Tetrahedron 68 (2012) 1092-1096

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

O- and *N*-Glycosidation of *D*-glycals using Ferrier rearrangement under Mitsunobu reaction conditions. Application to *N*-nucleoside synthesis

Kyosuke Michigami, Masahiko Hayashi*

Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan

A R T I C L E I N F O

ABSTRACT

Article history: Received 13 September 2011 Received in revised form 24 November 2011 Accepted 26 November 2011 Available online 3 December 2011

Keywords: O-Glycosidation N-Glycosidation Glycal Mitsunobu reaction Ferrier reaction We have disclosed the reaction of 3-hydroxy free glycals with *O*- or *N*-nucleophiles under Mitsunobu reaction conditions proceeded to produce 2,3-unsaturated glycosides in good to high yield and moderate stereoselectivity. The reaction would take place via allyloxycarbenium ion.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

O-Glycosidation and *N*-glycosidations are fundamental reactions in carbohydrate synthesis.¹ So far, Koenigs–Knorr and its modified reactions have been used in glycosidation reaction.^{2,3} On the other hand, Ferrier reported the glycosidation of 1,2unsaturated glycals with nucleophiles in the presence of Lewis acids leading to the 2,3-unsaturated glycosides.^{4,5} In Ferrier reaction the 3-positional group works as a leaving group.

During the course of our study of the synthesis of allose derivatives,⁶ we attempted the inversion of equatorial 3-hydroxy group in D-glucose derivatives using diethyl azodicarboxylate (DEAD), PPh₃, and *p*-nitrobenzoic acid (Mitsunobu reaction conditions) to obtain the allose derivatives, that is, the 3-hydroxygroup inversion in the product. However, the product was not a simple inversion product at 3-position, but O-glycosidation product via the rearrangement of double bond as a mixture of α - and β -isomers. In our cases, 3-hydroxy group works as a leaving group. Here, we report *O*- and *N*-glycosidation under Mitsunobu reaction conditions.

2. Results and discussion

4,6-O-Benzylidene D-glucal **1** was prepared as follows: (1) oxidation of allylic hydroxyl group of D-glucal leading to the formation

of 1,5-anhydro-*D*-*erythro*-hex-1-en-3-ulose.⁷ (2) 4,6-Benzylidation of 3-ulose.⁸ (3) Reduction of 3-keto group. The reaction of 4,6-0benzylidene p-glucal 1 with p-nitrobenzoic acid in the presence of DEAD or DMEAD^{9,10} and PPh₃ proceeded to give *p*-nitrobenzovl 4,6-O-benzylidene-2,3-deoxy-p-erythro-hex-2-enopyranoside 2 in 70% yield. As for the stereochemistry of the products, the reaction of 1 with *p*-nitrobenzoic acid in the presence of DEAD and PPh₃ at 23 °C for 1 h in THF gave the product in the ratio of $\alpha/\beta=75:25$ (78%) yield). The same reaction carried out in toluene at 25 °C gave the product in α/β =75:25 (83% yield). The reaction at 0 °C afforded the product in α/β =64:36 (79% yield) as shown in Table 1 (entries 1–3). 4,6-Di-O-acetyl D-glucal 3 was directly prepared by the reaction of 3,4,6-tri-O-acetyl p-glucal with lipase at pH 7.0.¹¹ For substrate 3, the ratio of the product was only moderate compared with the case of substrate **1**. That is, α -isomers (**4**–**7**) were slightly predominantly obtained not only for p-nitrobenzoic acid, but also p-nitrophenol, onitrophenol, and p-isopropylphenol (entries 4-15 in Table 1). It should be noted that the reaction of 4,6-di-O-acetyl D-glucal (3) with *p*-nitrobenzoic acid did not proceed neither in the presence of BF₃·OEt₂ nor Me₃SiOTf. Sobi and Sulikowski reported similar type of Mitsunobu reaction of glycal with phenolic nucleophiles for three substrates, that is, L-rhamnal, D-glucal, and L-fucal derivatives.¹² They suggested the reaction proceeded in S_N2' manner. However, we propose S_N1 mechanism via allyloxocarbenium ion as shown Scheme 2. The both of the starting material 1 derived from p-glucal and **8** derived from p-allal gave the product in same α / β ratio ($\alpha/\beta=75:25$) in Scheme 1. This result will indicate the reaction would proceed via the common intermediate. As for the

^{*} Corresponding author. Tel.: +81 78 803 5687; fax: +81 78 803 5688; e-mail address: mhayashi@kobe-u.ac.jp (M. Hayashi).

