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SUMMARY. We consider a capturerecapture model in which capture probabilities vary with time and 
with behavioral response. Two inference procedures are developed under the assumption that recapture 
probabilities bear a constant relationship to initial capture probabilities. These two procedures are the 
maximum likelihood method (both unconditional and conditional types are discussed) and an approach 
based on optimal estimating functions. The population size estimators derived from the two procedures are 
shown to be asymptotically equivalent when population size is large enough. The performance and relative 
merits of various population size estimators for finite cases are discussed. The bootstrap method is suggested 
for constructing a variance estimator and confidence interval. An example of the deer mouse analyzed in 
Otis et al. (1978, Wildlife Monographs 62, 93) is given for illustration. 
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1. Introduction 
We focus on inference for a closed capture-recapture model 
in which both behavioral response to capture and variation 
among sampling times exist. The model originally proposed 
by Pollock is usually referred to  as model Mtb in the litera- 
ture, where the subscript t denotes time variation and b de- 
notes behavioral response. (See Otis et al. [1978] for a review 
of related models.) The analysis of capture-recapture data 
can be performed using the comprehensive computer program 
CAPTURE (Otis et al., 1978; White et al., 1982; Rexstad and 
Burnham, 1991), which is readily available from Gary White’s 
website (http://www.cnr.colostate.edu/-gwhite/software. 
html). 

As indicated in Otis et al. (1978, p. 38), model Mtb is 
not identifiable without further restrictions on the parame- 
ters. Section 2 briefly reviews the problem of nonidentifiabil- 
ity. There is relatively little reported research for this model. 
Burnham, in an unpublished manuscript, was the first to de- 
rive the maximum likelihood estimator (MLE) of population 
size under the assumption that recapture probability for any 
sample is a power function of initial capture probability (see 
Rexstad and Burnham, 1991, p. 13). This MLE has been im- 
plemented in the program CAPTURE. 

Despite the nonidentifiability, model Mtb has been selected 
as the most likely model for estimating some biological pop- 
ulations. Pollock et al. (1990, pp. 15-17) gave some examples 
for quail data sets that were originally presented in O’Brien et 
al. (1985). The model selection procedure provided in CAP- 
TURE chose model Mtb for three out of the eight quail data 
sets. 

Otis et al. (1978, p. 93) provided another interesting data 
set on deer mice, and it will be used in Section 3 for illus- 
tration. The data were collected by S. Hoffman in 1974 and 
are given as an example with the program CAPTURE. The 
live-trapping experiment was conducted for five consecutive 
mornings. A total of 110 distinct mice were caught out of 283 
captures. The data detail and analysis will be given in Sec- 
tion 3. Otis et al. (1978, p. 94) concluded that behavior is 
the strongest factor affecting capture probabilities and that 
time is the next most significant factor. However, the iterative 
steps for Burnham’s estimation procedure when applied to the 
deer mouse example fail to obtain an estimator. It seems that 
a problem with Burnham’s estimator is the possible failure of 
convergence even for nonsparse data. We were thus motivated 
to  find the MLE under other conditions for model Mtb. 

Huggins (1991) and Stanley and Burnham (1998, 1999) 
considered a logistic relationship between first-capture prob- 
abilities and recapture probabilities. Lloyd (1994) developed 
a martingale method under the assumption that recapture 
probabilities and first-capture probabilities are related by a 
constant proportional parameter, with the constant indepen- 
dent of the animal. Using a model selection and goodness-of- 
fit test, we show in Section 3 that the special type of model 
Mtb proposed by Lloyd (1994) is an adequate model for the 
deer mouse data. The purpose of this article is to provide 
ways to deal with this model. Our estimators would also be 
useful for applications where an estimator averaging approach 
(Stanley and Burnham, 1998) is adopted. 

