 (d, J ¼ 8 Hz, 2H), 7.53 (t, J ¼ 8 Hz, 1H), 7.42

(t, J ¼ 8 Hz, 2H), 7.15 (d, J ¼ 8 Hz, 2H), 6.82 (d, J ¼ 8 Hz, 2H), 5.69

(m, 1H), 4.98 (m, 2H), 3.76 (s, 3H), 3.42 (m, 1H), 3.26 (m, 2H), 2.42

(m, 2H). 13C NMR (100 MHz, CDCl3, ppm): d ¼ 198.94, 157.84, 137.08,

136.25, 136.22, 132.76, 128.36, 128.29, 127.87, 116.55, 113.63, 55.02,

44.65, 40.70, 39.85. GC-MS: m/z 280 (M), 160 (13), 105 (100), 77 (24). IR

(KBr): 3064, 2998, 2929, 2830, 1684, 1610, 1597, 1513, 1448, 1300, 1248,

1178, 1036, 1001 cm21.

1-Phenyl-3-p-tolylhex-5-en-1-one (2d): 1H NMR (400 MHz, CDCl3, ppm),

d ¼ 7.89 (d, J ¼ 12 Hz, 2H), 7.52 (t, J ¼ 4 Hz, 1H), 7.42 (t, J ¼ 8 Hz, 2H),

7.11 (m, 4H), 5.69 (m, 1H), 4.97 (m, 2H), 3.43 (m, 1H), 3.26 (m, 2H), 2.44

(m, 2H), 2.29 (s, 3H). 13C NMR (100 MHz, CDCl3, ppm): d ¼ 198.87,

141.15, 137.08, 136.26, 135.65, 132.75, 128.97, 128.36, 127.88, 127.24,

116.54, 44.53, 40.58, 40.18, 20.86. GC-MS: m/z 264 (M), 144 (31), 129

(10), 105 (100), 77 (27). IR (KBr): 3060, 3022, 2978, 2921, 1686, 1597,

1515, 1448, 1360, 1267, 1200, 1114, 1001, 915 cm21.

3-(2-Chlorophenyl)-1-phenylhex-5-en-1-one (2e): 1H NMR (400 MHz,

CDCl3, ppm), d ¼ 7.93 (d, J ¼ 8 Hz, 2H), 7.53 (t, J ¼ 4 Hz, 1H), 7.44

(t, J ¼ 8 Hz, 2H), 7.35 (d, J ¼ 8 Hz, 1H), 7.24 (m, 1H), 7.13 (t, J ¼ 4 Hz,

1H), 5.70 (m, 1H), 4.98 (m, 3H), 4.04 (m, 1H), 3.33 (d, J ¼ 8 Hz, 2H), 2.49

(t, J ¼ 8 Hz, 2H); 13C NMR (100 MHz, CDCl3, ppm): d ¼ 198.28, 141.20,

136.85, 135.60, 133.87, 132.88, 129.69, 128.41, 127.90, 127.28, 126.67,

L.-W. Xu et al.1016
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116.92, 43.00, 38.92, 36.55. GC-MS: m/z 284 (M), 249 (12), 164 (18), 129

(32), 105 (100), 77(40). IR (KBr): 3072, 2957, 2892, 2827, 1681, 1595,

1476, 1446, 1436, 1350, 1263, 1215, 1034, 985, 924 cm21.

1,3-Bis(4-methoxyphenyl)hex-5-en-1-one (2f): 1H NMR (400 MHz, CDCl3,

ppm), d ¼ 7.88 (d, J ¼ 8 Hz, 2H), 7.14 (d, J ¼ 8 Hz, 2H), 6.90

(d, J ¼ 12 Hz, 2H), 6.82 (d, J ¼ 6 Hz, 2H), 5.68 (m, 1H), 4.98 (m, 2H),

3.85 (s, 3H), 3.77 (s, 3H), 3.41 (m, 1H), 3.20 (m, 2H), 2.42 (m, 2H); 13C

NMR (100 MHz, CDCl3, ppm): d ¼ 197.48, 163.17, 157.81, 136.36,

136.31, 130.21, 130.15, 128.27, 116.43, 113.60, 113.47, 55.27, 55.01,

44.33, 40.65, 40.05. IR (KBr): 3073, 3000, 2920, 2837, 1675, 1639, 1600,

1575, 1511, 1463, 1419, 1363, 1305, 1248, 1169, 1032, 997, 915 cm21.

3-(4-Methoxyphenyl)-1-(4-nitrophenyl)hex-5-en-1-one (2g): 1H NMR

(400 MHz, CDCl3, ppm), d ¼ 8.25 (d, J ¼ 8 Hz, 2H), 8.00 (d, J ¼ 12 Hz,

2H), 7.13 (d, J ¼ 8 Hz, 2H), 6.81 (d, J ¼ 8 Hz, 2H), 5.70 (m, 1H), 5.02

(m, 2H), 3.78 (s, 3H), 3.39 (m, 1H), 3.30 (m, 2H), 2.45 (m, 2H); 13C NMR

(100 MHz, CDCl3, ppm): d ¼ 197.56, 158.04, 150.01, 141.51, 135.94,

135.57, 128.83, 128.21, 123.60, 116.89, 113.75, 55.02, 45.12, 40.71, 39.93.

IR (KBr): 3064, 2999, 2931, 2835, 1685, 1639, 1611, 1597, 1513, 1448,

1362, 1301, 1248, 1201, 1179, 1036, 1001, 916 cm21.

3-(4-Methoxyphenyl)-1-phenylhex-5-en-1-one (2h): 1H NMR (400 MHz,

CDCl3, ppm), d ¼ 7.88 (d, J ¼ 12 Hz, 2H), 7.51 (t, J ¼ 4 Hz, 1H), 7.42

(t, J ¼ 8 Hz, 2H), 7.15 (d, J ¼ 8 Hz, 2H), 6.81 (d, J ¼ 12 Hz, 2H), 5.69

(m, 1H), 4.98 (m, 2H), 3.76 (s, 3H), 3.42 (m, 1H), 3.25 (m, 2H), 2.42

(m, 2H); 13C NMR (100 MHz, CDCl3, ppm): d ¼ 198.93, 157.86, 137.11,

136.25, 136.23, 132.74, 128.36, 128.29, 127.87, 116.53, 113.64, 55.02,

44.66, 40.69, 39.88. IR (KBr): 3073, 3000, 2920, 2837, 1675, 1639, 1600,

1575, 1511, 1463, 1419, 1363, 1304, 1248, 1169, 1112, 1032, 997, 915 cm21.
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