Table 1

Glycosidation of protected D-glucals with oxygen nucleophiles using Mitsunobu reagents^a

Entry	Substrate	NuH	Dialkyl azodicarboxylate (R)	Solvent	Conditions		Product		
					Temp/°C	Time/h	Yield ^b (%)		α/β^{c}
1	1		DEAD (Et)	THF	23	1	2	78	75:25
2 3 4 5 6 ^d 7 ^d 8 ^e 9 ^e 10 ^e	1 1 3 3 3 3 3 3 3 3 3	O ₂ N-CO ₂ H	DEAD DEAD DIAD (<i>i</i> -Pr) DIAD DMEAD ((CH ₂) ₂ OCH ₃) DMEAD DMEAD DMEAD DMEAD	Toluene Toluene THF Toluene THF THF THF THF THF	25 0 20 20 20 20 20 20 20 20 20	1 1 1 4 18 5 18 3	2 2 4 4 4 4 4 4 4 4	83 79 82 49 73 67 78 73 74	75:25 66:34 53:47 63:37 61:39 58:42 57:43 58:42 52:48
11 ^d	3	02NОН	DMEAD	THF	20	24	5	82	59:41
12 ^d	3	NO2 ————————————————————————————————————	DMEAD	THF	20	2	6	78	64:36
13 ^e	3)ОН	DMEAD	THF	20	24	7	49	58:42

^a All reactions were carried out using 2 equiv of dialkyl azodicarboxylate, PPh₃, and nucleophile unless otherwise noted.

^b Isolated yield as a mixture of α and β isomer.

^c¹H NMR analysis.

^d Dialkyl azodicarboxylate, PPh₃, and nucleophile (1.5 equiv).

^e Dialkyl azodicarboxylate, PPh₃, and nucleophile (1.2 equiv).

Scheme 1. Examination using 4,6-benzylidene-D-allal as a substrate.

difference of stereoselectivity of the product between the case of substrate **1** (α/β =75:25) and **3** (α/β =66:34 to 52:48), we assume the participation of 4-acetyl group contributed the production of kinetically favored β -isomer.^{4e}

The formation of triphenylphosphine oxide will be the driving force to produce allyloxocarbenium ion. This method can be applied for nitrogen nucleophiles, such as phthalimide, pyrimidinone, and pyrimidin-thione also worked that led to the novel *N*-nucleosides (Table 2). In these reactions the products (**9**–**11**) were obtained in moderate yield (40–68%) and selectivity (57:43 to 63:37) (Table 2).

The reaction would proceed via the same intermediate with the conventional Ferrier reaction, that is, allyloxocarbenium ion. It should be mentioned that dihydropyrimidinone having non-aromatic structure did not work as a nucleophile. This may be attributed to the importance of acidity of nucleophile (Nu–H) in Scheme 2.

3. Conclusion

In conclusion, we have revealed O- and N-glycosidation of Dglycals under Mitsunobu reaction conditions. Application to the

Scheme 2. Possible mechanism of glycosidation using Mitsunobu reagents.

Table 2

Glycosidation of protected D-glucals with nitrogen nucleophiles using Mitsunobu reagents^a

^a All reactions were carried out using 1.2 equiv of dialkyl azodicarboxylate, PPh₃, and nucleophile unless otherwise noted.

 b Isolated yield as a mixture of α and β isomer.

^c¹H NMR analysis.

^d Dialkyl azodicarboxylate, PPh₃, and nucleophile (1.5 equiv).

novel *N*-nucleosides synthesis has been also disclosed. Further study for the synthesis of novel *N*-nucleosides is now under investigation.

4. Experimental section

4.1. General

All reactions were carried out in an oven-dried glassware with magnetic stirring. All starting materials were obtained from commercial sources. ¹H and ¹³C NMR spectra (400 and 100.6 MHz, respectively) were recorded using Me₄Si as the internal standard (0 ppm). Some of the peaks of ¹³C NMR are overlapped especially in aromatic regions. The following abbreviations are used: s=singlet, d=doublet, m=multiplet.