Under Lloyd’s assumption, we derive in Section 2.1 the 
MLE of population size and its variance estimation. Two 
types of MLEs (unconditional and conditional) are discussed. 
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In Section 2.2, we present the maximum quasi-likelihood esti- 
mator (MQLE) on the basis of optimal estimating equations. 
Sanathanan (1972) verified that the two types of MLEs are 
asymptotically equivalent. In this article, we show that the 
MLEs and the MQLE are also asymptotically equivalent. Re- 
sults of a simulation study to assess the relative merits of 
various estimators for finite sizes are reported in Section 4. 
As will be shown in Section 4, the iterative procedures for 
both MLEs and the MQLE converged for most trials in our 
simulation if a sufficiently large portion of animals was caught. 
2. Models and Estimators 
2.1 Maximum Likelihood Estimator 
Assume that the population size is N and that there are t 
trapping samples. Let p i j  be the capture probability of the ith 
animal in the j t h  trapping sample. Model Mtb assumes that 
the capture probabilities vary with time and with behavioral 
response, i.e., it assumes that p i j  = p j  for a first capture and 
p i j  = c j  for a recapture. There are a total of 2t parameters, 
i.e., ( N ,  p l , p 2 , .  . . , p t ,  c2, CJ, . . . , ct). Let nj be the number 
of animals captured in the j t h  sample, uj and mj denote, 
respectively, the number of unmarked and marked animals 
in the j t h  sample, and m .  : C$=lmj denote the sum of 
m j ' s .  Let Mj = u1 + u2 + . . .  + uj-1 be the number of 
marked animals in the population prior to the j t h  sample. 
Hence, Mt+l is the number of distinct animals captured in 
the experiment. 

As shown in Otis et al. (1978, p. 38), the minimal 
sufficient statistic is (211, u2,. . . , ut, m2, m3,. . . , mt), which 
is of dimension 2t - 1. Therefore, the model is nonidentifiable 
without any restriction. In this article, we assume that the 
recapture probability cj is equal to a constant multiple of the 
initial capture probability p j ,  i.e., cJ / p j  = # for all j = 2, . . . , t 
so that the parameters reduce to ( N ,  # , p i ,  p 2 ,  . . . , p t ) ,  which 
has the dimension t + 2. This suffices to make the model 
identifiable if there are at least three trapping samples. The 
model with this assumption will be called simply model Mtb 
hereafter. 

Let X ,  be the number of animals with capture history 
w ,  where w denotes a nonempty subset of {1,2, 
example, X124 is the number of animals captured in the 
first, second, and the fourth samples but not in others. 
Let P, denote the probability of the history w and Q = 
njr1 (1 - p j )  be the probability of not being captured in the 
experiment. Then the distribution of the set of all possible 
capture histories {X,} is a multinomial and can be written as 
P[{X,}] = N ! [ ( N  - M t + l ) ! n ,  X w ! ] - l [ n ,  P+]QN-Mt+l. 
Letting p = ( P I ,  p a ,  . . . , p t ) ,  the likelihood function under the 
above assumption is given by (Otis et al., 1978, p. 111) 

L = L ( N ,  # , P )  
c c N ( N -  l ) . . . ( N - M t + 1  + l )pyl ( l -p l )N-"~#m.  

t 
x rJp;yl - p J ) N - - n / r J + y l  - #pj)'M'-'"J . (2.1) 

j = 2  

As shown in Sanathanan (1972), this likelihood can be 
factored as L = L1(N1Q)L2(4 ,p ) ,  where L1 denotes a 
binomial likelihood and L2 denotes a multinomial likelihood. 
Here L l ( N , Q )  = N ! [ ( N  - Mt+l)!Mt+l!]-l(l - Q)Mt+l 
xQNPMt+l  (the distribution of Mt+l) and L z ( # , p )  = 
[Mt+I!/II, Xw!]{ I I ,  [P,/(l - Q ) l X w }  (the conditional dis- 

tribution of {X,} given Mt+l).  Note that only N and Q are 
involved in L1 and N is not involved in L 2 .  There are two 
types of MLEs (Sanathanan, 1972), 

(1) Unconditional MLE (UMLE): This is the usual MLE 
obtained by maximizing the full likelihood (2.1) 
simultaneously with respect to ( N ,  #, p ) .  

(2) Conditional MLE (CMLE): The CMLE of ( # , p )  is first 
computed by maximizing the conditional likelihood L2 

and obtaining an MLE Q of Q;  the CMLE of N is then 
determined by maximizing L1 ( N ,  Q). The second part 
of maximization is equivalent to estimating the size 
in a binomial case for a given trial probability 1 - Q. 
Thus, the CMLE is the integer part of Mt+l/(l - Q) 
(cf., Dahiya, 1981). For easy interpretation, the nearly 
exact solution Mt+l / ( l  -Q) instead of its integer part 
(error is less than unity) will be used and referred to 
as the CMLE throughout this article. 

