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Abstract: A facile reaction sequence, consisting of a palladium-
catalyzed Sonogashira coupling, a cobalt-catalyzed Diels–Alder re-
action and a subsequent cyclization initiated by a bromine-lithium
exchange reaction, allows a three-component synthesis of tricyclic
compounds. Thereby, structurally different functionalized com-
pounds can be generated when functionalized dihalo-arenes, tosyl-
ated alkynols and substituted 1,3-dienes are used as starting
materials.
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Short reaction sequences with a high degree of variability
allow the preparation of a large number of complex mol-
ecules from commercially available or easily prepared
starting materials in a very efficient way in a short period
of time. When transition metal-catalyzed reactions are in-
volved, many functional groups can be tolerated in each
step to avoid lengthy and tedious protection-deprotection
steps. Herein, we wish to report a short reaction sequence
involving two transition metal-catalyzed reactions fol-
lowed by a stoichiometric bromine-lithium exchange re-
action for the synthesis of tricyclic ring systems. The
general design for the reaction sequence is outlined below
(Scheme 1). The chemoselective Sonogashira coupling
reaction of bromo-iodo arenes or dibromo-heteroarenes
generates the key alkyne intermediates, bearing a sterical-
ly bulky (hetero)aryl substituent and a sterically less-de-
manding alkyl substituent. A regioselective cobalt-
catalyzed neutral Diels–Alder reaction with symmetrical
and unsymmetrical 1,3-dienes was envisioned in order to
generate ring C of the tricyclic compounds and to bring
the aryl bromide and the tosylate group into proximity. A
fast bromine-lithium exchange reaction generates the
aryllithium nucleophile, which displaces the tosylate to
complete the intramolecular ring closure reaction and
forms ring B.

The Sonogashira coupling reaction of bromo-iodoben-
zene derivatives with different alkynols and their subse-
quent reaction with tosyl chloride gave the corresponding
products in excellent yields and with complete chemose-
lectivity, following standard procedures.1 However, when
the coupling reaction was performed with the tosylated
alkynols (especially propynol derivatives, Scheme 2), the
secondary amine bases displaced the tosylates to give the

corresponding propargylic amines in moderate to good
yields.2 Besides diethylamine (R = Et 92%), other second-
ary amines can also be used, as shown in Scheme 2.

Scheme 2

When tertiary amine bases such as triethylamine were
used as a substitute for diethylamine, the amount of the
desired tosylated alkynol did not overcome the yields for
the reversed synthetic protocol (see Scheme 3). There-
fore, the Sonogashira coupling reactions were performed
with the free alcohols, which were subsequently tosyl-
ated.3

The key step of the reaction sequence, our recently de-
scribed cobalt-catalyzed neutral Diels–Alder reaction of
internal alkynes with 1,3-dienes was initiated by zinc re-

Scheme 1

FGFG

Br
OTs

R2

R1

R2

R1

OTs

FG

Br

OTsI

Br

FG

+

n

n

nn

I

Br

OTs
Pd(PPh3)2Cl2
CuI / HNR2

N

OMe

MeO

Cl

F3C

N N

N

Br

N
R

R+

66% 84%

toluene, 20 °C
16–24 h

94% 89%

D
ow

nl
oa

de
d 

by
: N

at
io

na
l U

ni
ve

rs
ity

 o
f S

in
ga

po
re

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



242 G. Hilt et al. LETTER

Synlett 2003, No. 2, 241–243 ISSN 0936-5214 © Thieme Stuttgart · New York

duction of the cobalt(II)-dppe complex. In these cases, the
usual reductant of choice, tetrabutylammonium borohy-
dride, gave some triple bond reduction as a side reaction,
but this was avoided when zinc powder was used as the re-
ducing agent.4 The reaction of 2,3-dimethyl-1,3-butadi-
ene (DMBD) and isoprene as simple 1,3-diene test
systems gave the desired dihydroaromatic products in
good yields (Scheme 4) after 14–20 h reaction time at
room temperature.5 In the case of isoprene, the products
were generally formed as an 80:20 mixture of regioiso-
mers where the major product has the methyl group of the
isoprene and the aromatic ring substituent in a 1,4-rela-
tionship.

Scheme 4

At this point the stage was set for the formation of ring B.
The final reaction, a bromine-lithium exchange reaction in
the presence of a tosylate, has no precedent in the litera-
ture. However, similar Parham-type cyclization reactions
are described with several functional groups such as ep-
oxides or halides as electrophiles.6 Under these circum-
stances, we were delighted to see that the exchange
reaction proceeded smoothly in THF at –95 °C to produce
the tricyclic phenanthrene derivatives. The products,
which can be isolated as the dihydroaromatic compounds
in good yield, accompanied by some air-oxidized aromat-
ic side products, can be oxidized with various oxidizing
agents, such as DDQ, to the aromatic compound in good
overall yield.7 Following this protocol, several functional-
ized and specifically substituted phenanthrene deriva-
tives, as well as heterocyclic tricyclic compounds, could
be generated (Scheme 5, yields are given for the cycliza-
tion step) in good overall yields.

An even higher degree of flexibility could be realized
when the reaction sequence was performed with higher
homologues of the alkynols leading to tricyclic com-
pounds where ring B consists of a seven- or eight-mem-
bered ring as shown in Scheme 6. In these cases, the
bromine-lithium exchange reaction worked only sluggish-
ly in THF. However, in diethyl ether the desired products
were formed rapidly upon bromine-lithium exchange at

low temperature (–100 °C) and subsequent warming to
room temperature.8 Although the formation of larger ring
systems with a simple SN2 reaction should be more and
more disfavored. Nonetheless, to the best of our know-
ledge, for the first time seven and eight membered ring
systems were generated using the Parham cyclization
methodology and the tetrahydro-dibenzo[a,c]cyclohep-
tene and the hexahydro-dibenzo-[a,c]cyclooctene9 deriv-
atives were isolated in good yields.

Scheme 6

In summary, we have developed a new protocol for the
generation of various tricyclic ring systems in a short re-
action sequence. Further variations with more highly
functionalized iodo arene derivatives, substituted
alkynols of different chain lengths, and functionalized
1,3-dienes can be envisioned for the synthesis of a wide
range of compounds. Such investigations are currently
underway in our laboratory.
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