4.2. General procedure

4.2.1. Method A. (using DEAD or DIAD). To a mixture of nucleophile (0.6 mmol), triphenylphosphine (0.6 mmol) substrate (**1** or **3**) (0.5 mmol), and solvent (2.0 mL) was added DEAD (or DIAD) (0.6 mmol) slowly. After the completion of the reaction, satd NaHCO₃ was added. Extraction with ethyl acetate and the combined organic layers were dried over Na₂SO₄, and evaporated. The residue was silica gel column chromatographed to give the product as a mixture of α - and β -isomers.

4.2.2. Method B. (using DMEAD). To a mixture of nucleophile (0.6 mmol), triphenylphosphine (0.6 mmol), substrate (**1** or **3**) (0.5 mmol), and solvent (2.0 mL) was added DMEAD (0.6 mmol) slowly. After the completion of the reaction, satd NaHCO₃ was

added. Organic layers were evaporated and residue was extracted with diethyl ether and the combined organic layers were dried over Na₂SO₄, and evaporated. The residue was silica gel column chromatographed to give the product as a mixture of α - and β -isomers.

4.2.3. *p*-Nitrobenzoyl 4,6-O-benzylidene-2,3-dideoxy-α/β-D-erythrohex-2-enopyranoside (**2**). White solids (73%, α/β=75:25); IR (KBr) 695, 716, 1096, 1527, 1533, 1720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃); δ 3.8–4.1 (m, 2H, H5; H6); 4.3–4.4 (m, 2H, H4; H6'); 5.64 (s, 75/100H, PhCH); 5.65 (s, 25/100H, PhCH); 5.8–5.9 (m, 1H, H2); 6.39 (d, J=9.6 Hz, 1H, H3); 6.59 (s, 75/100H, H1); 6.76 (s, 25/100H, H1); 7.3–7.6 (m, 5H, PhH); 8.2–8.4 (m, 4H, *p*-NO₂C₆H₄); ¹³C NMR (100 MHz, CDCl₃) δ 66.2; 69.0; 71.3; 74.3; 74.5; 89.7; 96.0; 102.3; 123.6; 124.3; 126.2; 128.4; 129.3; 131.0; 131.1; 133.0; 135.1; 136.7; 163.6. Anal. Calcd for C₂₀H₁₇NO₇: C, 62.66; H, 4.47; N, 3.65. Found: C, 62.45; H, 4.55; N, 3.77. MS [ESI⁺]: *m/z*: 406.1 [M+Na]⁺.

4.2.4. *p*-Nitrobenzoyl 4,6-di-O-acetyl-2,3-dideoxy- α/β -*D*-erythrohex-2-enopyranoside (**4**). White solids (73%, α/β =58:42); IR (KBr) 1241, 1738, 2969 cm⁻¹; ¹H NMR (400 MHz, CDCl₃); δ 1.95 (s, 42/100×3H, OAc); 2.06 (s, 58/100×3H, OAc); 2.0–2.2 (m, 3H, OAc); 4.2–4.4 (m, 3H, H5; H6; H6'); 5.19 (dd, *J*=4.8, 2.0 Hz, 42/100H, H4); 5.46 (dd, *J*=9.6, 1.6 Hz, 58/100H, H4); 5.9–6.1 (m, 58/100H, H2); 6.14 (d, 1H, H3); 6.2–6.3 (dd, 42/100H, H2); 6.59 (s, 58/100H, H1); 6.68 (s, 42/100H, H1); 8.2–8.4 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 20.7; 20.9; 62.3; 62.7; 63.1; 64.5; 69.4; 73.0; 88.4; 89.6; 97.0; 123.6; 125.2; 126.6; 127.7; 130.9; 131.5; 135.0; 150.7; 163.4; 169.9; 170.3; 170.5; 170.7. Anal. Calcd for C₁₇H₁₇NO₉: C, 53.83; H, 4.52; N, 3.69. Found: C, 53.53; H, 4.52; N, 3.78. MS [ESI⁺]: *m/z*: 402.0 [M+Na]⁺.