In deriving the UMLE, the parameter N can be treated as 
either an integer or a real number. If N is treated as an integer, 
maximization is possible (Otis et al., 1978; Dahiya, 1981; 
Lindsay and Roeder, 1987) but the numerical manipulations 
become less tractable. Since the likelihood (2.1) is meaningful 
for any real N ,  we treat N as a real number in this article. For 
the UMLE, we thus can take derivatives with respect to N ,  
4, and p J ,  respectively, and the UMLE satisfies the following 
system of t + 2 equations: 

,=1 

(2.2b) 

= 0, d l o g L  - 723 N - M,+1 - ( M J  - m,)# - _ -  - 
dP3 PJ 1 - P, 1 - #PI 

j = l , 2  ) . . . )  t. (2.2c) 

The solution is denoted by ( ~ " M L E ,  &,TMLE,~UMLE) .  The 
matrix of the second derivatives is evaluated in a technical 
report by the authors (Chao, Chu, and Hsu, 1998). From 
(2.2c), we can express pJ as a function of N and #, i.e., we 
have, for 1 = 2,.  . . , t, 

P, = PJ (N, 4) 

- 4 N 4 7 ~ ~ } ' / ~ }  

and p l  = n l / N .  In (2.3), the smaller root is chosen because it 
attains the maximum of the likelihood function. (The larger 
root attains the corresponding minimum.) After substituting 
(2.3) and p l  = n l / N  into (2.2), the UMLE ( ~ ~ U M L E ,  &MLE) 
under model Mtb is the solution of the equations (2.28) and 
(2.2h), where p j  = p,(N,#)  is given in (2.3). A numerical 
technique such as the Newton-Raphson method is required 
to obtain the solution. A drawback of the UMLE is that it 
is not scale invariant. This was first noted by Schnute (1983) 
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for the submodel Mb. Examples are given in the Discussion 
for model Mb and in Section 3. 

To find the CMLE, we first maximize L2 with respect 
to ( 4 , ~ ) .  Note that dlogL/apj = [(N - Mt+l)/Q - 
Mt+l/( l  - &))aQ/ap ,  + dlog Lalap,. Under the restriction 
N = Mt+l/(l - Q), it is readily seen that (N - Mt+l)/Q - 
Mt+l/(l  - Q) = 0. Hence, both dlogLz/d+ = alogL/d4 
and d log L2fdpj = dlog Lldpj (j = 1,2, .  . . , t )  are valid. 
This implies that the CMLE ( ~ ~ ~ M L E , & M L E )  satisfies the 
following system of equations: 

or equivalently, 

(2.4a) 

where p3 = p, (N, 4)  is given in (2.3). 
It is interesting to notice that (2.4a) is also the equation 

gotten by taking a first finite difference of the likelihood 
function with respect to N. The two systems of equations 
corresponding to the two MLEs differ only in (2.2a) and 
(2.4a). These two equations are approximately the same when 
N is large because Ez:' (N - j  + 1)-l E J"_Mt+l x 'dx = 
logN - log(N - Mt+l). Sanathanan (1972) proved that the 
CMLE is not less than the UMLE and that the two MLEs are 
asymptotically equivalent when N is large. For finite values of 
N, the difference between them might be large (see the deer 
mouse example in Section 3). 

When 4 = 1, model Mtb reduces to the special case that 
the capture probabilities only vary with time, i.e., model M t .  
Under this special model, it follows from (2.3) that p,(N) = 
nJ/N. The usual UMLE by treating N as a real value satisfies 

The CMLE satisfies the equation 1 - Mt+l/N = I$=, (1 - 
n,/N). Here the CMLE is derived in the sense of conditioning 
on Mt+l in the estimation. Note that the CMLE is also an 
MLE conditional on the sizes { n l ,  n2,. . . , nt) (Darroch, 1958; 
Seber, 1982, p. 131). 

For the special model Mb, which allows behavioral 
response to capture, we can let pl  = p2 = . . .  = pt = p 
and c2 = . . .  = ct = c in the likelihood (2.1). Define 
M .  = M,. The equation for the UMLE reduces to 

(N - j + 1)-l +t log[l - Mt+l/(tN - M.)]  = 0, whereas 
the CMLE satisfies 1 - Mt+l/N = [I - Mt+l/(tN - M.)lt. 
The latter estimating equation was also used by Zippin 
(1956). This model is also referred to as a removal model 
in the literature. Note that both MLEs depend only on the 
first capture data {ul,  u2,. . . , ut} because Mt+l and M .  are 
functions of {u1,u2,. . . ,ut}. Schnute (1983) found that, for 
data {211,z&2,'L13} = {90,60,40}, the UMLE is &MLE = 
265.2, whereas for data {u1,u2,u3} = {9,6,4}, the UMLE 
becomes ~ ~ U M L E  = 23.2, not 1/10 of 265.2. This indicates 

- 

theequation C,=, Mt+i (N-3+1)-1+C~=llog(l-n, /N) = O .  

Mt+i 
C,=l 

that the UMLE may not be scaled accordingly when data 
are scaled by a factor. The practical interpretation is the 
following: If each fish is a unit, then the data set of {90,60,40} 
implies that the initial population size is 265 fishes. However, 
if fishes are caught and counted in schools of 10, then the 
same data set of {9,6,4} (in a unit of 10) implies 23.2 units 
(or 232 fishes). We can theoretically verify that the CMLE 
(and the MQLE discussed below) are scale invariant. For the 
above data sets, the CMLE (and the MQLE) is 270 for the 
former data and 27 for the latter data. 

Under the regularity conditions specified in Sanathanan 
(1972), we can conclude that both MLEs are asymptotically 
normal and consistent if N -+ 00. The consistency here 
means that the estimator divided by N converges to one with 
probability one. Under our model, the asymptotic variance 
for both types of MLEs can be shown to  be 

t ,t-1 t 

k=2 

where Ak = [(I - Qk-i)'#JPk]/{Qk-1[9k f (0 - 1)Qk-il},  

4, pk, and qk in (2.5) by their estimates, we then obtain 
variance estimators based on the asymptotic variance formula. 
Simulation results have suggested that the asymptotic 
variance estimator generally works well when there are enough 
data, whereas it overestimates if the mean capture rate is 
relatively low. (See Section 4 for details.) The bootstrap 
procedure (Efron and Tibshirani, 1993) has been applied to 
capture-recapture sampling by Buckland (1984), Buckland 
and Garthwaite (1991), and Norris and Pollock (1996). We 
adopt a nonparametric bootstrap to obtain an alternative 
variance estimator. Let R denote the collection of all subsets 
of {1,2,. . . , t }  and X 0  (0 denotes an empty set) denote the 
missing cell. The capture histories {Xw 1 w E R}, where X ,  is 
defined earlier in this section, are distributed as a multinomial 
distribution. 

Suppose that we want to obtain a bootstrap variance for 
any estimator N on the basis of given observable capture 
histories { X ,  I w E R, w # 0). A bootstrap sample {X:  I 
w E R} is generated from a multinomial distribution with 
parameter fi and cell probabilities Xw/N for any observable 
cell and 1 - C, Xw/N for the missing cell. Then, based on the 
generated observed data {X: I w E R,  w # 0}, a bootstrap 
estimate can be obtained. After B replications, the bootstrap 
variance estimator of N is simply the sample variance of those 
B bootstrap estimates. The percentile method can then be 
used to  construct an associated confidence interval based on 
the same B bootstrap estimates (see Efron and Tibshirani, 
1993, Chapter 13). The performance of the bootstrap variance 
estimator and the confidence interval will be discussed in 
Section 4. 

qk = 1 - p k ,  0 = I/$, and Qk = 9192 ".qk. Replacing N, 

2.2 Maximum Quasi-Likelihood Estimator 
We now present the optimal estimating function approach. An 
estimating function is a function of the parameter and data. 
An estimator of the parameter can be obtained as its root. 
An unbiased estimating function satisfies the expectation that 
the function is zero for all parameters. Let E,, var,, and covc 
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denote the expectation, variance, and covariance by holding 
the first j - 1 samples fixed. Given the capture history of the 
first j - 1 samples, u3 is a binomial random variable with 
parameters (N - M j )  and pj, and m j  is a binomial with 
parameters Mj and +p3. Thus, for each sample j ,  we can 
construct the following unbiased estimating function (mi = 0, 
MI = O ) :  