4.2.5. *p*-Nitrophenyl 4,6-di-O-acetyl-2,3-dideoxy- α/β -*D*-erythro-hex-2-enopyranoside (**5**). White solids (82%, α/β =59:41); IR (KBr) 1231, 1342, 1592, 1743, 2958 cm⁻¹; ¹H NMR (400 MHz, CDCl₃); δ 1.83 (s, 41/ 100×3H, OAc); 1.97 (s, 59/100×3H, OAc); 2.0–2.2 (m, 3H, OAc); 4.1–4.4 (m, 3H, H5; H6; H6'); 5.15 (dd, *J*=5.0, 2.2 Hz, 41/100H, H4); 5.42 (d, *J*=9.6 Hz, 59/100H, H4); 5.82 (s, 59/100H, H1); 5.90 (s, 41/100H, H1); 6.0–6.3 (m, 2H, H2; H3); 7.1–7.2 (m, 2H, ArH); 8.1–8.3 (m, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 20.9; 62.4; 62.9; 63.1; 64.7; 68.3; 72.9; 91.4; 92.6; 115.6; 116.3; 116.6; 125.7; 125.8; 126.1; 128.2; 131.1; 161.6; 161.8; 170.0; 170.1. Anal. Calcd for C₁₆H₁₇NO₈: C, 54.70; H, 4.88; N, 3.99. Found: C, 54.70; H, 4.88; N, 4.07. MS [ESI⁺]: *m/z*: 374.1 [M+Na]⁺.

4.2.6. *o*-*Nitrophenyl* 4,6-*di*-O-*acetyl*-2,3-*dideoxy*-*α*/β-*D*-*erythro*-*hex*-2-*enopyranoside* (**6**). Yellow oil (78%, *α*/β=64:36); IR (KBr) 1221, 1525, 1592, 1737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃); *δ* 1.89 (s, 36/100×3H, OAc); 1.97 (s, 64/100×3H, OAc); 2.12 (s, 36/100×3H, OAc); 2.13 (s, 64/100×3H, OAc); 4.1–4.3 (m, 3H, H5; H6; H6'); 5.17 (s, 36/100H, H4); 5.40 (d, *J*=9.2 Hz, 64/100H, H4); 5.74 (s, 64/100H, H1); 5.86 (s, 36/100H, H1); 6.0–6.1 (m, 1H, H2); 6.22 (d, *J*=2.0 Hz, 1H, H3); 7.1–7.2 (m, 1H, ArH); 7.4–7.6 (m, 2H, ArH); 7.8–7.9 (m, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃) *δ* 20.4; 20.7; 20.9; 62.5; 63.0; 64.7; 68.3; 73.1; 92.9; 95.0; 118.2; 120.0; 122.2; 122.9; 125.1; 125.9; 126.0; 128.3; 131.0; 133.7; 133.8; 150.2; 170.1; 170.2; 170.3; 170.6. Anal. Calcd for C₁₆H₁₇NO₈: C, 54.70; H, 4.88; N, 3.99. Found: C, 54.70; H, 4.91; N, 4.08. MS [ESI⁺]: *m/z*: 374.1 [M+Na]⁺.

4.2.7. *p*-Isopropylphenyl 4,6-*d*i-O-acetyl-2,3-*d*ideoxy- α/β -*D*-erythrohex-2-enopyranoside (**7**). White paste (49%, α/β =58:42); IR (KBr) 1228,1744, 2961 cm⁻¹; ¹H NMR (400 MHz, CDCl₃); δ 1.1–1.3 (m, 6H, CH(CH₃)₂); 1.85 (s,42/100×3H, OAc); (s, 58/100×3H, OAc); 2.1–2.2 (m, 3H, OAc); 2.8–2.9 (m, 1H, CH(CH₃)₂); 4.1–4.4 (m, 3H, H5; H6; H6'); 5.16 (s, 42/100H, H4); 5.39 (d, *J*=10.0 Hz, 58/100H, H4); 5.66 (s, 58/100H, H1); 5.78 (s, 42/100H, H1); 5.9–6.1 (m, 1H, H2); 6.1–6.3 (m, 1H, H3) 7.0–7.2 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 20.4; 20.6; 21.0; 24.1; 33.3; 33.4; 62.7; 63.4; 63.5; 65.1; 67.7; 72.8; 91.9; 93.2; 116.1; 117.0; 125.3; 127.22; 127.24; 129.7; 143.0; 154.9; 155.1;

170.3; 170.6; 170.7. Anal. Calcd for $C_{19}H_{24}O_6$: C, 65.50; H, 6.94. Found: C, 65.34; H, 7.01. MS $[\text{ESI}^+]$: m/z: 371.1 $[M+\text{Na}]^+$.