] . (2.6) 
uj - ( N  - Mj)Pj 

m j  - Mj4Pj 
gj  = [;;;I = [ 

We consider a linear combination of gi,gZ, . . . , gt into a single 
estimating function, and the weight associated with gj is 
allowed to be a function of the parameters and the history of 
the previous j - 1 samples. The optimal estimating equation is 
given by (see Godambe and Heyde [1987] or Liang and Zeger 
[1995] for necessary background) g = Cj=l D:%-'gj = 0 ,  

where DT denotes the transpose of D j  and 

Varc(g1j) covc(glj,gaj) 
covc(glj, g2j varc (szj ) 

vj = 

and p = (pl ,pz, .  . . pt). Note that Dj is a matrix with 
dimension 2x (t+2). Substituting varc(glj) = (N-Mj)pj(l-  

and mk are conditionally independent) into (2.7), we obtain 
the following t + 2 equations for g: 

pj) , varc (szj ) = Mj 4 ~ j  (1 - 4pj ), and cove (s l j ,  gaj ) = 0 ( u k  

t 

[(N - Mj)(1 - p j ) ] - l [ u j  - (N - Mj)pj] = 0, (2.8a) 
j=1 

t 

[+(I- 4Pj)l-lImj - Mj4pjI = 0,  (2.8b) 
j = 2  

j = 1 , 2  , . . . ,  t .  (2 .8~)  

The solution is designated as ( ~ M Q L E ,  &MQLE,$~MQLE). Note 
that a constant l/p3 is dropped in (2 .8~)  without affecting the 
solution. These types of optimal equations are termed quasi- 
likelihood equations in Godambe and Heyde (1987). Thus, the 
solution of (2.8) will be referred to as the maximum quasi- 
likelihood estimator (MQLE). 

Based on (2.8c), we can express p3 as a function of N and 
4. The resulting function can be shown to be exactly the same 
as that in (2.3). It follows from ( 2 . 8 ~ )  that equations (2.8a) 
and (2.8b) are equivalent to 

t 

C { ( N - M , ) [ ( M , ( d -  1) + N ( 1  - 4 P J I - l  
3=2 

x [4MJUj - (N - M,)m,I = 0,  (2.9a) 
t 

j=2  

x [4Mjuj  - ( N  - Mj)mj] = 0,  (2.9b) 

where pj  = pj(N,d) is given in (2.3). The above estimating 
equations are identical to those derived in Lloyd (1994), 
who suggested the use of p j  = u j / ( N  - M j )  in solving the 
equations. Our expression for pj, given in (2.3), which uses 
both first-capture and recapture data, is more complex, but it 
is derived from a standpoint of optimal estimating functions. 

= 1 in the 
derivation. Thus, (2.3) and (2.9a) imply that p3 = n,/N and 
the MQLE satisfies { ( N  - M j ) ( N  - nj)}-l[M3uj - 
(N - Mj)mj] = 0. The above result was first derived by 
Yip (1991). For the special case of model Mb, we have 
pl = pz = . . .  = pt = p and c2 = = ct = c, and the 
unbiased estimating functions become g l j  = uj - ( N  - M3)p 
and g2j = mj - Mjc. Therefore, the resulting MQLEs are the 
same as those derived in Lloyd (1994). 

Under the conditions 4 > 0 and 0 < p k  < 1 for 
k = 1 ,2 , .  . . t ,  the asymptotic normality and consistency 
of the MQLE as N + co is proved in a previously cited 
technical report by the authors. The asymptotic variance- 
covariance matrix of the solution ( ~ M Q L E ,  &MQLE, Z ~ M Q L E )  is 
approximately the inverse of the matrix E(C$=, DTV'Tl DJ),  
where D j  and Vj are defined in (2.7). The asymptotic 
variances of the MQLE and the MLEs under model Mtb turn 
out to be identical. Thus, an estimated variance estimator can 
be computed using (2.5). The bootstrap method proposed for 
the MLEs can be similarly applied to the MQLE as well. 

3. Real Data Example 
The deer mouse data considered in this section were originally 
collected by S. Hoffman and analyzed in Otis et al. (1978, 
p. 93). These data are given as an illustrative example 
with the program CAPTURE (Rexstad and Burnham, 
1991). There were five trapping occasions; 110 distinct 
mice were caught out of 283 captures. The numbers of 
captures for the five capture occasions were (nl ,  . . . , n 5 )  = 
(37,54,58,65,69), and the numbers of unmarked caught were 
(u1,. . . , u s )  = (37,31,9,21,12). Hence, we have ( M 2 , .  . ., 
M6) = (37,68,77,98,110). 

If model Mt is assumed, the UMLE of N is 112.6, which 
is only slightly higher than the number of distinct mice 
captured, 110. Assuming the underlying model is model 
Mb, Otis et al. (1978) obtained the first-capture probability 
estimate of 0.26 and recapture probability estimate of 0.62. 
Thus, the animals showed a trap-happy behavioral response 
to capture. The resulting UMLE of the population size under 
model Mb is 142 with an estimated SE of 16.4, which is used 
to  construct an approximate 95% confidence interval of (109, 
175). 

Otis et al. (1978, p. 93) commented that neither model 
Mt nor model Mb fits the data using a goodness-of- 
fit (GOF) test. If we consider both time variation and 
behavioral response by adopting model Mtb, the program 
CAPTURE fails to obtain an estimator under the assumption 
that recapture probabilities are a power function of initial 
capture probabilities. Assuming a constant relation between 
recapture probabilities and initial capture probabilities, we 
have NUMLE = 161.1, ~ U M L E  = 3.19, and ~ ~ U M L E  = 
(0.23,0.21,0.21,0.19,0.18) based on (2.2). We first test the 
hypothesis of model Mb versus model Mtb using a likelihood 
ratio test (LRT); the test has an approximately chi-square 
distribution with 4 d.f. The hypothesis is rejected since the 

For the special case of model Mt, we let 
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chi-squared-based LRT yields a value of 66.38. Similarly, 
the LRT is 22.86 for testing the hypothesis of model Mt 
versus model Mtb. Hence, model Mtb provides significant 
improvement over both model Mt and model Mb in 
maximizing the likelihood. 

The usual Pearson's type of GOF test cannot be applied to 
these data because a large-scale pooling would be involved. 
Stanley and Burnham (1999) suggested a GOF test for model 
Mtb based on the statistic x: - where x," denotes a 

GOF test for model Mt and ~ t 2 / ~ ~  denotes the chi-square- 
based LRT between model Mt and model Mtb. A widely 
used GOF test for model Mt is Leslie's test (Leslie, 1958). 
Otis et al. (1978, p. 92) obtained the Leslie's GOF test of 
84.12 with 66 d.f. Hence, a GOF test value for model Mtb is 
84.12 - 22.86 = 61.26. Based on the chi-squared distribution 
with 65 d.f., the P-value of this GOF test is 0.61. Therefore, 
there is insufficient evidence to  reject model Mtb. The two 
MLEs and the MQLE are given below. The bootstrap SE for 
each estimator was based on 10,000 replications. The same 
10,000 bootstrap estimates yielded a 95% confidence interval 
(CI) using the percentile method. The asymptotic standard 
errors were computed from equation (2.5). 

Bootstrap Asymptotic 95% 
Method fi SE SE Interval 4 
UMLE 161.1 42.79 41.72 (121, 283) 3.19 
CMLE 173.7 45.25 55.69 (124, 289) 3.63 
MQLE 152.0 29.94 32.87 (119, 229) 2.87 

This case study provides an example that the UMLE and 
the CMLE may produce quite different results. Except for 
the CMLE, the asymptotic SE estimate for each of the other 
two estimators is close to the corresponding bootstrap SE 
estimate. All three values of # show strong evidence for a 
trap-happy case. 

For each animal, if we add four additional animals with 
the same capture history into the data, then all summary 
statistics become five times the original data. For these 
expanded data sets, we have f i c ~ ~ ~  = 868.5 = 5 x 173.7, 
NMQLE = 760 = 5 x 152, which indicates that the CMLE 
and MQLE change accordingly when the data are scaled by 
a factor. However, &MLE = 854.4, which is not five times 
161.1. Hence, a drawback of the UMLE is that its estimates 
depend on the choice of the scale. 

A computer program, written in the C language, that 
calculates all the estimators may be obtained from the first 
author upon request and will be available soon on the website 
http: //www .stat .nthu.edu.tw/-chao/. 