4.2.8. $1-\{4,6-Di-O-acetyl-2,3-dideoxy-\alpha/\beta-D-erythro-hex-2-enopyranosyl\}$ -phthalimide (**9**). White solids (40%, α/β =57:43); IR (KBr) 719, 1221, 1773 cm⁻¹; ¹H NMR (400 MHz, CDCl₃); δ 2.06 (s, 57/100×3H, OAc); 2.07 (s, 43/100×3H, OAc); 2.12 (s, 43/100×3H, OAc); 2.14 (s, 57/100×3H, OAc); 4.1-4.2 (m, 37/100H, H5); 4.1-4.3 (m, 2H, H6; H6'); 4.3-4.4 (m, 57/100H, H5); 5.43 (dd, J=9.2, 1.1 Hz, 57/100H, H4); 5.52 (dd, J=9.0, 2.2 Hz, 43/100H, H4); 5.8-6.2 (m, 3H, H1; H2; H3); 7.6-7.8 (m, 2H, ArH); 7.8-8.0 (m, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 20.7; 20.9; 21.0; 62.6; 63.0; 64.6; 70.4; 72.2; 74.3; 74.8; 123.6; 123.7; 125.0; 127.4; 128.7; 129.5; 131.6; 131.7; 134.4; 134.5; 166.6; 167.7; 170.0; 170.3; 170.8. HRMS [ESI⁺]: *m/z* calcd for C₁₈H₁₇NO₇Na: 382.0903 [M+Na]⁺. Found: 382.0915 [M+Na]⁺.

4.2.9. $1 - \{4, 6-Di-O-acetyl-2, 3-dideoxy-\alpha/\beta-D-erythro-hex-2-enopyranosyl\}-5-(ethoxycarbonyl)-4, 6-diphenyl-pyrimidin-2(1H)-one ($ **10** $). White solids (68%, <math>\alpha/\beta=63:37$); IR (KBr) 1231, 1729 cm⁻¹; ¹H NMR (400 MHz, CDCl₃); δ 0.95 (t, J=7.2 Hz, 3H, CO₂CH₂CH₃); 1.95 (s, 37/100×3H, OAc); 2.03 (s, 63/100×3H, OAc); 2.10 (s, 3H, OAc); 4.0–4.5 (m, 5H, H5; H6; H6'; CO₂CH₂CH₃); 5.20 (d, J=3.6 Hz, 37/100H, H4); 5.52 (d, J=9.6 Hz, 63/100H, H4); 6.0–6.2 (m, 2H, H2; H3); 6.92 (s, 63/100H, H1); 6.96 (s, 37/100H, H1); 7.4–7.5 (m, 6H, ArH); 7.6–7.8 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 13.4; 20.7; 20.9; 61.9; 62.0; 62.5; 63.3; 64.8; 68.8; 72.9; 89.6; 90.8; 120.7; 122.6; 125.7; 126.0; 128.36; 128.41; 128.44; 128.7; 130.27; 130.34; 130.6; 136.8; 137.1; 162.7; 167.3; 167.4; 167.7; 168.1; 170.2; 170.3; 170.7. HRMS [ESI⁺]: m/z calcd for C₂₉H₂₈N₂O₈Na: 555.1743 [M+Na]⁺. Found: 555.1709 [M+Na]⁺.

4.2.10. $1-\{4,6-Di-O-acetyl-2,3-dideoxy-\alpha/\beta-D-erythro-hex-2-enopyranosyl\}-5-(ethoxycarbonyl)-4,6-diphenyl-pyrimidin-2(1H)-thione ($ **11** $). Yellow oil (40%, <math>\alpha/\beta=60:40$); IR (KBr) 1213, 1515, 1728 cm⁻¹; ¹H NMR (400 MHz, CDCl₃); δ 0.9–1.0 (m, 3H, CO₂CH₂CH₃); 2.00 (s, 60/100×3H, OAc); 2.02 (s, 40/100×3H, OAc); 2.10 (s, 60/100×3H, OAc); 2.11 (s, 40/100×3H, OAc); 4.0–4.4 (m, 5H, H5; H6; H6'; CO₂CH₂CH₃); 5.3–5.4 (m, 60/100H, H4); 5.46 (dd, *J*=9.0, 1.8 Hz, 40/100H, H4); 5.8–6.2 (m, 2H, H2; H3); 6.81 (d, *J*=2.0 Hz, 60/100H, H1); 6.99 (d, *J*=2.0 Hz, 40/100H, H1); 7.4–7.6 (m, 6H, ArH); 7.6–7.8 (d, *J*=6.8 Hz, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 20.7; 20.9; 21.0; 62.6; 63.0; 64.6; 70.4; 72.2; 74.3; 74.80; 123.6; 123.7; 125.0; 127.4; 128.7; 129.5; 131.6; 131.7; 134.4; 134.5; 166.6; 167.7; 170.0; 170.3; 170.8. Anal. Calcd for C₂₉H₂₈N₂O₇S: C, 63.49; H, 5.11; N, 5.14. Found: C, 63.78; H, 5.11; N, 5.43. MS [ESI⁺]: *m/z*: 533.1 [M+H]⁺; 555.2 [M+Na]⁺.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Japan 'Molecular Activation Directed toward Straightforward Synthesis' and No. B23350043 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and notes