4. Simulation Resul ts  
We have carried out a limited simulation study to examine the 
performance of the proposed estimation procedures. Three 
values of N (100, 200, 400), two values of 4 (1.5, 0.8), and 
t = 5 were selected. Here we only report the results for N 
= 400. Other results for N = 100 and 200 are given in a 
technical report by the authors (Chao, Chu, and Hsu, 1998). 

The eight trials of model Mtb are given below. The p j ' s  in 
these eight trials were selected so that the expected number 

of animals captured, E(Mt+l), increases from 200 to 375 in 
approximate increments of 25. 

Trial 1: 

Trial 2: 

Trial 3: 

Trial 4: 

Trial 5: 

Trial 6: 

Trial 7: 

Trial 8: 

Table 1 presents the simulation comparison for the trap- 
happy cases only. The relative merits of various estimators 
are generally consistent for the trap-shy cases. For each fixed 
(pi ,p2,. . . ,p5) and #, 1000 sets of capture-recapture data 
were simulated. We mainly focused on the three population 
size estimators under model Mtb: UMLE (&JMLE), CMLE 
( f i c ~ ~ ~ ) ,  and MQLE ( ~ M Q L E ) .  For each estimator, we 
computed (1) the point estimate, (2) the corresponding 
asymptotic SE estimate (see (2.5)), (3) the bootstrap SE 
estimate using 500 bootstrap replications for each data set. 
and (4) the 95% confidence interval using the percentile 
method based on the same set of bootstrap replications in 

We excluded those data sets for which the iterative steps 
did not converge for any estimator in our simulation. The 
procedure continued until 1000 data sets had been generated 
for which the iterative steps did converge for all estimators. 
Here divergence means that either iterations increase without 
a limit (the upper bound was set to be 7hft+l) or iterations 
bounce around without reaching a stable value in 1000 steps. 

For the 1000 generated data sets, estimates and their 
asymptotic standard error estimates as well as bootstrap SE 
estimates were averaged to give the results average estimate, 
average asymptotic SE, and average bootstrap SE in Table 
1. The sample standard error (with the heading of sample 
SE in the tables) and sample root mean squared error (with 
the heading of sample RMSE) were also obtained based 
on the resulting 1000 estimates. We also list the average 
number of distinct captured animals (Mt+i) for each trial. 
The percentage of 1000 simulated data sets in which the 
95% confidence intervals covered the true value (400) was 
recorded. The coverage probabilities are listed under the 
heading bootstrap CI coverage. Based on Table 1 and other 
unreported results, we summarize below the performance of 
the various estimators. 

The three estimators (UMLE, CMLE, and MQLE) are 
generally comparable. The CMLE and the MQLE exhibit 

(3). 
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Table 1 
Comparison of various estimators f o r  trap-happy cases (4 = 1.5); 

N = 400, 1000 simulation runs,  500 bootstrap replications 

Trial Average Average 
(Mt+l in Average Sample asymptotic bootstrap Sample Bootstrap CI 

parentheses) Estimator estimatea SE SE SE RMSE coverage (%lb 
1 NUMLE 305 58.0 102.2 74.7 111.5 94 

NMQLE 337 79.4 151.5 72.3 101.6 91 

2 NUMI,E 354 77.6 113.5 88.7 90.3 94 
(226) NcMCE 387 102.9 159.8 93.2 103.7 97 

N M Q I ~ E  381 97.5 149.8 87.4 99.4 95 

(252) N c M I ~ E  407 98.7 132.4 86.0 99.0 95 
N M Q L E  402 95.2 125.5 80.5 95.2 93 

4 NUMLE 390 69.8 83.4 82.9 70.5 94 

5 NUMLE 400 63.9 68.1 67.0 63.9 93 

(203) NCMLE 344 84.3 164.5 78.1 101.2 96 

3 ~ U M L E  382 76.5 100.0 82.3 78.7 92 

(275) NCMLE 41 1 86.7 106.0 87.8 87.4 96 
NMQCE 406 83.0 100.7 80.8 83.2 96 

(300) NCMLE 417 77.9 84.6 70.6 79.9 96 
NMQCE 413 74.2 80.4 63.7 75.4 96 

6 NUMLE 403 38.1 35.0 41.9 38.2 92 
(326) N c M I ~ E  409 41.3 38.1 45.0 42.4 92 

NMQLE 407 40.4 37.1 42.5 41.0 93 

7 NUMLE 401 29.3 26.0 31.7 29.3 93 
(351) NCMLE 406 32.7 29.0 34.9 33.3 94 

NMQLE 405 31.9 28.3 30.5 32.3 94 

(375) NCMLE 402 12.2 11.9 13.3 12.4 95 
NMQLE 40 1 12.0 11.7 12.8 12.1 97 

8 NUMLE 400 11.6 11.2 12.4 11.6 96 

a The SE of any average estimate is approximately the sample SE divided by (1000)1/2. 
bThe SE of any coverage probability is approximately ( p  x (1 - p)/1000)1/2, where p denotes the estimated 

coverage. 

similar behavior. (Thus, we treat them as one group of estima- 
tors.) The value of the CMLE is consistently higher than that 
of the UMLE (a theoretical property proved by Sanathanan 
[1972]); the MQLE, on average, is somewhere in between (a 
numerical finding). 

The UMLE generally increases to the true population size 
as the capture proportion tends to one. It has the lowest vari- 
ance and RMSE, but it exhibits large negative bias when the 
mean capture rate is low, especially in the trap-shy cases (un- 
reported). Both the CMLE and the MQLE first increase with 
the capture fraction, cross the true parameter, and then de- 
crease to approach the population size. Hence, the direction 
of bias depends on the capture proportion. When the capture 
proportion is relatively low, as in trials 1-4, the CMLE and 
MQLE are preferable to the UMLE in terms of bias, although 
the former two estimators have larger variation. 

The asymptotic variance formula given in (2.5) yields an 
adequate point estimator only for trials 6-8. When there is 
insufficient capture information, as in other trials, the asymp- 

totic estimated SE severely overestimates, especially for the 
CMLE. We generally recommend the use of the bootstrap 
method because the bootstrap SE is closer to the sample SE 
in most cases. The confidence intervals using the percentik 
method for each estimator perform reasonably well as regards 
coverage probability. 

For trials 5-8, in which there were enough captures, conver- 
gence occurred for almost all data sets. When population size 
was increased, the divergence rate decreased as more data be- 
came available. The iterative steps did diverge for some trials. 
In the trap-happy cases, the divergence rates based on 1000 
simulation runs for the UMLE for trials 1-4 were 25, 14, 7, 
and 4% and the corresponding rates for both the CMLE and 
the MQLE were about 33, 19, 9, and 6%. 

In summary, we have developed for a special type of model 
Mtb the unconditional MLE (UMLE), the conditional MLE 
(CMLE), and the maximum quasi-likelihood estimator 
(MQLE). The three estimators are asymptotically equivalent 
for large population sizes and are generally comparable for fi- 
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nite sizes. The CMLE and the MQLE behave quite similarly. 
These two estimators are scale invariant, but the UMLE is 
not. When there is a sufficient number of captures, the UMLE 
is preferable to the other two estimators, but it yields large 
negative bias otherwise. When the mean catchability is rela- 
tively low, the CMLE and the MQLE are each less biased 
than the UMLE. The bootstrap method (Buckland, 1984; 
Buckland and Garthwaite, 1991; Norris and Pollock, 1996) 
for constructing variance estimators and confidence intervals 
is recommended for practical use. 
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RESUME 

Nous Btudions un modhle de capture-recapture dans lequel les 
probabilitks de capture varient en fonction du temps et de la 
reponse comportementale. Nous dkveloppons deux prockdures 
inferentielles, sous l’hypothhse que le rapport entre les prob- 
abilites de recapture et les probabilitks de capture initiale 
est constant. Ces deux procedures sont la mkthode du maxi- 
mum de vraisemblance (conditionnelle ou inconditionnelle), et 
une mkthode baske sur des fonctions d’estimation optimales. 
Nous montrons que les estimateurs de l’effectif de la popula- 
tion obtenus par les deux procedures sont asymptotiquement 
kquivalents quand la population est assez grande. Nous com- 
parons les performances et les qualit& de divers estimateurs 
d’effectifs de population pour des cas finis. Nous suggkrons 
I’utilisation du bootstrap pour construire un estimateur de la 
variance et un intervalle de confiance. Nous traitons l’exemple 
de la population de souris Peromyscus analyske par Otis et 
al. (1978, Wddlife Monographs 62, p. 93). 
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