- (a) Stick, R. V.; Williams, S. J. Carbohydrates: Essential Molecules of Life, 2nd ed.; Elsevier: Oxford, Amsterdam, 2009; (b) Sinnott, M. L. Carbohydrate Chemistry and Biochemistry; RSC Publishing: Cambridge, 2007; (c) The Organic Chemistry of Sugars; Levy, D. E., Fügedi, P., Eds.; Taylor & Francis: New York, NY, 2006; (d) Osborn, H. M. I. Carbohydrates; Academic Press: Oxford, 2003; (e) Glycoscience; Driguez, H., Thiem, J., Eds.; Springer: Berlin, Heidelberg, New York, NY, 1999; (f) Prerarative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, NY, 1997.
- 2. Koenig, W.; Knorr, E. Ber. 1901, 34, 957-981.
- Review: (a) Schmidt, R. R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 6, p 33; (b) Schmidt, R. R. Angew. Chem. 1986, 98, 213–236; (c) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 155–173; (d) Igarashi, K. Adv. Carbohydr. Chem. Biochem. 1977, 34, 243–283.

- 4. (a) Ferrier, R. J. J. Chem. Soc., Perkin Trans. 1 1979, 1455-1458; (b) Ferrier, R. J. J. Chem. Soc. C 1968, 974–977; (c) Ferrier, R. J.; Overend, W. G.; Ryan, A. E. J. Chem. Soc. C **1962**, 3667–3670; (d) Mukherejee, A.; Jayaraman, N. Carbohydr. Res. **2011**, 346, 1569–1575; (e) Watanabe, Y.; Itoh, T.; Sakakibara, T. Carbohydr. Res. 2009, 344, 516–520; (f) Ramesh, N. G.; Balasubramanian, K. K. *Tetrahedron* **1995**, 51, 255–272; (g) Procopio, A; Dalpozzo, R; De Nino, A.; Nardi, M.; Oliverio, M.; Russo, B. Synthesis **2006**, 2608–2612.
- 5. Review: (a) Ferrier, R. J. Top. Curr. Chem. 2001, 215, 153–175; (b) Ferrier, R. J.; Zubkov, O. A. Org. React. 2003, 62, 569–736; (c) Vorbrüggen, H.; Ruh-Pohlenz, C. Org. React. **2000**, 55, 1–630.
- 6. Fujiwara, T.; Hayashi, M. J. Org. Chem. 2008, 73, 9161–9164.

- 7. Hayashi, M.; Yamada, K.; Arikita, O. Tetrahedron 1999, 55, 8331-8340.
- 8. Sakakibara, T.; Tsubasa, T.; Kotaka, C.; Kajihara, Y.; Watanabe, Y.; Fujioka, A. Carbohydr. Res. **2008**, 343, 2740–2743.
- (a) Hagiya, K.; Muramoto, N.; Misaki, T.; Sugimura, T. Tetrahedron **2009**, 9. 65, 6109–6114; (b) Sugimura, T.; Hagiya, K. Chem. Lett. **2007**, 36, 566-567.
- Useful reagent for avoiding difficulty of separation of product with co-product.
 Holla, W. Angew. Chem., Int. Ed. Engl. 1989, 28, 220–221.
- Sobti, A.; Sulikowski, G. A. *Tetrahedron Lett.* **1994**, *35*, 3661–3664 See also; Guthrie, R. D.; Irvine, R. W.; Davison, B. E.; Henrick, K.; Trotter, J. J. Chem. Soc., Perkin Trans. 2 **1981**, 468–472.